Pd/C Catalyzed Carbonylation of Azides in the Presence of Amines.

Jin Zhao, Zongyang Li, Shuaihu Yan, Shiyang Xu, Ming-An Wang, Bin Fu, Zhenhua Zhang*

Department of Applied Chemistry, China Agricultural University, Beijing 100193, China

CONTENTS

1. Materials and methods... S2
2. Syntheses of azides substrates ... S2
3. Typical experimental procedure of Pd / C catalyzed carbonylation of azides in the presence of aminesS3
4.Additional mechanism study S4
4. Spectral data for the ureas S8
5. References S23
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S24

1. Materials and methods.

Unless stated otherwise, all reactions were performed under a nitrogen atmosphere in a Schlenk reaction flask. Aromatic amines, alkyl bromides, alkyl alcohols and XPhos were obtained from Energy Chemicals. Pd / C ($10 \mathrm{wt} \%$, matrix activated carbon support) was obtained from Sigma-Aldrich. All solvents were distilled under a nitrogen atmosphere prior to use. 1,4-Dioxane and toluene were dried over Na with benzophenone-ketyl intermediate as indicator. MeCN and DCE were dried over CaH_{2}. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 MHz and 100 MHz with Varian Mercury 400 spectrometer, or 300 MHz and 75 MHz with Bruker ARX 300 at ambient temperature. Chemical shifts are reported in ppm using tetramethylsilane as internal standard when CDCl_{3} was used as solvent. IR spectra were recorded with a Thermo Electron Corporation Nicolet AVATAR 330 FT-IR spectrometer. HRMS data were obtained on a VG ZAB-HS mass spectrometer, Brucker Apex IV FTMS spectrometer. HPLC (Agilent Technologies 1200 Series) was equipped with an Eclipse Plus C18 $5 \mu \mathrm{~m}$ separation column ($250 * 4.6$ mm). The HRTEM method was used a JEM-2100F. This machine was operated at 200 kV , and it was equipped with a field emission gun, ultra-high-resolution pole piece, and ultrathin window JEOL detector. HRTEM images were obtained with an OSIS CANTEGA CCD camera.

2. Syntheses of azides substrates

A. Syntheses of aromatic azides substrates

To a 100 mL round bottom flask was charged with aniline ($930 \mathrm{mg}, 10 \mathrm{mmol}$) and water (15 mL). Concentrated $\mathrm{HCl}(4 \mathrm{~mL})$ was added to the vigorously stirred reaction mixture in an ice-water bath. After stirring and cooling to $0^{\circ} \mathrm{C}$ for 20-30 min, a freshly prepared, ice cold solution of $\mathrm{NaNO}_{2}(690$ $\mathrm{mg}, 10 \mathrm{mmol}$) in water (3 mL) was added dropwise to the reaction mixture while keeping the internal temperature between $0-5{ }^{\circ} \mathrm{C}$. After addition of NaNO_{2}, the reaction mixture was stirred for an additional 10 min . A freshly prepared solution of sodium azide ($780 \mathrm{mg}, 12 \mathrm{mmol}$) in water (5 mL) was added drop wise to the reaction mixture via additional funnel while maintaining the internal temperature of the reaction mixture below $5^{\circ} \mathrm{C}$. Upon complete addition of the sodium azide solution, the reaction mixture was stirred for an additional $20-30 \mathrm{~min}$ at $0{ }^{\circ} \mathrm{C}$, followed by stirring at rt for another 3 h . The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, and combined organic layers was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude azidobenzene was further purified by flash column chromatography over a short plug of silica gel using using petroleum ether /EtOAc (15:1) as eluent to afford a yellow liquid ($910 \mathrm{mg}, 76 \%$).

B. Syntheses of alkyl azides substrates

To a stirred solution of benzyl bromide ($171 \mathrm{mg}, 1 \mathrm{mmol}$) in 50 mL of $1: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{Me}_{2} \mathrm{CO}(10 \mathrm{~mL})$ was added $\mathrm{NaN}_{3}(195 \mathrm{mg}, 3 \mathrm{mmol})$. After 24 h , the reaction was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$), washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure to give benzene azide as pale yellow oil. The crude product was further purified by flash column chromatography over a short plug of silica gel using petroleum ether $/ \operatorname{EtOAc}(15: 1)$ as eluent to afford a yellow liquid ($106 \mathrm{mg}, 80 \%$).

3. Typical experimental procedure of Pd / C-catalyzed carbonylation of azides in the

 presence of amines.
A. Typical experimental procedure of Pd / C catalyzed carbonylation of benzyl azides in the presence of amines.

The Schlenk reaction flask was degassed for two times with nitrogen, under a nitrogen atmosphere, $\mathrm{Pd} / \mathrm{C}(21 \mathrm{mg}, 0.02 \mathrm{mmol})$, XPhos ($19 \mathrm{mg}, 0.04 \mathrm{mmol}$) and 4-methoxyaniline ($59 \mathrm{mg}, 0.48 \mathrm{mmol}$) were added. Then the flask was sealed and evacuated to a vacuum of 15 mmHg and fitted a CO balloon. Benzyl azides ($53 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\mathrm{PhMe}(4 \mathrm{ml})$ were added via syringe. The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ until 1a disappeared as judged by TLC. Solution was removed in vacuo to leave a residue which was purified by flash silica gel chromatography using petroleum ether /EtOAc (from 3:1 to 1:1) as eluent afford pure $\mathbf{3 a}$ as a white solid ($94 \mathrm{mg}, 91 \%$).

B. Typical experimental procedure of Pd / C catalyzed carbonylation of alkyl azides in the

 presence of amines.The Schlenk reaction flask was degassed for two times with nitrogen, under a nitrogen atmosphere, $\mathrm{Pd} / \mathrm{C}(21 \mathrm{mg}, 0.02 \mathrm{mmol})$ and XPhos ($19 \mathrm{mg}, 0.04 \mathrm{mmol}$) were added. Then the flask was sealed and evacuated to a vacuum of 15 mmHg and fitted a CO balloon. (3-azidopropyl)benzene ($78 \mathrm{mg}, 0.48$ mmol), and $\mathrm{PhMe}(4 \mathrm{ml})$ were added via syringe. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 4 h , until $\mathbf{4 a}$ disappeared as judged by TLC. Then n-butylamine ($30 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added via syringe. The system was stirred at $60{ }^{\circ} \mathrm{C}$ for 8 h . Solution was removed in vacuo to leave a residue which was purified by flash silica gel chromatography using petroleum ether /EtOAc (from 5:1 to 1:1) to afford pure $\mathbf{5 a}$ as pale yellow oil $(90 \mathrm{mg}, 96 \%)$.

Table S1. Reaction Optimization for Pd/C Catalyzed Carbonylation of Alkyl Azides in the Presence of Amines. ${ }^{\boldsymbol{a}}$

entry	ligand $(\mathrm{mol} \%)$	solvent	addtive	$t\left({ }^{\circ} \mathrm{C}\right)$	yield $(\%)^{b}$
1	XPhos (10)	dioxane	$/$	80	15
2	XPhos (10)	DCE	$/$	80	10
3	XPhos (10)	PhMe	$/$	80	46
4	DPPP (5)	PhMe	$/$	80	12
5	DPPF (5)	PhMe	$/$	80	11

6	XPhos (10)	PhMe	$\mathrm{Et}_{3} \mathrm{~N}$ (1.5 eq.)	80	60
7	XPhos (10)	PhMe	PhOH (1.5 eq.)	80	50
8	XPhos (10)	PhMe	1	60	62
9	$\mathrm{P}(\mathrm{t}-\mathrm{Bu})_{3} \mathrm{HBF}_{4}$ (10)	PhMe	1	60	trace
10	XPhos (10)	PhMe	MgO (2 eq.)	60	$64^{\text {c }}$
11	XPhos (20)	PhMe	1	60	$61{ }^{\text {d }}$
12	XPhos (10)	PhMe	MgO (2 eq.)	60	$79^{\text {c,e }}$
13	XPhos (10)	PhMe	1	60	$\mathbf{9 6}^{\text {e,f }}$

\bar{a} Reaction was carried out with 1.0 equiv of $\mathbf{4 a}$ and 1.2 equiv of $\mathbf{2 b} .{ }^{b}$ Isolated yield. ${ }^{c} \mathbf{2 b}$ was added after $12 \mathrm{~h} .{ }^{d}$ The reaction was carried out with $10 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}$. ${ }^{e}$ The reaction was carried out with 1.2 equiv of $\mathbf{4 a}$ and 1.0 equiv of $\mathbf{2 b} .^{f} \mathbf{2 b}$ was added after 4 h .

C. Typical experimental procedure of Pd / C catalyzed carbonylation of aryl azides in the presence of amines.

The Schlenk reaction flask was degassed for two times with nitrogen, under a nitrogen atmosphere, $\mathrm{Pd} / \mathrm{C}(21 \mathrm{mg}, 0.02 \mathrm{mmol})$, XPhos ($19 \mathrm{mg}, 0.04 \mathrm{mmol}$) and 4-methoxyaniline ($59 \mathrm{mg}, 0.48 \mathrm{mmol}$) were added. Then the flask was sealed and evacuated to a vacuum of 15 mmHg and fitted a CO balloon. Azidobenzene ($48 \mathrm{mg}, 0.4 \mathrm{mmol}$) and water (with $5 \% \mathrm{PhMe}$ and $5 \%{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NCl}$) were added via syringe. The mixture was stirred at room temperature until 6a disappeared as judged by TLC. Solution was removed in vacuo to leave a residue which was purified by flash silica gel chromatography using petroleum ether /EtOAc (from 5:1 to 1:2) to afford pure 7a as a white solid ($94 \mathrm{mg}, 97 \%$).

Table S3. Reaction Optimization for Pd/C Catalyzed Carbonylation of Aryl Azides in the Presence of Amines. ${ }^{a}$

entry	Additive	Solvent	$t\left({ }^{\circ} \mathrm{C}\right)$	Yield b
1	$/$	PhMe	25	90%
2	$/$	$\mathrm{H}_{2} \mathrm{O}^{b}$	25	65%
$\mathbf{3}$	$\mathbf{5 \%}$	PTC	$\left(\mathbf{n B u}_{\mathbf{4}} \mathbf{N C I}\right)$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}^{\boldsymbol{c}}$

${ }^{a}$ Reaction was carried out with 1.0 equiv of $\mathbf{6 a}$ and 1.2 equiv of 2a. ${ }^{b}$ Isolated yield. ${ }^{c}$ The solvent was added 5\% PhMe.

4. Additional mechanism Study

a) Controlled experiment ${ }^{a}$

${ }^{a}$ Reaction conditions: $\mathbf{6 a}(0.4 \mathrm{mmol}), \mathbf{2 a}(0.48 \mathrm{mmol})$, catalyst and $\mathrm{PhMe}(4 \mathrm{ml})$ was added and reacted for 12 h under CO (1 atm).

Catalyst A: $\mathrm{Pd} / \mathrm{C}(0.02 \mathrm{mmol})$ and XPhos $(0.04 \mathrm{mmol})$ were incubated in $\mathrm{PhMe}(4 \mathrm{~mL})$ overnight at $30^{\circ} \mathrm{C}$, then filtrated, and washed with acetone $(3 \times 5 \mathrm{~mL})$, the solution was removed in vacuum to leave a residue as a white solid, which was confirmed mainly to be XPhos. This white solid was used as catalyst A.
Catalyst B: $\mathrm{Pd} / \mathrm{C}(0.02 \mathrm{mmol})$ and XPhos $(0.04 \mathrm{mmol})$ were incubated in PhMe $(4 \mathrm{~mL})$ overnight at $30^{\circ} \mathrm{C}$, then filtrated, washed with acetone $(3 \times 5 \mathrm{~mL})$, the black residue solid was taken in vacuum to further remove the solvent. This black solid was used as catalyst B.
Catalyst C: Additional fresh XPhos (0.04 mmol) was added to catalyst B.
Catalyst D: Fresh Pd/C (0.02 mmol) and fresh XPhos $(0.04 \mathrm{mmol})$ were used as catalyst D.

b) Recycling test

The recycling test of Pd / C with/without extra XPhos confirmed the consequence. Yields were obtained through HPLC.

${ }^{a}$ Yield was determined by HPLC analysis. ${ }^{b}$ Reaction condition A: 6a (0.4 mmol), 2a (0.48 mmol) and PhMe (4 ml) was added and reacted for 12 h under $\mathrm{CO}(1 \mathrm{~atm})$. Reaction products carried out with the same batch of Pd / C with fresh XPhos $(0.04 \mathrm{mmol}) .{ }^{c}$ Reaction condition B: $\mathbf{6 a}(0.4 \mathrm{mmol}), \mathbf{2 a}(0.48 \mathrm{mmol})$ and $\mathrm{PhMe}(4 \mathrm{ml})$ was added and
reacted for 12 h under $\mathrm{CO}(1 \mathrm{~atm})$. Reaction products carried out with the same batch of Pd / C. Besides, no addition XPhos was added in each run.

Controlled experiments suggested that the palladium that on the carbon was the real catalyst, even some palladium leached into the solvent. In addition, XPhos was necessary for this catalytic reaction, and it may coordinate to the palladium that on the carbon,

c) HRTEM experiment

The Pd / C-XPhos systems were analyzed by the HRTEM method using a JEM-2100F. This machine was operated at 200 kV , and it was equipped with a field emission gun, ultra-high-resolution pole piece, and ultrathin window JEOL detector. HRTEM images were obtained with an OSIS CANTEGA CCD camera.

HRTEM of the Pd / C-XPhos systems. a) Fresh Pd / C. b) Pd / C incubated with XPhos in PhMe , then washed with PhMe and acetone. c) Recovered Pd / C after one time catalyzed reaction.

Reflected by HRTEM investigations, all the fresh Pd / C (a), filtrated Pd / C after incubated with XPhos (b) and recovered Pd / C (c), clearly exhibited higher Pd dispersion and more uniform distribution, no agglomeration of Pd crystallites was observed. This result is different with other heterogeneous catalyzed coupling reaction. (See reference: Heidenreich, R.-G.; Krauter, J. G. E.; Pietsch, J.; Köheler, K. J. Mol. Catal. A: Chem. 2002, 182-183, 499.)
d) Stoichiometric reaction and sub step reaction

Reaction was carried out with 1.0 equiv of $\mathbf{1 a}(0.4 \mathrm{mmol})$ and 1.2 equiv of $\mathbf{2 a}(0.48 \mathrm{mmol})$.

Above results showed that the coordination of CO to the palladium catalyst was also critical to the decomposing of azides. When CO was removed, $>90 \%$ azides could be recovered after 24 h even using the stoichiometric of Pd / C.

$$
\mathrm{Ph}^{-\mathrm{N}_{3}} \xrightarrow[\substack{\mathrm{Pd} / \mathrm{C}(5 \mathrm{~mol} \%) \\ \text { PhMe, rt, 3h } \\ \text { XPhos }(10 \mathrm{~mol} \%) \\ \text { CO balloon })}]{\mathrm{PhNCO}]}
$$

5. Spectral data for the ureas

1-benzyl-3-(4-methoxyphenyl)urea (3a) ${ }^{1}$

Yellow solid. (94mg, 91\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.19(\mathrm{~m}, 7 \mathrm{H}), 6.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{t}, J=$ $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.29 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }^{6}$) $\delta 155.48,153.97,140.53,133.60,128.31,127.12,126.70,119.48$, 113.89, 55.14, 42.79.

1-benzyl-3-butylurea (3b) ${ }^{2}$

White solid. ($81 \mathrm{mg}, 98 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~d}$, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{dd}, J=14.9,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{dd}, J=14.9,7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.85,139.63,128.61,127.38,127.19,44.35,40.25,32.42,2$ 0.12 , 13.92.

1-butyl-3-(4-methylbenzyl)urea (3c) ${ }^{3}$

White solid. ($68 \mathrm{mg}, 77 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.07-7.02(\mathrm{~m}, 4 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 2$ H), 3.03-2.98 (m, 2 H$), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.19(\mathrm{~m}, 4 \mathrm{H}), 0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.09,136.65,136.57,129.18,127.31,43.98,40.10,32.43,21$. 12, 20.10, 13.89.

1-butyl-3-(4-methoxybenzyl)urea (3d) ${ }^{4}$

White solid. ($69 \mathrm{mg}, 73 \%$)
${ }^{1}$ HNMR (400MHz, DMSO-d ${ }^{6}$) $\delta 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.15(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 5.83(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.96(\mathrm{~m}, 2 \mathrm{H}), 1.3$ 6-1.29 (m, 2H), 1.29-1.22 (m, 2H), $0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100MHz, DMSO-d ${ }^{6}$) $\delta 158.02,158.00,132.90,128.30,113.59,55.04,42.35,38.96,32.18$, 19.53, 13.73.

1-butyl-3-(4-chlorobenzyl)urea (3e) ${ }^{5}$

White solid. ($68 \mathrm{mg}, 71 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d}^{6}$) $\delta 7.36(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.31(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.01-2.97(\mathrm{~m}$, 2 H), 1.39-1.31 (m, 2H), 1.26 (dd, $J=15.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 158.04,140.26,130.98,128.82,128.11,42.21,39.03,32.17$, 19.56, 13.75.

1-butyl-3-(4-fluorobenzyl)urea (3f)

White solid. (80mg, 89\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H})$, $4.25-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.08-3.05(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.09(\mathrm{~d}, J=242.0 \mathrm{~Hz}), 158.64,135.40,129.01(\mathrm{~d}, J=8.2 \mathrm{~Hz})$, 115.44 (d, $J=21.4 \mathrm{~Hz}$), 43.67, 40.33, 32.41, 20.13, 13.89.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.6.
IR (neat) $v: 2959,2929,1624,1587,1511,1228,1157,825 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}: 225.13977$, found: 225.13973

1-butyl-3-(3-fluorobenzyl)urea (3g)

White solid. (91mg, >98\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~s}$, $1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.15-3.10(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H})$, $0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.90(\mathrm{~d}, J=244.3 \mathrm{~Hz}), 159.21,142.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 1$ $29.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 122.28(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 113.71(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 113.50(\mathrm{~d}, J=3.4 \mathrm{H}$ z), 43.25, 39.94, 32.29, 19.97, 13.72.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.1$ (dd, $J=15.2,9.0 \mathrm{~Hz}$).
IR (neat) v: 2957, 2934, 1626, 1585, 1256, 1065, $815 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{FN}_{2} \mathrm{O}: 225.13977$, found: 225.14041 .
1-butyl-3-(4-(trifluoromethyl)benzyl)urea (3h)

White solid. ($109 \mathrm{mg},>98 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.56,143.89,129.55(\mathrm{q}, J=32.2 \mathrm{~Hz}), 127.46,125.58(\mathrm{q}, J=3.8$ $\mathrm{Hz}), 124.21(\mathrm{q}, ~ J=263.8 \mathrm{~Hz}), 43.86,40.41,32.40,20.12,13.86$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.5$.
IR (neat) v: 3334, 2964, 2930, 1629, 1581, 1329, $1125 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: 275.13657$, found: 275.13731.

1-butyl-3-(2-(trifluoromethyl)benzyl)urea (3i)

White solid. ($95 \mathrm{mg}, 87 \%$)
${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.63-7.60 $(\mathrm{m}, 2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 4.80$
$(\mathrm{s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 1 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.33-1$.
$27(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.05,138.14,132.43,132.42,130.46,127.44,126.03(\mathrm{q}, J=5.7 \mathrm{~Hz})$, $124.74(\mathrm{q}, ~ J=288.3 \mathrm{~Hz}), 41.03,40.54,32.36,20.12,13.88$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-59.6.
IR (neat) v: 1630, 1594, 1317, 1271, 1160, 1117, $690 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}$: 275.13657, found: 275.13714.

1-butyl-3-(3-(trifluoromethyl)benzyl)urea (3j)

White solid. (98mg, 90\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.35(\mathrm{~m}, 4 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.16-3.11(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.39,140.80,130.84,130.82,129.15,125.40(\mathrm{q}, J=269.8 \mathrm{~Hz}$), $124.14(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.99(\mathrm{q}, J=3.8 \mathrm{~Hz}), 43.96,40.45,32.39,20.12,13.87$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.7.
IR (neat) $v: 1636,1580,1331,1166,1129,703,689 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: 275.13657$, found: 275.13710.
1-butyl-3-(naphthalen-2-ylmethyl)urea (3k)

White solid. ($64 \mathrm{mg}, 63 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.99-7.93 (m, 1H), 7.82-7.78 (m, 1H), 7.73-7.71 (M, 1H), 7.50-7.42 (m, $2 \mathrm{H}), 7.35-7.31(\mathrm{M}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.30(\mathrm{~m}$, $2 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.69,134.73,133.78,131.35,128.64,128.03,126.29,125.7$ 8, 125.57, 125.39, 123.52, 42.24, 40.13, 32.37, 20.05, 13.85.
IR (neat) $v: 2959,2928,1626,1581,1252,106,775 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}: 257.16484$, found: 257.16519.
1-butyl-3-(thiophen-2-ylmethyl)urea (3I)

White solid. ($70 \mathrm{mg}, 85 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21$ (ddd, $\left.J=4.9,1.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.71$
$(\mathrm{s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.37-$ $1.30(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.69,142.63,126.97,125.52,125.08,40.54,39.64,32.38,2$ 0.14, 13.92.

IR (neat) v: 3338, 2955, 1627, 1589, $689 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{OS}$: 213.10561, found: 213.10571.
N-benzylpiperidine-1-carboxamide (3m) ${ }^{6}$

White solid. ($74 \mathrm{mg}, 85 \%$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3$. 36-3.31 (m, 4H), 1.62-1.52 (m, 6H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 157.69,139.83,128.67,127.86,127.30,45.12,45.07,25.74,24.53$.
1-benzyl-3-phenylurea (3n) ${ }^{7}$

White solid. ($88 \mathrm{mg}, 97 \%$)
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O-\mathrm{d}^{6}\right) \delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 4 \mathrm{H})$, 7.26-7.20 (m, 3H), 6.91-6.87 (m, 1H), $6.61(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 155.25,140.48,140.38,128.69,128.34,127.14,126.75,12$ 1.12, 117.70, 42.75.

1-benzyl-3-mesitylurea (30)

White solid. (100mg, 93\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-\mathrm{d}}{ }^{6}$) $\delta 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.84(\mathrm{~s}, 2 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H})$, 4.26-4.23 (m, 2H), $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 156.29,141.04,135.47,133.32,128.30,128.21,127.00,12$ 6.86, 126.55, 42.95, 20.51, 18.20.

IR (neat) v: $3314,3290,1630,1609,1566,1229,667 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}$: 269.16484, found: 269.16530.
benzyl-3-(4-(trifluoromethyl)phenyl)urea (3p)

White solid. ($95 \mathrm{mg}, 81 \%$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.16(\mathrm{~m}$, $1 \mathrm{H}), 6.79(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.^{6}\right) \delta 154.87,144.17,140.04,128.30,127.14,126.77,125.94$ (q, $J=3.9$
$\mathrm{Hz}), 124.64(\mathrm{q}, J=269.1 \mathrm{~Hz}), 121.04(\mathrm{q}, J=31.7 \mathrm{~Hz}), 117.29,42.76$.
${ }^{19}$ F NMR (376 MHz, DMSO-d 6) δ-61.4.
IR (neat) v: 2130, 1640, 1612, 1566, 1324, $1120 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: 295.10527$, found: 295.10610.
1-butyl-3-(3-phenylpropyl)urea (5a)

White solid. (90mg, 96\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H})$, 3.20-3.15 (m, 2H), 3.13-3.08 (m, 2H), $2.62(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.28$ $(\mathrm{m}, 2 \mathrm{H}), 0.89(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.00,141.78,128.48,128.43,125.96,40.22,40.06,33.32,32.51$, 32.08, 20.16, 13.92.

IR (neat) v: 3333, 2930, 2861, 1630, 1573, $1259 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 235.18049$, found: 235.18107.
N-(3-phenylpropyl)morpholine-4-carboxamide (5b)

White solid. (94mg, 95\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 4 \mathrm{H})$, 3.27-3.20 (m, 6H), 2.67-2.63 (m, 2H), 1.88-1.81 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.82,141.81,128.45,128.35,125.90,66.45,43.85,40.76,33.58$, 31.56.

IR (neat) v: 2923, 2856, 1712, 1626.1, 1538, 1262, $851 \mathrm{~cm}^{-1}$.

HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}: 249.15975$, found: 249.16045.

1,3-bis(3-phenylpropyl)urea (5c)

White solid. (92mg, 78\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 5 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 4 \mathrm{H})$, $2.63(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.17,141.53,128.41,128.33,125.92,40.11,33.18,31.76$.
IR (neat) v: 2925, 1743, 1633, 1574, 1454, $1259 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$ 297.19614, found: 297.19526.

1-benzyl-3-(3-phenylpropyl)urea (5d)

White solid. ($83 \mathrm{mg}, 77 \%$)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.02(\mathrm{~m}, 10 \mathrm{H}), 5.46(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, 3.10-3.04 (m, 2H), $2.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.58(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.8,141.7,139.6,128.6,128.5,128.4,127.4,121.2,126.0,44.4,40.1$, 33.2, 31.9 .

IR (neat) v: 2957, 2929, 1462, 1380, 1163, 1046, $882 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}, 269.16484$, found : 269.16528
1-phenyl-3-(3-phenylpropyl)urea (5e) ${ }^{7}$

White solid. (96mg, 95\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 5 \mathrm{H})$, 6.90-6.86 (m, 1H), $6.20(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 155.23,141.70,140.57,128.60,128.29,128.27,125.72,120.91$, 177.99, 38.66, 32.50, 31.59.

1-(4-methoxyphenyl)-3-(3-phenylpropyl)urea (5f)

Yellow solid. (91mg, 77\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.08(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.64$ ($\mathrm{m}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 155.49,153.86,141.76,133.73,128.33,128.31,125.75,119.36$, 113.87, 55.14, 38.72, 32.54, 31.69.

IR (neat) $v: 1642,1602,1564,1512,1244,832 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$: 285.15975, found: 285.16036 .

1-(3-phenylpropyl)-3-(4-(trifluoromethyl)phenyl)urea (5g)

White solid. ($69 \mathrm{mg}, 54 \%$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.47,142.31,141.10,128.60,128.31,126.38(\mathrm{q}, J=5.0 \mathrm{~Hz}), 124.83$ $(\mathrm{q}, ~ J=32.7 \mathrm{~Hz}), 124.30(\mathrm{q}, ~ J=269.7 \mathrm{~Hz}), 119.04,39.93,33.15,31.63$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.0.
IR (neat) $v: 1657,1604,1557,1328,1119,1068,656 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}: 323.13657$, found: 323.13569 .

1-(naphthalen-2-yl)-3-(3-phenylpropyl)urea (5h)

White solid. ($95 \mathrm{mg}, 78 \%$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.{ }^{6}\right) \delta 8.52(\mathrm{~s}, 1 \mathrm{H}), 8.11-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.01-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.88(\mathrm{~m}$, $1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H})$, $6.67(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}^{6}{ }^{6}$) $\delta 155.57,141.68,135.20,133.70,128.33,128.30,128.29,125.91$, $125.74,125.70,125.46,125.34,121.91,121.35,116.32,38.76,32.52,31.53$.

IR (neat) v: 2958, 2083, 1692, 1381, 1300, $1127 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for: 305.16484, found: 305.16422.
1-phenethyl-3-(3-phenylpropyl)urea (5i)

White solid. ($92 \mathrm{mg}, 81 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.14(\mathrm{~m}, 10 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.40-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.13(\mathrm{~m}, 2 \mathrm{H})$, 2.80-2.76 (m, 2H), 2.64-2.60 (m, 2H), 1.82-1.75 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) δ 158.27, 141.69, 139.31, 128.94, 128.71, 128.56, 128.48, 126.53, $126.07,41.77,40.23,36.53,33.32,31.92$.
IR (neat) v: 2927, 2859, 1643, 1564, 1496, 1453, $835 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}$ 283.18049, found: 283.17970 .

N -phenethylmorpholine-4-carboxamide (5j) ${ }^{8}$

White solid. ($75 \mathrm{mg}, 80 \%$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 3.66-3.64(\mathrm{~m}, 4 \mathrm{H})$, 3.53-3.48 (m, 2H), 3.29-3.26 (m, 4H), 2.85-2.81 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 157.79$, 139.37, 128.94, 128.74, 126.58, 66.60, 44.04, 42.11, 36.39.

1-(3-((tert-butyldimethylsilyl)oxy)propyl)-3-(3-phenylpropyl)urea (5k)

White oil. (103mg, 73\%)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 2 \mathrm{H})$, 3.26-3.20 (m, 2H), 2.67-2.63 (m, 2H), 1.84-1.83(m, 2H), 1.70-1.67 (m, 4H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.54,141.76,128.56,128.50,126.05,61.77,40.33,38.77,34.35$, 32.65, 32.05, 26.08, 18.41, -5.21.

IR (neat) $v: 2928,2856,1631,1575,1255,1097,835 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}: 351.24623$, found: 351.24535 .

N -cinnamylmorpholine-4-carboxamide (51)

White oil. ($51 \mathrm{mg}, 52 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.53-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H})$, 4.04-4.01(m, 2H), 3.69-3.67 (m, 4H), 3.37-3.35 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.53,136.58,131.74,128.54,127.63,126.69,126.31,66.48,43.98$, 43.07.

IR (neat) v: 2921, 2856, 1629, 1534, 1259, 1117, $966 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2}$: 269.12605 , found: 269.12557.
1-(4-methoxyphenyl)-3-phenylurea (7a) ${ }^{9}$

Yellow solid. (88mg, 90\%)
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d ${ }^{6}$) $\delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H})$, , $.29-7.23(\mathrm{~m}, 2 \mathrm{H}), ~ 6.97-6.92(\mathrm{~m}, 1 \mathrm{H}), ~ 6.90-6.81(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d ${ }^{6}$) $\delta 154.46,152.70,139.87,132.70,128.70,121.56,120.01,118.06$, 113.97, 55.15.

1-(4-methoxyphenyl)-3-(o-tolyl)urea (7b) ${ }^{10}$

Yellow solid. (93mg, 91\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.82(\mathrm{~s}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H})$, 7.17-7.11 (m, 2H), 6.92-6.90 (m, 1H), 6.88-6.86 (m, 2H), 3.71 (s, 3H), 2.23 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 154.32,152.78,137.59,132.91,130.12,127.19,126.11,122.39$, 120.78, 119.70, 114.01, 55.15, 17.89.

1-(4-methoxyphenyl)-3-(m-tolyl)urea (7c $)^{10}$

Yellow solid. (84mg, 81\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, 2.27 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 154.40,152.67,139.79,137.86,132.73,128.56,122.32,119.92$, 118.56, 115.23, 113.96, 55.16, 21.23.

1-(4-methoxyphenyl)-3-(p-tolyl)urea (7d $)^{11}$

Yellow solid. (95mg, 93\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) δ 154.37, 152.77, 137.33, 132.83, 130.37, 129.14, 119.92, 118.16, 113.97, 55.16, 20.35.

1,3-bis(4-methoxyphenyl)urea (7e) ${ }^{12}$

Yellow solid. (96mg, 88\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.35(\mathrm{~s}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.70$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13}$ C NMR (100 MHz, DMSO- ${ }^{6}$) $\delta 154.73,153.36,133.34,120.31,114.38,55.59$.
1-(4-acetylphenyl)-3-(4-methoxyphenyl)urea (7f) ${ }^{13}$

Yellow solid. (89mg, 78\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.06-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H})$, $7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 198.19,155.01,153.15,140.77,137.80,132.91,129.54,123.09$, 122.11, 120.65, 117.66, 114.40, 55.60, 27.19.
methyl 4-(3-(4-methoxyphenyl)ureido)benzoate (7g)

White solid. (106mg, 88\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- ${ }^{6}$) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 165.92,154.72,152.30,144.59,132.24,130.38,122.17,120.26$, 117.15, 114.01, 55.17, 51.75.

IR (neat) v: $1714,1651,1600,1563,1512,1284,832 \mathrm{~cm}^{-1}$.
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{4}$: 301.11828 , found: 301.11840 .
1-(4-methoxyphenyl)-3-(4-(trifluoromethyl)phenyl)urea (7h) ${ }^{14}$

White solid. (120mg, 97\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d^{6}) $\delta 154.72,152.43,143.62,132.25,126.05(\mathrm{q}, J=4.0 \mathrm{~Hz}), 124.59(\mathrm{q}$, $J=270.0 \mathrm{~Hz}), 120.31,118.14,117.69,114.01,55.18$.
${ }^{19}$ F NMR (376 MHz, DMSO- d^{6}) $\delta-60.1$.
1-(4-fluorophenyl)-3-(4-methoxyphenyl)urea (7i) ${ }^{15}$

White solid. ($97 \mathrm{mg}, 93 \%$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H})$, 7.12-7.08 (m, 2H), 6.7-6.85 (m, 2H), 3.71 (s, 3H).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.{ }^{6}\right) \delta 157.19(\mathrm{q}, J=236.2 \mathrm{~Hz}), 154.46,152.81,136.22,132.66,120.07$, 119.79 (d, $J=7.4 \mathrm{~Hz}$), 115.21, (d, $J=21.2 \mathrm{~Hz}$), 113.96, 55.16.
${ }^{19}$ F NMR (376 MHz, DMSO- d^{6}) $\delta-121.9$.

1-(4-bromophenyl)-3-(4-methoxyphenyl)urea (7j) ${ }^{16}$

Yellow solid. (89mg, 69\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $\left.{ }^{6}\right) \delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~s}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.86$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.71(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 154.56,152.56,139.34,132.47,131.45,120.15,119.98,113.98$, 112.91, 55.16.

1-(3-chlorophenyl)-3-(4-methoxyphenyl)urea (7k) ${ }^{10}$

White solid. ($97 \mathrm{mg}, 87 \%$)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }^{6}$) $\delta: 154.46,152.54,141.48,133.15,132.36,130.35,121.19,120.24$, 117.40, 116.49, 113.99, 55.17.

1-mesityl-3-(4-methoxyphenyl)urea (71) ${ }^{17}$

White solid. (93mg, 82\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $\delta 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.85-6.82$ $(\mathrm{m}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 154.07,153.53,135.31,134.75,133.48,132.86,128.29,119.60$, 113.89, 55.1, 20.50, 18.22.

1-(4-methoxyphenyl)-3-(naphthalen-1-yl)urea (7m) ${ }^{18}$

White solid. ($96 \mathrm{mg}, 82 \%$)
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ D M S O-\mathrm{d}^{6}\right) \delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, 2 H), 3.73 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 154.46,153.06,134.50,133.71,132.80,128.41,125.88,125.85$, 125.80, 125.63, 122.66, 121.28, 119.86, 117.09, 114.06, 55.18.
phenyl-3-(4-(trifluoromethyl)phenyl)urea (7n) ${ }^{19}$

White solid. ($99 \mathrm{mg}, 88 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-\mathrm{d}}{ }^{6}$) $\delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H})$, 7.31-7.27 (m, 2H), 7.01-6.97 (m, 1H).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d ${ }^{6}$) $\delta 152.26,143.47,139.28,128.81,126.06(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.55(\mathrm{q}, J$ $=269.4 \mathrm{~Hz}), 122.20,121.71(\mathrm{q}, J=31.7 \mathrm{~Hz}), 118.43,117.80$.
${ }^{19}$ F NMR (376 MHz , DMSO- d ${ }^{6}$) $\delta-60.1$.
1-mesityl-3-phenylurea (7o) ${ }^{18}$

White solid. (46mg, 45\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{6}$) $8.66(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H})$, 6.93-6.90 (m, 1H), $6.88(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.70,140.78,135.71,135.28,133.08,129.09,128.72,121.69$, 118.25, 20.91, 18.60.

1-butyl-3-phenylurea ($7 \mathbf{p})^{20}$

White solid. ($66 \mathrm{mg}, 85 \%$)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 1 \mathrm{H})$, $6.08(\mathrm{~s}, 1 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.16,140.58,128.58,120.83,171.50,38.65,31.87,19.51,13.68$.
N-phenylpiperidine-1-carboxamide $(7 \mathbf{q}){ }^{21}$

White solid. ($82 \mathrm{mg},>98 \%$)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95-6.88$ $(\mathrm{m}, 1 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.87,140.77,128.19,121.44,119.54,44.66,25.51,24.12$.
1-methyl-1,3-diphenylurea (7r) ${ }^{22}$

White solid. ($84 \mathrm{mg}, 92 \%$)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 3 \mathrm{H})$, 6.96-6.92 (m, 1H), 3.27 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 154.69,144.08,140.05,129.20,128.23,126.18,125.70,121.98$, 119.85, 37.52.

6. References:

(1) Viana, G. M.; Aguiar, L. C. d. S.; Ferrao, J. d. A.; Simas, A. B. C.; Vasconcelos, M. G. Tetrahedron Lett. 2013, 54, 936.
(2) Wu, C.; Cheng, H.; Liu, R.; Wang, Q.; Hao, Y.; Yu, Y.; Zhao, F. Green Chem. 2010, 12, 1811.
(3) Borgna, P.; Vicarini, L.; Calderara, G. Farmaco, Ed. Sci. 1977, 32, 813.
(4) Gann, A. W.; Amoroso, J. W.; Einck, V. J.; Rice, W. P.; Chambers, J. J.; Schnarr, N. A., A Photoinduced, Benzyne Click Reaction. Org. Lett. 2014, 16, 2003-2005.
(5) Kwok, S. W.; Fotsing, J. R.; Fraser, R. J.; Rodionov, V. O.; Fokin, V. V. Org. Lett. 2010, 12, 4217.
(6) Orito, K.; Miyazawa, M.; Nakamura, T.; Horibata, A.; Ushito, H.; Nagasaki, H.; Yuguchi, M.; Yamashita, S.; Yamazaki, T.; Tokuda, M. J. Org. Chem. 2006, 71, 5951.
(7) Skinner, C. G.; Shive, W. J. Org. Chem. 1960, 25, 2046.
(8) Dube, P.; Nathel, N. F. F.; Vetelino, M.; Couturier, M.; Aboussafy, C. L.; Pichette, S.; Jorgensen, M.
L.; Hardink, M. Org. Lett. 2009, 11, 5622.
(9) Kotecki, B. J.; Fernando, D. P.; Haight, A. R.; Lukin, K. A. Org. Lett. 2009, 11, 947.
(10) McKay, A. F.; Hatton, W. G. Can. J. Chem. 1952, 30, 225.
(11) Naegeli, C.; Tyabji, A.; Conrad, L. Helv. Chim. Acta 1938, 21, 1127.
(12) Wei, Y.; Ding, H.; Lin, S.; Liang, F. Org. Lett. 2011, 13, 1674.
(13) Dominguez, J. N.; Leon, C.; Rodrigues, J.; Gamboa de Dominguez, N.; Gut, J.; Rosenthal, P. J. J. Med. Chem. 2005, 48, 3654.
(14) Takano, T.; Uehori, Y.; Hayasaka, H.; Satake, H. JP08002111A, 1996.
(15) Gavade, S. N.; Balaskar, R. S.; Mane, M. S.; Pabrekar, P. N.; Shingare, M. S.; Mane, D. V. Chin.Chem. Lett. 2011, 22, 292.
(16) Picard, J. P.; McKay, A. F. Can. J. Chem. 1953, 31, 896.
(17) Lebel, H.; Leogane, O. Org. Lett. 2006, 8, 5717.
(18) Sammour, A.; Fahmy, A. F. M.; Hosni, G. Egypt. J. Chem. 1973, 16, 481.
(19) Moore, S. J.; Haynes, C. J. E.; Gonzalez, J.; Sutton, J. L.; Brooks, S. J.; Light, M. E.; Herniman, J.;

Langley, G. J.; Soto-Cerrato, V.; Perez-Tomas, R.; Marques, I.; Costa, P. J.; Felix, V.; Gale, P. A. Chem.
Sci. 2013, 4, 103.
(20) Kotecki, B. J.; Fernando, D. P.; Haight, A. R.; Lukin, K. A. Org Lett 2009, 11, 947.
(21) Wei, Y.; Liu, J.; Lin, S.; Ding, H.; Liang, F.; Zhao, B. Org. Lett. 2010, 12, 4220.
(22) Zhang, L.; Darko, A. K.; Johns, J. I.; McElwee-White, L. Eur. J. Org. Chem. 2011, 31 , 6261.

7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

(

(

(

(2000

(

(

(

(
(

(

(

(

(2000

(

(

(

