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Figure S-1: Carbon mapping naming convention.  A toy example is shown for pyruvate.  The compounds 

included in the example include acetate (ac), carbon dioxide (co2), and pyruvate (pyr).  For each sub-

compound that composes another compound, a “_compound number” is appended to the compound 

name.   For example, pyruvate can be composed of carbon dioxide and acetate.  Pyruvate can be 

designated as “co2_0 + ac_0” to specify that pyruvate is composed of 1 carbon dioxide molecule and 1 

acetate molecule.  Pyruvate can be further broken down to its carbon numbers.  This can be described 

by adding a “_element position” to each sub-compound.  Brackets are used to group all carbons that 

come from a single compound for easier reading. 
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Figure S-2: Carbon mapping naming convention.  An example of constructing a complex macromolecule 

from precursor and intermediate metabolites. 
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Figure S-3:  Differences in estimated net flux values found between different MFA models.  Fold-changes 

over observable net flux values calculated using the same data set and different models compared to 

iDM2014 that were significant as determined by 95% confidence intervals are shown. 
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Figure S-4:  Model robustness to incorrect atom mappings and addition or removal of non-essential 

reactions.  The fold-change over net flux values calculated using iDM2014 are shown.   

iDM2014_glyc,26dap denotes iDM2014 with incorrect symmetry for glycerol, L,L-diaminopimelate , and 

meso-diaminopimelate.  iDM2014_26dap denotes iDM2014 with incorrect symmetry for L,L-

diaminopimelate , and meso-diaminopimelate.  iDM2014_hex denotes iDM2014 with addition of the 

ability to transport glucose into the cell via the action of hexokinase, and iDM2014_pfl denotes iDM2014 

without pyruvate formate lyase. 
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Figure S-5:  Net flux values calculated with and without non-essential reactions. Flux predictions, 

including precision, of key reactions in central carbohydrate metabolism calculated using the same data 

set and different models.  Circles represent the best net flux estimate; whiskers represent +/- the 

standard deviation as calculated from 95% confidence intervals.  All flux values are normalized to net 

glucose uptake.  iDM2014_hex denotes iDM2014 with addition of the ability to transport glucose into 

the cell via the action of hexokinase, and iDM2014_pfl denotes iDM2014 without pyruvate formate 

lyase. 
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Table S-1: Fitted net fluxes for all flux simulations 

Table S-2: Fitted net fluxes for model robustness simulations 

Table S-3: Measured fluxes. 

Table S-4: Measured MS MIDs. 

Table S-5: Reaction list and carbon mapping for all models.  Note that 

Ec_biomass_iJO1366_WT_53p95M for the iDM2014 model is split across two lines due to its length. 

Table S-6: Symmetric metabolite mappings for all models. 

Table S-7: Effect of incorrect carbon mapping symmetry on flux estimation precision. 

  



S9 

 

Table S-8: Metabolic engineering targets of high value and peripheral pathways that can be directly 

measured using genome-scale MFA. 

Products Pathways Reference 

Heterologous DNA Purine biosynthesis 
1

 

Heterologous DNA Pyrimidine biosynthesis 
1

 

Caratenoids Isoprenoid biosynthesis (DXP pathway) 
2,3

 

Artemisinin Isoprenoid biosynthesis (DXP pathway) 
4-7

 

Taxol Isoprenoid biosynthesis (DXP pathway) 
8,9

 

Free fatty acids Lipid biosynthesis 
10-12

 

Free fatty acids Coenzyme A biosynthesis 
10-12

 

Riboflavin FAD biosynthesis 
13

 

Folic acid Folate biosynthesis 
14

 

C5 alcohols Isoprenoid biosynthesis (DXP pathway) 
15

 

Putrescine Putrescine biosynthesis 
16

 

Cadaverine Putrescine biosynthesis 
17

 

CoQ10 ubiquinone biosynthesis 
18

 

CoQ10 Isoprenoid biosynthesis (DXP pathway) 
18

 

CoQ10 aromatic amino acid biosynthesis 
18

 

CoQ8 ubiquinone biosynthesis 
19

 

CoQ8 Isoprenoid biosynthesis (DXP pathway) 
19

 

CoQ8 aromatic amino acid biosynthesis 
19

 

Vitamin K menaquinone biosythesis 
20

 

Vitamin K Isoprenoid biosynthesis (DXP pathway) 
20

 

Vitamin K aromatic amino acid biosynthesis 
20

 

phenol aromatic amino acid biosynthesis 
21

 

Shikimate and chorismate aromatic amino acid biosynthesis 
22-24

 

L-tyrosine, L-phenylalanine, 

and L-tryptophan 
aromatic amino acid biosynthesis 

25-28
 

L-threonine aromatic amino acid biosynthesis 
29

 

Lycopene Isoprenoid biosynthesis (DXP pathway) 
30,31

 

Cinnamic and p-

hydroxycinnamic acid 
aromatic amino acid biosynthesis 

32
 

L-DOPA aromatic amino acid biosynthesis 
33

 

Melanin aromatic amino acid biosynthesis 
34

 

 

Table S-9:  A comparison of precision between models and estimated flux values for representative core 

fluxes reported in this study compared to  estimated flux values reported in Gopalakrishnan et al, 2015
35

 

using two different tracer schemes. 

Table S-10:  List of metabolites and MIDs included in the fit of the genome-scale model. 
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fragment_id met_id fragment_formula scan_type 

13dpg_c_C3H7O10P2_MRM 13dpg_c C3H7O10P2 MRM 

3pg_c_C2H6O5P_EPI 3pg_c C2H6O5P EPI 

3pg_c_C3H6O7P_EPI 3pg_c C3H6O7P EPI 

3pg_c_C3H6O7P_MRM 3pg_c C3H6O7P MRM 

6pgc_c_C6H10O9P_EPI 6pgc_c C6H10O9P EPI 

6pgc_c_C6H12O10P_EPI 6pgc_c C6H12O10P EPI 

6pgc_c_C6H12O10P_MRM 6pgc_c C6H12O10P MRM 

accoa_c_C10H12N5O9P2_EPI accoa_c C10H12N5O9P2 EPI 

accoa_c_C10H14N5O10P2_EPI accoa_c C10H14N5O10P2 EPI 

accoa_c_C13H23N2O10P2S_EPI accoa_c C13H23N2O10P2S EPI 

accoa_c_C23H37N7O17P3S_MRM accoa_c C23H37N7O17P3S MRM 

acon_DASH_C_c_C4H5O2_EPI acon_DASH_C_c C4H5O2 EPI 

acon_DASH_C_c_C5H5O4_EPI acon_DASH_C_c C5H5O4 EPI 

acon_DASH_C_c_C5H5O4_MRM acon_DASH_C_c C5H5O4 MRM 

acon_DASH_C_c_C6H3O5_EPI acon_DASH_C_c C6H3O5 EPI 

acon_DASH_C_c_C6H5O6_EPI acon_DASH_C_c C6H5O6 EPI 

acon_DASH_C_c_C6H5O6_MRM acon_DASH_C_c C6H5O6 MRM 

akg_c_C2HO3_EPI akg_c C2HO3 EPI 

akg_c_C4H5O3_EPI akg_c C4H5O3 EPI 

akg_c_C4H5O3_MRM akg_c C4H5O3 MRM 

akg_c_C5H5O5_MRM akg_c C5H5O5 MRM 

amp_c_C10H13N5O7P_EPI amp_c C10H13N5O7P EPI 

amp_c_C10H13N5O7P_MRM amp_c C10H13N5O7P MRM 

amp_c_C5H4N5_EPI amp_c C5H4N5 EPI 

amp_c_C5H8O7P_EPI amp_c C5H8O7P EPI 

asp_DASH_L_c_C3H6NO2_EPI asp_DASH_L_c C3H6NO2 EPI 

asp_DASH_L_c_C3H6NO2_MRM asp_DASH_L_c C3H6NO2 MRM 

asp_DASH_L_c_C4H3O4_EPI asp_DASH_L_c C4H3O4 EPI 

asp_DASH_L_c_C4H6NO4_EPI asp_DASH_L_c C4H6NO4 EPI 

asp_DASH_L_c_C4H6NO4_MRM asp_DASH_L_c C4H6NO4 MRM 

atp_c_C10H15N5O13P3_MRM atp_c C10H15N5O13P3 MRM 

atp_c_C5H4N5_EPI atp_c C5H4N5 EPI 

dhap_c_C3H6O6P_EPI dhap_c C3H6O6P EPI 

dhap_c_C3H6O6P_MRM dhap_c C3H6O6P MRM 

fad_c_C27H32N9O15P2_MRM fad_c C27H32N9O15P2 MRM 

fdp_c_C6H10O8P_EPI fdp_c C6H10O8P EPI 

fdp_c_C6H13O12P2_EPI fdp_c C6H13O12P2 EPI 

fdp_c_C6H13O12P2_MRM fdp_c C6H13O12P2 MRM 

fdp_c_C6H8O7P_EPI fdp_c C6H8O7P EPI 

g1p_c_C6H12O9P_MRM g1p_c C6H12O9P MRM 
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g6p_c_C2H4O5P_EPI g6p_c C2H4O5P EPI 

g6p_c_C4H8O7P_EPI g6p_c C4H8O7P EPI 

g6p_c_C6H12O9P_EPI g6p_c C6H12O9P EPI 

g6p_c_C6H12O9P_MRM g6p_c C6H12O9P MRM 

glu_DASH_L_c_C4H8NO2_EPI glu_DASH_L_c C4H8NO2 EPI 

glu_DASH_L_c_C5H6NO3_EPI glu_DASH_L_c C5H6NO3 EPI 

glu_DASH_L_c_C5H6NO3_MRM glu_DASH_L_c C5H6NO3 MRM 

glu_DASH_L_c_C5H8NO4_EPI glu_DASH_L_c C5H8NO4 EPI 

glu_DASH_L_c_C5H8NO4_MRM glu_DASH_L_c C5H8NO4 MRM 

glyc3p_c_C3H8O6P_EPI glyc3p_c C3H8O6P EPI 

glyc3p_c_C3H8O6P_MRM glyc3p_c C3H8O6P MRM 

glyclt_c_C2H3O3_EPI glyclt_c C2H3O3 EPI 

glyclt_c_C2H3O3_MRM glyclt_c C2H3O3 MRM 

icit_c_C5H3O3_EPI icit_c C5H3O3 EPI 

icit_c_C5H3O3_MRM icit_c C5H3O3 MRM 

icit_c_C6H5O6_EPI icit_c C6H5O6 EPI 

icit_c_C6H7O7_EPI icit_c C6H7O7 EPI 

icit_c_C6H7O7_MRM icit_c C6H7O7 MRM 

mal_DASH_L_c_C4H3O4_EPI mal_DASH_L_c C4H3O4 EPI 

mal_DASH_L_c_C4H3O4_MRM mal_DASH_L_c C4H3O4 MRM 

mal_DASH_L_c_C4H5O5_EPI mal_DASH_L_c C4H5O5 EPI 

mal_DASH_L_c_C4H5O5_MRM mal_DASH_L_c C4H5O5 MRM 

met_DASH_L_c_C5H10NO2S_MRM met_DASH_L_c C5H10NO2S MRM 

met_DASH_L_c_CH3S_MRM met_DASH_L_c CH3S MRM 

pep_c_C3H4O6P_MRM pep_c C3H4O6P MRM 

phe_DASH_L_c_C9H10NO2_MRM phe_DASH_L_c C9H10NO2 MRM 

phe_DASH_L_c_C9H7O2_MRM phe_DASH_L_c C9H7O2 MRM 

phpyr_c_C7H7_MRM phpyr_c C7H7 MRM 

phpyr_c_C9H7O3_MRM phpyr_c C9H7O3 MRM 

prpp_c_C5H12O14P3_MRM prpp_c C5H12O14P3 MRM 

pyr_c_C3H3O3_MRM pyr_c C3H3O3 MRM 

r5p_c_C5H10O8P_MRM r5p_c C5H10O8P MRM 

ru5p_DASH_D_c_C5H10O8P_MRM ru5p_DASH_D_c C5H10O8P MRM 

s7p_c_C7H14O10P_MRM s7p_c C7H14O10P MRM 

skm_c_C6H5O_MRM skm_c C6H5O MRM 

succ_c_C3H5O2_EPI succ_c C3H5O2 EPI 

succ_c_C4H3O3_MRM succ_c C4H3O3 MRM 

succ_c_C4H5O4_MRM succ_c C4H5O4 MRM 

thr_DASH_L_c_C2H4NO2_MRM thr_DASH_L_c C2H4NO2 MRM 

thr_DASH_L_c_C4H8NO3_MRM thr_DASH_L_c C4H8NO3 MRM 

ump_c_C4H3N2O2_EPI ump_c C4H3N2O2 EPI 
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ump_c_C9H12N2O9P_EPI ump_c C9H12N2O9P EPI 

ump_c_C9H12N2O9P_MRM ump_c C9H12N2O9P MRM 

 

Table S-11:  A comparison of MFA estimated flux ranges to FVA estimated flux ranges for iDM2014.  MFA 

flux ranges were calculated as the difference between 95% confidence intervals, while the FVA flux 

ranges were calculated as the difference between the minimum and maximum flux.  Differences in 

fluxes between the two methods were considered statistically significant if the flux ranges between the 

two methods did not overlap.  Note that the lack of statistically significant fluxes between MFA and FVA 

estimated fluxes for core metabolism is due to the large flux ranges of FVA for core metabolism 

reactions. 

  
MFA vs. FVA relative flux range difference 

MFA vs. FVA statistically significant 

fluxes 

All reactions 6.59% 26.32% 

Core metabolism 34.45% 0.00% 

Peripheral metabolism 2.56% 27.10% 

  

Supplemental Methods: 

Peripheral metabolism reduction: 

 The first part of the peripheral metabolism reduction procedure involved identifying all 

reactions of peripheral metabolism that could be lumped into a single reaction without having an effect 

on growth rate.  Reactions that were linear and correlated that could be lumped into a single reaction 

were identified using pFBA.  A single lumped reaction from the pool of lumped reactions was iteratively 

incorporated into the network to test for a change in growth rate.  Lumped reactions that changed the 

growth rate were excluded from the pool and another lumped reaction tested.  Lumped reactions that 

did not change the growth rate were left in the network and a new pool of lumped reactions was 

identified using the new network.  This process was repeated until no further lumped reactions that did 

not change the growth rate could be identified.   

 The second part of the peripheral metabolism reduction procedure involved pruning no flux 

reactions and removing equivalent alternate pathways.  No flux and equivalent pathways were removed 

using a combination of FVA and pFBA.  One potential problem when using pFBA is the preferential 

selection of the shortest pathway.  This can alter cofactor balances, which could have an effect on 

simulation results.  Consequently, cases where equivalent alternate pathways existed with different 

cofactor usages were manually reviewed before removing from the network.  Notable examples include 

fatty acid metabolism and deoxyribonucleotide biosynthesis.  For the former case, pFBA selects the 

reverse-beta oxidation pathway for fatty acid biosynthesis to conserve NADPH.  This is physiologically 

not correct
36

.  For the latter, specific ribonucleotide ruductases exist that are expressed as a function of 

the amount of oxygen present as well as under certain stress conditions
36-38

.  pFBA does not always 

select the appropriate ribonucleotide reductase.  For this reason, the physiologically correct fatty acid 

biosynthetic pathway as well as the physiologically correct deoxyribonucleotide biosynthetic pathways 

was manually enforced. 
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Modifications to iRL2013: 

Reactions and metabolite identifiers in iRL2013 
39

 were substituted for corresponding or similar 

identifiers found in iJO1366.  iRL2013 does not explicitly include many of the metabolites measured in 

this study.  For this reason, measurements corresponding to phenylpyruvate, glycolate, PRPP, glycerol 3-

phosphate, aconitate-C and 1,3 disphosphoglycerate were labeled as L-phenylalanine, glyoxylate, ribose 

5-phosphate, dihydroxyacetone phosphate, citrate, and 3pg , respectively, during the flux estimation 

procedure. 

 

Modifications to iJS2012: 

 In the published iJS2012 model 
40

, the carbon mappings for glycerol (metabolite ids glyc_c and 

glyc_e), L,L-diaminopimelate (metabolite id 26dap_DASH_LL_c), and meso-diaminopimelate (metabolite 

id 26dap_DASH_M_c) are treated as symmetric.  These designations of symmetry are not correct.  

Glycerol is pro-chiral 
37

 and L,L-diaminopimelate and meso-diaminopimelate exhibit stereo-symmetry.  

The carbon mappings for glycerol, L,L-diaminopimelate, and meso-diaminopimelate are treated as non-

symmetric in the models presented in this work. 

 

Reconciliation of reaction names between models: 

For purposes of comparing the models, names in the iRL2013 model were replaces with 

corresponding BiGG reaction identifiers to a reasonable extent.  Several lumped reactions (e.g., HisSYN) 

were not reconciled due to stoichiometric differences in the reactions between the models, and were 

left as is. 

 

Metabolic Flux Analysis: 

 The degrees of freedom (DOF) were calculated as follows:  

��� = ���	
��� �
�	 + ���	
��� ��
��	 − ���� ��
��	. Confidence intervals were calculated 

using a method similar to that described in Antoniewicz 2006
41

 as encoded in INCA 
42

. Standard 

deviations were calculated based off of 95% confidence intervals as described in Antoniewicz 2006
41

 as 

follows: �������� ��������� = (
���� ��
�� − ����� ��
��)/4. Observable fluxes were 

determined as described in Choi 2011
43

.  Observable fluxes were those where the estimated flux value 

was at least four times larger than the 95% confidence interval and did not include the value zero. 

Standard deviations of observable fluxes were used to compare the precision of each model. Observable 

fluxes instead of all fluxes were used in order to prevent artificially degrading the precision of the 

smaller models. Significant difference between fluxes was determined by the 95% confidence intervals. 

Standard deviations from biological triplicates were used to weight the errors of the measured 

uptake, secretion, and growth rates.  The uptake, secretion, and growth rates were measured for wild-

type E. coli on unlabeled glucose M9 minimal media as described previously
44

.  Standard deviations of 

biological triplicates measured in analytical duplicate (n=6) or the accuracy as determined from 

unlabeled glucose labeling experiments 
45

 were used to weight the errors of the isotope distributions.  In 

addition, the error-weighted residuals of the fit had to be from a normal distribution (as determined by 

a Lilliefors test) before flux estimations were considered for analysis.  The minimum weight for any 

isotope measurements was set at 0.001.  Flux estimates for iRL2013, iDM2014_core, and iJS2012 were 

calculated from the best estimate of 10, 100, and 100 re-initializations, respectively.  The best estimated 

flux served as the starting point for the parameter estimation procedure that calculated the 95% 

confidence intervals.  500 re-initializations were used for iDM2014 in order to minimize the chance of 

finding a local instead of global optimal estimate due to the larger size of the network. 

 

Representative fluxes: 
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 A set of representative net fluxes that were common to all models were used for comparison.  

The representative reactions are the following: ATPM, PGI, MDH, EDA, EDD, SUCOAS, PGL, PGM, PGK, 

ACONTa, ACONTb, GLCptspp, FUM, ENO, SUCDi, RPE, AKGDH, PDH, GAPD, MALS, CS, GND, PPC, TPI, RPI, 

PYK, ME1, ME2, TALA, ICDHyr, FBA, PFK, ICL, and PPCK.  



S15 

 

Supplemental Discussion: 

 

Model sensitivity and robustness 

 As noted previously, biochemical references for atom mappings from databases and previously 

published models are often incomplete and may contain in-accuracies.  For example, the carbon 

mappings for glycerol are designated as symmetric in the iJS2012 model 
40

 as well as in a number of 

reactions in the EcoCyc database 
46

.  The carbon mappings for reactions involving L,L-diaminopimelate 

(metabolite id 26dap_DASH_LL_c), and meso-diaminopimelate (metabolite id 26dap_DASH_M_c) are 

also incorrectly treated as symmetric in the iJS2012 model.  Given the ease at which one can propogate 

errors from published and well-known resources, the effect of incorporating incorrect mapping 

symmetry on flux estimation accuracy and precision was explored.  The iDM2014 model was simulated 

with the carbon mappings for glycerol, L,L-diaminopimelat, and meso-diaminopimelate treated as 

symmetric or L,L-diaminopimelat and meso-diaminopimelate as symmetric and compared to the 

iDM2014 model with glycerol, L,L-diaminopimelat, and meso-diaminopimelate treated as non-

symmetric (Table S-7).  Only minor differences in estimated flux values were found compared to 

iDM2014, which included seven and eight observable net reactions, respectively, with a fold-change less 

than 1e-3 (Supplemental Figure S-4). The number of observable fluxes was found to increase and the 

precision was found to improve either for all net fluxes or a subset of core net fluxes as fewer incorrect 

symmetric carbon mappings were included in the network. 

The robustness of the model to adding or removing non-essential reactions that result in 

equivalent carbon mappings for the product metabolites was tested (Supplemental Figure S-4).  The 

effect of adding the ability to transport glucose passively over the periplasmic membrane and convert to 

glucose-6-phosphate via the action of hexokinase (iDM2014_hex) or removing the alternate conversion 

of pyruvate to Acetyl-CoA via the action of pyruvate formate lyase (iDM2014_pfl) was tested.  Only 

minor flux difference were found compared to iDM2014, which included seven and seven observable 

net reactions, respectively, with a fold-change less than 1e-3 (Supplemental Figure S-4).  In the former 

case, the flux values for glucose import via the glucose phosphotransferase system did not change, but a 

loss of precision was found (Supplemental Figure S-5).  The precision of downstream reactions 

phosphoglucose isomerase and 6-phosphogluconolactonase were not affected.  In the latter case, the 

flux values for the pyruvate dehydrogenase complex were not affected, but an increase in precision was 

found.  The precision of the downstream reaction citrate synthase was not affected (Supplemental 

Figure S-5).  These changes indicate that when using the genome-scale model, precision can be 

improved by removing non-essential reactions without affecting the accuracy of the flux predictions.   

These examples show that the overall accuracy of the model can be maintained even if errors in 

metabolite mappings are included or non-essential reactions are added or omitted at the price of 

reduced precision.   

 

Statistically significant and observable flux differences between the MFA models: 

Minor net flux differences for observable reactions between models were found (Supplemental 

Figure 3).  Most of these differences were not statistically significant.  Of those that were, most were 

found to be due to discrepancies in definitions of the forward versus the reverse reaction (e.g., EX_o2 

which corresponds to the transport of O2) or resulted in a fold change less than 0.005.  Two interesting 

examples that were found to be attributed to model differences are described below. 

Net flux values estimated by iRL013 for phospho-fructose kinase (PFK) were found to be 

significantly different to those estimated by iDM2014_core and iDM2014.  This was due to the fact that 

fructose 1,6-bisphosphatase (FBP) is not included in the published iRL2013 model.  By excluding this 

reaction, the recycling of fructose 1,6-bisphosphate to fructose 6-phosphate is not allowed.  Net flux 

values estimated by iRL2013 for glutamine synthetase (GLNS) were found to be significantly different to 
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those estimated by iDM2014_core and iDM2014.  This could be due to the fact that the published 

iRL2013 utilizes glutamate dehydrogenase to synthesize glutamate instead of the actions of glutamine 

synthetase and glutamate synthase to synthesize glutamate.  There is evidence to show that due to the 

higher Km of glutamate dehydrogenase and alternate regulation of glutamate dehydrogenase and 

glutamate synthase, glutamate dehydrogenase is more actively expressed when nitrogen is abundant in 

the media and glutamate synthesase is more active when nitrogen is limited in the media
47

.  The 

cultures were not grown in ammonia excess in this study.   This leads one to hypothesize that the flux 

values estimated by iDM014 for GLNS are the physiologically correct values. 

 

Increased scope of measured flux values:  

Another major benefit to using a genome-scale model for MFA is the direct calculation of flux 

balance around Acetyl-CoA, ATP, and NADPH. This is important as Acetyl-CoA and ATP are the major 

energy sources and NADPH is the major reducing source for native and non-native pathways such as in 

the production of free-fatty acids for biofuels 
10-12

. The success or failure of several metabolic 

engineering designs has relied upon redirecting flux to maintain an optimal balance of the charged and 

uncharged state of these cofactors 
48-50

. Thus, a genome-scale model for MFA would help guide 

engineering strategies aimed at manipulating the flux to and from these cofactors.  
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Supplemental Files: 

 

File 1: A high resolution flux map of central carbohydrate metabolism for iDM2014.  The best net flux 

value is shown.  

 

File 2: A high resolution flux map of peripheral pathways targeted by metabolic engineering for 

iDM2014.  The best net flux value is shown. 
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