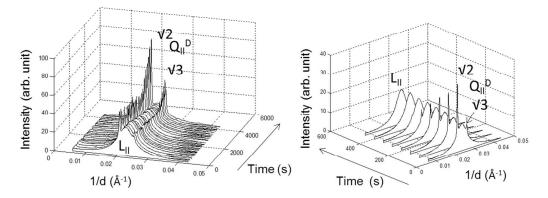
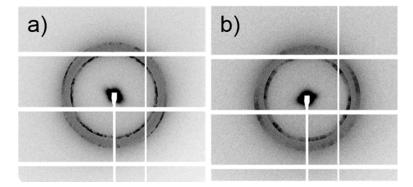

Supporting Information - Control of Nanomaterial Self-Assembly in Ultrasonically Levitated Droplets

Annela M. Seddon^{†§}, Sam J. Richardson[‡], Kunal Rastogi[‡], Tomás S. Plivelic[⊥], Adam M. Squires[‡]*, Christian Pfrang[‡]*


[†]H.H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, BS8 1TL, UK; [§]Bristol Centre for Functional Nanomaterials, H.H. Wills Physics Laboratory, Tyndall Avenue, University of Bristol, BS8 1TL; [‡]Department of Chemistry, Whiteknights Campus, University of Reading, RG6 6AD, UK; [⊥]MAX IV Laboratory, Lund University, 22100 Lund, Sweden


Figure S1: Representative images of levitated droplets: ellipsoidal (most common) (a),(b); spherical (c); small non-transparent (d); two droplets trapped in different nodes (e). Arrows indicate droplet locations and white scale bars correspond to 5 mm.

Supporting Information - Control of Nanomaterial Self-Assembly in Ultrasonically Levitated Droplets

Annela M. Seddon, Sam J. Richardson, Kunal Rastogi, Tomás S. Plivelic, Adam M. Squires, Christian Pfrang

Figure S2: Phase changes between L_{II} and Q_{II}^{D} phases of phyantriol / 10% glycerol on increasing (left) and decreasing (right) relative humidity.

Figure S3: 2D SAXS patterns from the edges of an acoustically levitated droplet formed from Phytantriol in 20% glycerol at a relative humidity of 75%; a) left; b) right.