Supplemental Material:

Assessment of the mitigative capacity of dietary zinc on PCB126 hepatotoxicity and the contribution of zinc to toxicity.

Klaren $WD^{\dagger, \ddagger}$, Gibson-Corley KN^\S , Wels B^{\parallel} , Simmons DL^{\parallel} , McCormick ML^{\perp} , Spitz $DR^{\dagger, \perp}$, Robertson $LW^{\dagger, \pm, *}$

[†]Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa

[‡]Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa

§Department of Pathology, University of Iowa, Iowa City, Iowa

^{II}State Hygienic Laboratory, University of Iowa, Ankeny, Iowa

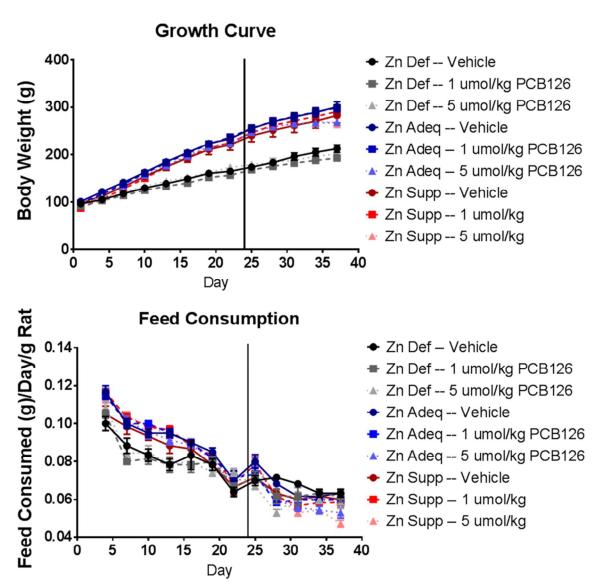
Free Radical and Radiation Biology Program, University of Iowa Carver College of Medicine, Iowa City, Iowa

*Corresponding Author

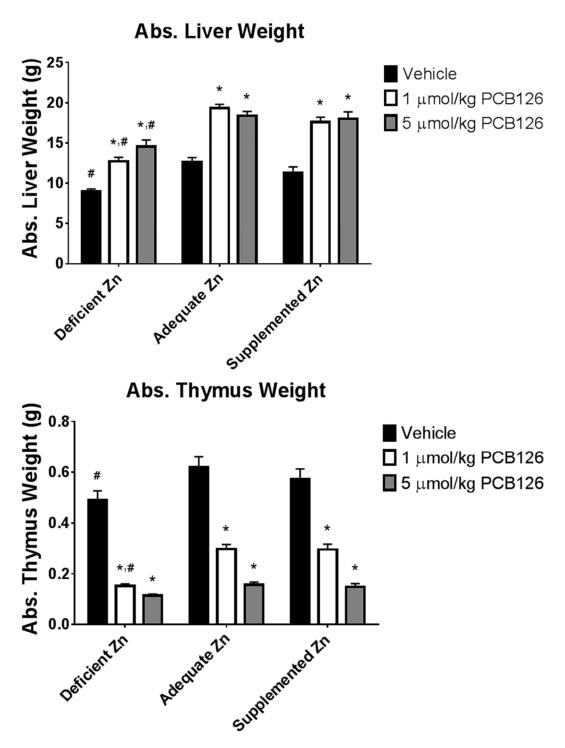
Larry W. Robertson, Ph.D., M.P.H., ATS, Professor Department of Occupational and Environmental Health The University of Iowa, College of Public Health 100 Oakdale Campus #219 IREH Iowa City, Iowa 52242-5000

Phone: 319-335-4346 Fax: 319-335-4290

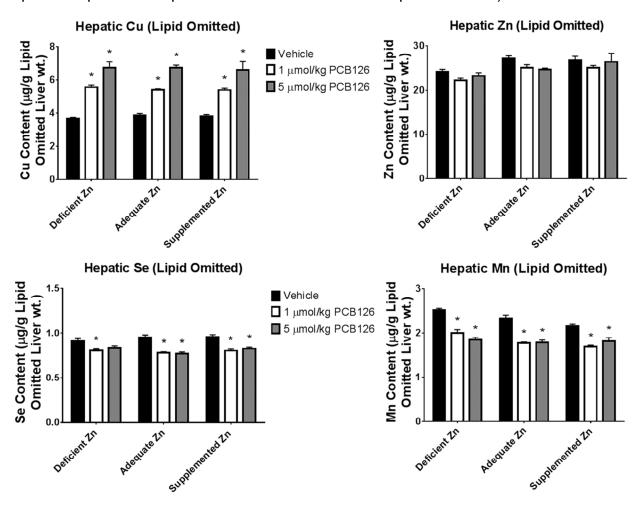
Email: larry-robertson@uiowa.edu


 Table S1:
 Primer sequences used for the qPCR analysis of hepatic gene expression.

	Forward	Reverse	
MTI	5'-caccgttgctccagattcac-3'	5'-gcagcagcactgttcgtcac-3'	
MTII	5'-atctccaactgccgcctcc-3'	5'-tgcacttgtccgaagcctct-3'	
CYP1A1	5'-ccatgaccaggaactatggg-3'	5'-tctggtgagcatccaggaca-3'	
B-actin	5'-tagagccaccaatccacacag-3'	5'-cagccttccttcctgggtatg-3'	


Table S2: P-Values from Two-Way ANOVA analysis. (Red indicates significance; p<0.05; n=6)

	Dietary Effect	Treatment Effect	Interaction
Rel. Liver Wt.	0.0974	<0.0001	0.8121
Rel. Thymus Wt.	0.9669	< 0.0001	0.1374
Hepatic CYP1A1 Exp.	< 0.0001	< 0.0001	0.0015
Hepatic Lipids	0.0144	< 0.0001	0.0396
Hepatic ROS	< 0.0001	< 0.0001	0.0002
Hepatic CuZnSOD Act.	0.0067	< 0.0001	0.0763
Hepatic MnSOD Act.	0.3714	0.0017	0.3145
Hepatic Total SOD Act.	0.0805	< 0.0001	0.2444
Hepatic MTI Exp.	< 0.0001	< 0.0001	< 0.0001
Hepatic MTII Exp.	< 0.0001	0.0003	< 0.0001
Hepatic Cu	0.6812	< 0.0001	0.6770
Hepatic Zn	< 0.0001	< 0.0001	0.2254
Hepatic Se	0.3558	< 0.0001	0.0152
Hepatic Mn	< 0.0001	< 0.0001	0.4704
Renal Cu	< 0.0001	0.0002	< 0.0001
Renal Zn	< 0.0001	< 0.0001	0.0396
Renal Se	< 0.0001	< 0.0001	0.2834
Renal Mn	< 0.0001	<0.0001	0.5161


Figure S1: Growth curve and feed consumption during the animals study. Day of exposure marked by vertical line at 24 days.

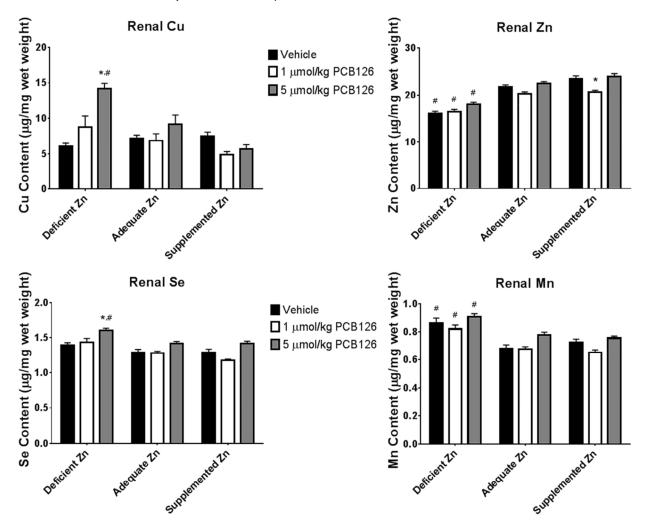

Figure S2: Absolute organ weights for liver and thymus. (Bars are standard error; Two-Way ANOVA; n=6; * represents p<0.05 compared to vehicle in same diet; # represents p<0.05 compared to same treatment in adequate zinc diet).

Figure S3: Metal level changes in the liver with the omission of hepatic lipids following PCB126 exposure and with varying zinc levels in the diet. (Bars are standard error; Two-Way ANOVA; n=6; * represents p<0.05 compared to vehicle in same diet; # represents p<0.05 compared to same treatment in adequate zinc diet).

Figure S4: Metal level changes in the kidney following PCB126 exposure and with varying zinc levels in the diet. (Bars are standard error; Two-Way ANOVA; n=6; * represents p<0.05 compared to vehicle in same diet; # represents p<0.05 compared to same treatment in adequate zinc diet).

