Supporting Information

Synthesis and Stereospecific Polymerization of a Novel Bulky Styrene Derivative

Rong Wang, ¹ Dongtao Liu², Xiaohong Li, ³ Jie Zhang, ¹ Dongmei Cui, ^{3*} and Xinhua

Wan^{1*}

¹Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. ²State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. ³Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

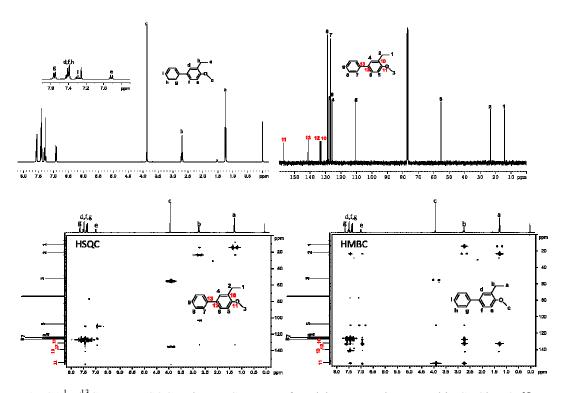
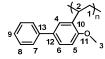



Fig. S1 ¹H/¹³C NMR, HSQC and HMBC spectra of model compound measured in CDCl₃ at 25 °C

Table S1 Chemical shifts (ppm) of monomer, model compound, and P4

	C1	C2	СЗ	C4	C5	C6	C7	C8	С9	C10	C11	C12	C13
Monomer	111.3	131.9	55.8	125.6	115.1	127.7	127.1	128.9	127.0	126.9	156.5	133.9	141.1
Model compound	14.4	23.6	55.6	125.5	110.6	128.1	127.0	128.8	126.7	133.1	157.2	133.7	141.4
Polymer	41.5	31.6	55.2	124.7	110.6	127.1	127.1	126.5	124.7	135.5	157.2	133.0	142.1

Table S2 ¹³C Chemical shifts (ppm) of ring substituted styrenes and their polymers

	C1	C2	C3	C4	C5	C6	C7	C8
St	137.6	126.3	128.5	127.8	128.5	126.3	136.9	113.7
PSt	146.4	128.2	127.5	125.7	127.5	128.2	40.7	43.1
o-Methyl-St	136.9	135.3	130.3	127.7	125.4	126.1	134.9	115.0
P(o-Methyl-St)	144.5	135.3	130.1	125.9	125.4	126.0	34.5	43.3
o-Methoxyl-St	126.8	156.8	114.3	128.8	120.7	126.6	131.8	110.9
P(o-Methoxyl-St)	135.5	157.3	110.1	128.3	119.8	125.6	33.9	40.8

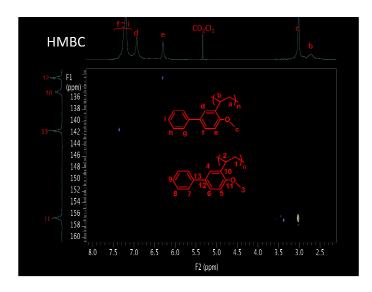


Fig. S2 HMBC spectrum of P4 measured in CD_2Cl_2 at $25\,^{\circ}C$

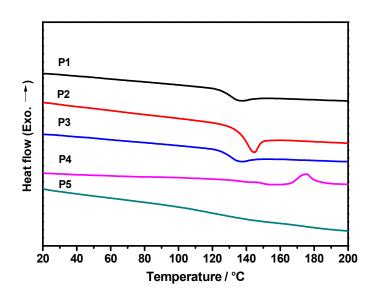


Fig. S4 DSC curves of the polymers as prepared