La_{1-x}Bi_{1+x}S₃ (x~0.08): An *n*-Type Semiconductor

Fei Han,[†] Huimei Liu,[‡] Christos D. Malliakas,^{†,§} Mihai Sturza,[†] Duck Young Chung,[†] Xiangang Wan,[‡] and Mercouri G. Kanatzidis^{*,†,§}

† Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

‡ National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

§ Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States

Supporting Information

Empirical formula	La0.92Bi1.08S3
Formula weight	449.97
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/m
	a = 28.0447(19) Å, α = 90.00°
Unit cell dimensions	b = $4.0722(2)$ Å, $\beta = 118.493(5)^{\circ}$
	c = 14.7350(9) Å, γ = 90.00°
Volume	1478.96(15) Å ³
Z	12
Density (calculated)	6.063 g/cm ³
Absorption coefficient	47.553 mm ⁻¹
F(000)	2282
θ range for data collection	4.19 to 34.78°
Index ranges	-44<=h<=44, -6<=k<=6, -23<=l<=23
Reflections collected	19673
Independent reflections	3487 [R _{int} = 0.0778]
Completeness to θ = 24.97°	97.3%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3487 / 0 / 100
Goodness-of-fit	0.926
Final R indices [>2σ(I)]	R _{obs} = 0.0319, wR _{obs} = 0.0546
R indices [all data]	$R_{all} = 0.0523$, $wR_{all} = 0.0586$
Largest diff. peak and hole	2.936 and -2.998 e·Å ⁻³

Table S1. Single Crystal Data and Structure Refinement for La_{0.92}Bi_{1.08}S₃ Collected at Room Temperature.

$$\begin{split} R=&\Sigma||F_o|-|F_c||/\Sigma|F_o|, \ wR=&\{\Sigma[w(|F_o|^2-|F_c|^2)^2]/\Sigma[w(|F_o|^4)]\}^{1/2} \ \text{and} \ w=&1/[\sigma^2(F_o^2)+(0.0257P)^2+0.0000P] \ \text{where} \ P=&(F_o^2+2F_c^2)/3 \end{split}$$

Label	Х	у	Z	Occupancy	U _{eq} *
Bi(1)	1279(1)	0	2852(1)	1	16(1)
Bi(2)	1327(1)	0	7640(1)	1	14(1)
Bi(3)	2164(1)	0	816(1)	1	16(1)
La(1)	2955(1)	0	4088(2)	0.747(7)	11(1)
Bi(4)	2876(2)	0	4372(3)	0.253(7)	21(1)
La(2)	4444(1)	0	593(1)	1	10(1)
La(3)	5282(1)	0	3959(1)	1	11(1)
S(1)	368(1)	0	7727(2)	1	11(1)
S(2)	1218(1)	0	4616(2)	1	11(1)
S(3)	1276(1)	0	864(2)	1	13(1)
S(4)	2342(1)	0	7634(2)	1	17(1)
S(5)	2861(1)	0	6035(2)	1	16(1)
S(6)	3323(1)	0	665(2)	1	17(1)
S(7)	3946(2)	0	3654(2)	1	23(1)
S(8)	5590(1)	0	2291(2)	1	14(1)
S(9)	0	0	5000	1	17(1)
S(10)	0	0	0	1	15(1)

Table S2. Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for La_{0.92}Bi_{1.08}S₃ at Room Temperature.

 ${}^{*}U_{eq}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Label	II11	Haa	1122	II12	II ₁₂	Haa
Label	011	022	0.33	012	013	023
Bi(1)	18(1)	16(1)	18(1)	0	11(1)	0
Bi(2)	16(1)	13(1)	15(1)	0	9(1)	0
Bi(3)	16(1)	16(1)	17(1)	0	10(1)	0
La(1)	13(1)	10(1)	10(1)	0	6(1)	0
Bi(4)	24(1)	17(1)	22(2)	0	11(1)	0
La(2)	11(1)	8(1)	11(1)	0	6(1)	0
La(3)	17(1)	7(1)	10(1)	0	8(1)	0
S(1)	12(1)	10(1)	11(1)	0	5(1)	0
S(2)	12(1)	11(1)	11(1)	0	6(1)	0
S(3)	14(1)	14(1)	11(1)	0	5(1)	0
S(4)	16(1)	22(1)	15(1)	0	7(1)	0
S(5)	14(1)	14(1)	20(1)	0	9(1)	0
S(6)	19(1)	19(1)	15(1)	0	9(1)	0
S(7)	34(2)	16(1)	10(1)	0	4(1)	0
S(8)	11(1)	18(1)	12(1)	0	4(1)	0
S(9)	25(2)	10(2)	24(2)	0	19(2)	0
S(10)	19(2)	10(2)	22(2)	0	16(2)	0

Table S3. Anisotropic Displacement Parameters (Å²×10³) for La_{0.92}Bi_{1.08}S₃ at Room Temperature.

The anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11} + ... + 2hka^*b^*U_{12}]$.

Label	Distances
Bi(1)-S(8) ×2	2.6514(13)
Bi(1)-S(2)	2.685(2)
Bi(1)-S(3)	2.926(2)
Bi(1)-S(5) ×2	2.9805(17)
Bi(2)-S(7) ×2	2.6410(15)
Bi(2)-S(1)	2.755(2)
Bi(2)-S(4)	2.850(2)
Bi(2)-S(6) ×2	3.0019(17)
Bi(3)-S(3)	2.524(2)
Bi(3)-S(6) ×2	2.8159(16)
Bi(3)-S(4) ×2	2.8739(17)
Bi(3)-S(6)	3.3635(32)
La(1)-S(2) ×2	2.9906(16)
La(1)-S(5)	3.003(3)
La(1)-S(5) ×2	3.004(2)
La(1)-S(4) ×2	3.044(2)
La(1)-S(7)	3.136(4)
Bi(4)-S(5)	2.470(6)
Bi(4)-S(5) ×2	2.755(3)
Bi(4)-S(2) ×2	3.036(2)
Bi(4)-S(4)	3.3968(42)
La(2)-S(10) ×2	2.9391(3)
La(2)-S(3) ×2	2.9498(16)
La(2)-S(8)	2.986(2)
La(2)-S(1) ×2	3.0498(16)
La(2)-S(6)	3.196(2)
La(3)-S(9) ×2	2.8770(3)
La(3)-S(8)	2.971(2)
La(3)-S(1) ×2	3.0528(16)
La(3)-S(2) ×2	3.0903(16)
La(3)-S(7)	3.129(2)

Table S4. Bond Lengths [Å] for La_{0.92}Bi_{1.08}S₃ at Room Temperature.

The powder XRD pattern and Rietveld fit for the smashed and powdered crystals are shown in Figure S1. The data are well fitted with the C2/m structure solved by single-crystal X-ray diffraction. The Rietveld quality factors R_p and wR_p are 0.0292 and 0.0383 respectively, which indicates good agreements between the experimental and simulated data. The phase purity of the sample is confirmed by the refinement result, which makes the property characterizations like thermopower reliable.

Figure S1. Powder x-ray diffraction (XRD) pattern and Rietveld fit for the smashed and powdered La_{0.92}Bi_{1.08}S₃ crystals.