Unusual Recognition and Separation of Hydrated Metal Sulfates, $\left[\mathrm{M}_{2}\left(\mu-\mathrm{SO}_{4}\right)_{2}\left(\mathbf{H}_{2} \mathrm{O}\right)_{\mathrm{n}}, \mathbf{M}=\mathbf{Z n}^{\mathrm{II}}\right.$, $\left.\mathbf{C d}^{\mathrm{II}}, \mathbf{C o}^{\mathrm{II}}, \mathbf{M n}^{\mathrm{II}}\right]$ by a Ditopic Receptor

Tamal Kanti Ghosh, Ranjan Dutta, Pradyut Ghosh*

*Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A \& 2B Raja S. C. Mullick Road, Kolkata 700032, India, E-mail: icpg@iacs.res.in

Contents

Topics	Page no.
Spectral Characterization of all the compounds	$3-7$
Solution state ${ }^{1}$ H-NMR studies	$7-8$
ITC experiments	8
Truncated S8 view of complexes	9
Hydrogen bonding pattern in complexes 1 and $\mathbf{2}$	$9-11$
ORTEP view of $\mathbf{L 1}$ and Complex 5	12
Selected bond distances ((̊) and angles (deg) for 1-5	$13-14$
Hydrogen bonding data of complexes 1-4.	$16-21$
H-NMR of selectivity and separation studies	

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of $\mathbf{L 1}$ in DMSO-d ${ }_{6}$ at 298 K .

Figure S2. ${ }^{13}$ C-NMR Spectrum of $\mathbf{L} 1$ in DMSO-d d_{6} at 298 K .

Figure S3. ESI-MS(+ve) Mass Spectrum of L1.

Figure S4. ${ }^{1}$ H-NMR Spectrum of $\mathbf{L} 2$ in DMSO-d ${ }_{6}$ at 298 K .

Figure S5. ${ }^{13}$ C-NMR Spectrum of L2 in DMSO- d_{6} at 298 K .

Figure S6. ESI-MS(+ve) Mass Spectrum of L2.

Figure S7. ${ }^{1} \mathrm{H}$-NMR Spectrum of complex 1 in DMSO-d ${ }_{6}$ at 298 K .

Figure S8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ Spectrum of complex 2 in DMSO-d ${ }_{6}$ at 298 K .

Figure S9. ${ }^{1} \mathrm{H}$-NMR Spectrum of complex $\mathbf{3}$ in DMSO-d ${ }_{6}$ at 298 K .

Figure S10. Qualitative \& Partial ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of (a) free $\mathbf{L 1}$ (b) $\mathbf{L 1}$ (5.37 mM) with TBACl $(60.18 \mathrm{mM})$ (c) $\mathbf{L 1}(5.84 \mathrm{mM})$ with $\operatorname{TBABr}(57.52 \mathrm{mM})$ (d) $\mathbf{L 1}(6.13 \mathrm{mM})$ with TBAOAC $(58.62 \mathrm{mM})$ (e) $\mathbf{~ L 1}(5.16 \mathrm{mM})$ with $\mathrm{TBAH}_{2} \mathrm{PO}_{4}(54.58 \mathrm{mM})$ (f) $\mathbf{L 1}(6.28 \mathrm{mM})$ with (TBA) $)_{2} \mathrm{SO}_{4}$ $(64.23 \mathrm{mM})(\mathrm{g}) \mathbf{L 1}(5.69 \mathrm{mM})$ with $\mathrm{TBAHSO}_{4}(61.28 \mathrm{mM})(\mathrm{h}) \mathbf{L} \mathbf{1}(6.38 \mathrm{mM})$ with TBAOH $(50.12 \mathrm{mM})$ in DMSO-d ${ }_{6}$ at 298 k .

Figure S11. ${ }^{1}$ H- NMR titration profile of complex $5(5.65 \mathrm{mM})$ in DMSO-d ${ }_{6}$ with (a) 36.4 mM TBACl in DMSO-d ${ }_{6}$ (b) 37.1 mM TBAOAC in $\mathrm{DMSO}_{6} \mathrm{~d}_{6}$ (c) 42.4 mM (TBA) $2_{2} \mathrm{SO}_{4}$ (d) 35.2 mM TBANO_{3} in DMSO- $\mathrm{d}_{6} \mathrm{DMSO}^{2} \mathrm{~d}_{6}$ at 298 K in 300 MHz .

Figure S12. Isothermal calorimetric titration plot of (a) a solution of (TBA) $)_{2} \mathrm{SO}_{4}$ (0.8771 mm) to a solution of $\mathbf{L} \mathbf{1}(0.1253 \mathrm{~mm})$, (b) $\mathrm{ZnCl}_{2}(0.8696 \mathrm{~mm})$ to a solution of $\mathbf{L 1}(0.1087 \mathrm{~mm})$, The upper panel shows the heat pulses experimentally observed in each titration. The lower panel reports the respective time integrals translating as he heat evolved for each aliquot and its coherence to the $1: 1$ binding model.

(a)
(d)

(b)

(e)

Figure S13. Truncated ORTEP view of (a) $\mathrm{Zig}-\mathrm{Zag} \mathrm{Zn}_{2}{ }_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ unit in Complex 1, (b) Molecular S8 (c) $\mathrm{Zig}-\mathrm{Zag} \mathrm{Cd}^{\mathrm{II}}{ }_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ unit in Complex 2, (d) Zig - $\mathrm{Zag} \mathrm{Mn}^{\mathrm{II}} \mathrm{S}_{2} \mathrm{O}_{4}$ unit in Complex 4, (e) Zig $\mathrm{Zag} \mathrm{Co}{ }_{2} \mathrm{I}_{2} \mathrm{O}_{4}$ unit in Complex 3.

Figure S14. ORTEP view of complex 1 showing H -bonding interaction of $\mathrm{SO}_{4}{ }^{2-}$ with $\mathrm{N}-\mathrm{H}$ protons of urea moiety in complex $\mathbf{1}$. H-atoms except those of urea moiety are omitted for clarity. The structure is drawn at 50% probability level.

Figure S15. ORTEP view of complex 2 showing H-bonding interaction of $\mathrm{SO}_{4}{ }^{2-}$ with $\mathrm{N}-\mathrm{H}$ protons of urea moiety. H -atoms except those of Urea moiety are omitted for clarity. The structure is drawn at 50% probability level.

Figure S16. ORTEP view of complex 3 showing H -bonding interaction of $\mathrm{SO}_{4}{ }^{2-}$ with $\mathrm{N}-\mathrm{H}$ protons of urea moiety. H -atoms except those of Urea moiety are omitted for clarity. The structure is drawn at 50% probability level.

Figure S17. ORTEP view of complex 4 showing H-bonding interaction of $\mathrm{SO}_{4}{ }^{2-}$ with $\mathrm{N}-\mathrm{H}$ protons of urea moiety. H-atoms except those of Urea moiety are omitted for clarity. The structure is drawn at 50% probability level.

Figure S18. ORTEP diagram of Complex 5, $(\mathbf{L 1}) \mathrm{Zn}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}$. H-atoms except that of urea moiety are omitted for clarity and the structure is drawn at 50% probability level.

Figure S19. ORTEP view of $\mathbf{L} 1$ is shown. Hydrogen atoms, except those of the urea group, are omitted for clarity. All the thermal ellipsoids are drawn at 50% probability level.

Table S1. Selected bond distances (\AA) and angles (deg) for $1-5{ }^{a}$

Complex 1			
M-L	$\mathbf{d}(\mathbf{M}-\mathrm{L})[\AA]$	L-M-L	$<(\mathbf{L}-\mathbf{M}-\mathrm{L})\left[{ }^{\circ}\right]$
Zn1- N1	$2.242(2)$	N1-Zn1-N2	78
Zn1-N2	$2.067(2)$	N1- Zn1- N3	79
Zn1-N3	$2.052(2)$	N1- Zn1- O1	100
Zn1- O1	$1.992(1)$	N1- Zn1-O8	166
Zn1- O8	$2.078(2)$	N2- Zn1- N3	124
		N2- Zn1- O1	129
		N2- Zn1- O8	90
		N3- Zn1- O1	105
		N3- Zn1- O8	100
			92

Complex 2

M-L	d (M-L) [${ }_{\text {A }}$]	L-M-L		< (L-M-L) [${ }^{\circ}$]
Cd1- O2	2.2549 (12)	O	- Cd1 - 01	89
Cd1-O1	2.2986 (13)	O	- Cd1 - N3	90
Cd1-N3	2.3245 (15)	O	- Cd1 - N1	93
Cd1-N1	2.3245 (15)	O	- Cd1 - N2	156
Cd1-N2	2.4531 (13)	O	- Cd1 - N3	175
Cd1-O5*2	2.2604 (12)	O	- Cd1 - N1	92
		O	- Cd1 - N2	110
		N	- Cd1 - N1	93
		N	- Cd1 - N 2	72
		N	- Cd1 - N2	73

Complex 3			
M-L	d (M-L) [\AA]	L-M-L	< (L-M-L) [${ }^{\circ}$]
Co1-O2	2.0635(17)	O2	85.33(7)
Co1-O3	$2.1468(17)$	O2 $-\mathrm{Co1} 1-\mathrm{O} 5$	102.63(7)
Co1-O5	2.0809(18)	O2 $-\mathrm{Co1} 10-\mathrm{N} 1$	162.25(8)
Co1 -N1	2.134(2)	O2	87.39(7)
Co1 -N2	2.248(2)	O2	89.79(7)
Co1 -N3	2.121(2)	O3 -Co1 -O5	88.52(7)
Complex 4			
M-L	d (M-L) [${ }_{\text {A }}$]	L-M-L	< (L-M-L) [$\left.{ }^{\circ}\right]$
Mn1- O2	$2.138(5)$	O2 $-\mathrm{Mn} 1-\mathrm{O} 5$	85.56(18)
Mn1-O6	$2.134(5)$	O2 $-\mathrm{Mn} 1-\mathrm{O6}$	109.24(17)
Mn1-O5	2.202(5)	O2 $-\mathrm{Mn} 1{ }^{\text {-N3 }}$	91.2(2)
Mn1-N3	2.244(6)	O2 -Mn1 -N4	156.8(2)
Mn1 - N5	2.389(6)	O2 -Mn1 -N5	85.60(18)
Mn1 - N4	2.258(6)	O5 -Mn1 -06	87.59(18)
		O5 -Mn1 -N3	175.06(18)
		O5 -Mn1 -N4	91.09(19)
		O5 -Mn1 - N5	111.06(18)
		O6 $-\mathrm{Mn} 1 \mathrm{l}^{-\mathrm{N} 3}$	89.9(2)
Complex 5			
M-L	d (M-L) [^̊]	L-M-L	< (L-M-L) $\left.{ }^{\circ}{ }^{\circ}\right]$
Zn1-N2	2.263(2)	N2 - Zn1-N1	77
Zn1-N1	2.089(2)	N2 - Zn1 - N3	77
Zn1-N3	2.047(2)	N2 - Zn1 - O 2	101
Zn1-O2	1.960(1)	N1 - Zn1 - N3	121
Zn1-O3 ${ }^{\text {\#1 }}$	2.053(1)	N1 - Zn1-O2	106
		N3 - Zn1 - O2	130

${ }^{a}$ Symmetry transformations used to generate equivalent atoms: [\#1], -x,-y,-z+1; [\#2], -x+1,-y, z+1

Table S2. Hydrogen bonding data of complexes 1-4.

Complex 1		
D - H \cdots A	d (D $\cdots \cdots \mathrm{A})[\mathrm{A}]$	< $\mathbf{D}-\mathrm{H} \cdot \cdots \mathrm{A})\left[^{\circ}\right]$
N6-H6 \cdots - 04	3.074(3)	153
N5-H5 \cdots O3	3.028(3)	168
Complex 2		
D - H \cdots • ${ }^{\text {a }}$	d ($\mathbf{D}^{\cdots} \cdot \mathrm{A}$) $[\mathrm{A}]$	<(D-H. ${ }^{\text {c }}$ A) [${ }^{\circ}$]
N5 -H1N \cdots - 04	2.922(2)	171
N4-H2N \cdots O3	2.897(2)	167
Complex 3		
D - H \cdots A		< $\mathrm{D}-\mathrm{H} \cdots \cdots \mathrm{A})\left[^{\circ}\right]$
N4 -- H4A \cdots O 4	2.886 (3)	165.00
N5 -- H5A \cdots O6	2.947(3)	160.00
Complex 4		
D - H \cdots A	d (D. $\cdots \mathbf{A})[$ [$]$	<(D-H $\cdots \cdot \mathrm{A})\left[^{\circ}\right]$
N1 -- H1 \cdots O4	3.096 (8)	174.00
N2 -- H2 \cdots O3	2.850(7)	171.00

Figure S20. ${ }^{1} \mathrm{H}$-NMR spectra of (a) $\mathbf{L} \mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O}$ (b) $1: 1$ mixture of $\mathbf{L} 1$ and ZnSO_{4} in $\mathrm{D}_{2} \mathrm{O}$.

Figure S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra in $\mathrm{D}_{2} \mathrm{O}$ of (a) crystal of complex 1 (b) crystal obtained from mixture of $\mathbf{L} \mathbf{1}$ and mixture of several competing $\mathrm{Zn}^{\mathrm{II}}$ from pure water medium.

Figure S22. Selective formation of $\mathrm{Zn}^{\mathrm{II}}$-sulfate complex in solution from mixture of several competing Zn (II) salts at 298 K . (a) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of free $\mathbf{L} \mathbf{1}$ (b) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $1: 1$ solution of $\mathbf{L} \mathbf{1}$ and ZnSO_{4} (C) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $\mathbf{L} \mathbf{1}$ and equimolar mixture of various Zn (II) Salts.

Figure S23. Isothermal Titration Calorimetric plot for the addition of a solution of (a) ZnSO_{4} $(4.287 \mathrm{~mm})$ to a solution of $\mathbf{L} \mathbf{1}(0.618 \mathrm{~mm})$ in HEPES buffer at 298 K . The upper panel shows the heat pulses as experimentally observed in each titration. The lower panel reports the respective time integrals translating as the heat evolved for each aliquot and its coherence to the one site binding model.

Figure S24. Isothermal Titration Calorimetric plot in $10 \% \mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}$ binary solvent mixture at 298 K for the addition of a solution of (a) $\mathrm{ZnCl}_{2}(8.421 \mathrm{~mm})$ to a solution of $\mathbf{L} 1(0.991 \mathrm{~mm})$, (b) $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2}(7.52 \mathrm{~mm})$ to a solution of $\mathbf{L} 1(0.625 \mathrm{~mm})$, (c) ZnSO_{4} (6.09) to a solution of $\mathbf{L} 1$ (0.812 mm).the upper panel shows the heat pulses experimentally observed in each titration. The lower panel reports the respective time integrals translating as the heat evolved for each aliquot and its coherence to the one site binding model.

Figure S25. ${ }^{1} \mathrm{H}$-DOSY NMR of $1: 1$ mixture of $\mathbf{L} 1$ and ZnSO_{4} in DMSO- d_{6}.

Figure S26. ${ }^{1} \mathrm{H}$-NMR dilution experiment of complex 1. (a) $[\mathbf{1}]=7.8 \times 10^{-3}(\mathrm{M})$; (b) $[\mathbf{1}]=3.9 \mathrm{x}$ 10^{-3}; (c) $[\mathbf{1}]=9.7 \times 10^{-4}(\mathrm{M})$; (d) $[\mathbf{1}]=4.8 \times 10^{-4}(\mathrm{M})$.

Figure S27. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ dilution experiment of complex 2. (a) $[\mathbf{2}]=9.1 \times 10^{-3}(\mathbf{M})$; (b) $[\mathbf{2}]=4.6 \mathrm{x}$ 10^{-3}; (c) $[2]=1.1 \times 10^{-4}(\mathrm{M})$; (d) $[2]=3.8 \times 10^{-4}(\mathrm{M})$.

