Supporting Information

Photoreactivity of Metal-organic Frameworks in Aqueous Solutions: Metal Dependence of Reactive Oxygen Species Production

Kai Liu,[†] Yanxin Gao,[†] Jing Liu,[‡] Yifan Wen,[†] Yingcan Zhao,[§] Kunyang Zhang,[†] and Gang Yu^{†,*}

[†] School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China

^{*} MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

[§] Lyles School of Civil Engineering and Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States

Summary:

Pages: 9 Tables: 2 Figures: 15 Equations: 2

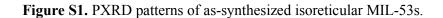

Anions	Concentration (mg/L)			
Chloride	38.5			
Phosphate	1.1			
Nitrate	39.4			
Sulfate	53.2			

Table S1. Components of simulated river water used.

 Table S2. Compounds detected after 5 h release of MIL-53(Fe) encapsulated

 diclofenac.

Compounds	CAS	Structure	Retention	measured	М-Н	Error	Fragments	Fragment	Predicted
			time	m/z		(ppm)	(<i>m/z</i>)	Structures	formula
			(min)						(fragments)
2-(8-Hydroxy-9H-	131023		6.516	240.0667	$C_{14}H_{10}$	0.3	196.0771	он	$C_{13}H_{11}NO$
carbazol-1-yl)aceti c acid	-45-5	ОН			NO ₃				(1.6)
2-(9H-carbazol-1- yl)acetic acid	131023 -43-3	С К С С Н	7.620	224.0716	C ₁₄ H ₁₁ NO ₂	-0.5	180.0824		C ₁₃ H ₁₁ N (2.9)
2-(8-chloro-9H-ca rbazol-1-yl)acetic acid	131023 -44-4	а но он	8.811	258.0325	C ₁₄ H ₁₀ NO ₂ Cl	-0.9	214.0431	a	C ₁₃ H ₁₀ NCl (0.9)
Diclofenac	15307- 79-6	C C C C C C C C C C C C C C C C C C C	9.767	294.0091	C ₁₄ H ₁₀ NO ₂ Cl ₂	-1.0	250.0195		C ₁₃ H ₁₁ NCl ₂ (-0.3)

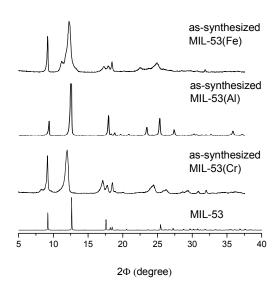


Figure S2. SEM of as-synthesized MIL-53(Cr) (left), MIL-53(Al) (middle), and MIL-53(Fe)

(right).

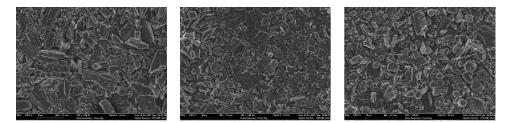


Figure S3. PXRD of different MIL-53s immersed in buffered mili-Q water at pH 7.0 and

exposed to sunlight irradiation.

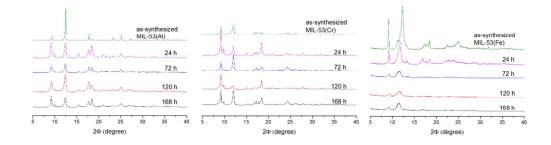
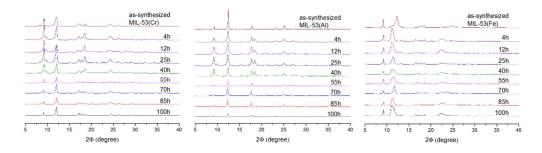
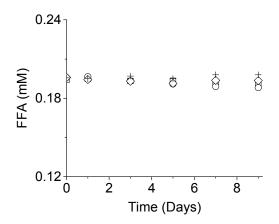




Figure S4. PXRD of different MIL-53s immersed in buffered mili-Q water at pH 7.0 and

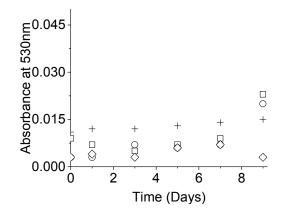

exposed to lamp irradiation.

Figure S5. Evidence of ${}^{1}O_{2}$ production by FFA (0.2 mM) reduction at pH 7.0 under sunlight irradiation at the presence of MIL-53(Cr) (\Box), MIL-53(Al) (\circ), MIL-53(Fe) (\diamond), and FFA alone (+)

Figure S6. O_2^- formation detected by NBT²⁺ (0.2 mM) reduction at pH 7.0 under sunlight irradiation at the presence of MIL-53(Cr) (\Box), MIL-53(Al) (\circ), MIL-53(Fe) (\diamond), and NBT²⁺ alone (+).

Figure S7. OH formation detected by *p*CBA (5 μ M) reduction at pH 7.0 under sunlight irradiation at the presence of 10 mg/L solution of MIL-53(Cr) (\Box), MIL-53(Al) (\circ),

MIL-53(Fe) (\Diamond), and *p*CBA alone (+).

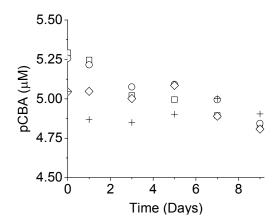


Figure S8. Adsorption kinetics of diclofenac on MIL-53(Fe) at pH 7.0.

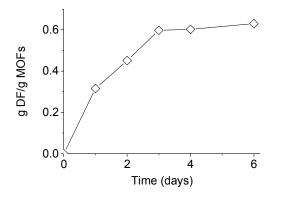
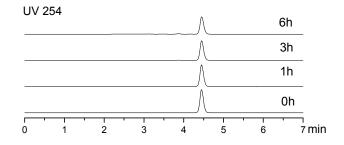



Figure S9. HPLC analysis of blank sample (diclofenac solution without MOFs) irradiated

under lamp at predetermined time.

Figure S10. Diclofenac delivery and subsequent transformation by MIL-53(Fe) at the presence of lamp irradiation at pH 7.0.

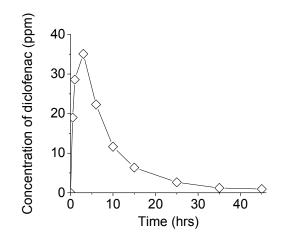
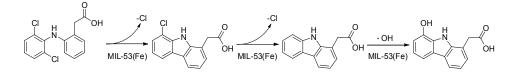
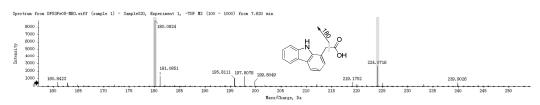


Figure S11. Proposed MIL-53(Fe) encapsulated diclofenac transformation pathway.




Figure S12. Mass spectrum of transformation product

2-(8-Hydroxy-9H-carbazol-1-yl)acetic acid released from MIL-53(Fe) encapsulated

diclofenac, analyzed by Q-TOF LC/MS (ESI-)

Figure S13. Mass spectrum of transformation product 2-(9H-carbazol-1-yl)acetic acid

released from MIL-53(Fe) encapsulated diclofenac, analyzed by Q-TOF LC/MS (ESI-)

Figure S14. Mass spectrum of transformation product

2-(8-chloro-9H-carbazol-1-yl)acetic acid released from MIL-53(Fe) encapsulated

diclofenac, analyzed by Q-TOF LC/MS (ESI-)

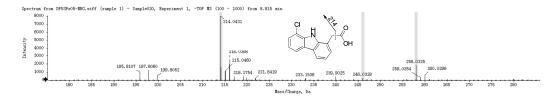
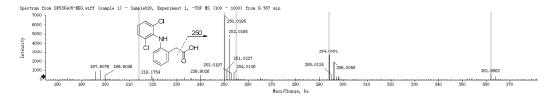



Figure S15. Mass spectrum of diclofenac released from MIL-53(Fe) encapsulated

diclofenac, analyzed by Q-TOF LC/MS (ESI-)

ROS Measurements

¹O₂ Measurement

In accordance to previous literature,¹ the steady-state concentration of ${}^{1}O_{2}$ is measured by eq S1:

$$-\frac{d[FFA]}{dt} = k_r [{}^{1}O_2]_{ss} [FFA]$$
$$-\frac{d[FFA]}{dt} = k_{ex} [FFA]$$
$$[{}^{1}O_2]_{ss} = \frac{k_{ex}}{k_r}$$
(S1)

where k_{ex} is the pseudo-first-order rate constant derived from the experiment, and k_r is 1.2 x 10⁸ M⁻¹ s⁻¹.

·OH Measurement

Due to the low concentration of pCBA used (5 μ M), the reaction between pCBA and hydroxyl radical ·OH appears pseudo-first-order (Figure 3). In accordance to the previous literature,¹ the steady-state concentration of ·OH is measured by rate law that is analogous to eq S1:

$$-\frac{d[pCBA]}{dt} = k_r [\cdot OH]_{ss} [pCBA]$$
$$-\frac{d[pCBA]}{dt} = k_{ex} [pCBA]$$
$$[\cdot OH]_{ss} = \frac{k_{ex}}{k_{pCBA}}$$
(S2)

where k_{ex} is the pseudo-first-order rate constant derived from the experiment, and k_r is 5.2 x 10⁹ M⁻¹ s⁻¹.

Literature Cited

(1) Chen, C.-Y.; Jafvert, C. T., Photoreactivity of Carboxylated Single-Walled

Carbon Nanotubes in Sunlight: Reactive Oxygen Species Production in Water.

Environmental Science & Technology 2010, 44, (17), 6674-6679.