#### **Supporting Information**

# 2 Urinary Concentrations of Bisphenols and their Association with Biomarkers of

### **3** Oxidative Stress in People Living Near E-waste Recycling Facilities in China

- 4 Tao Zhang<sup>1\*</sup>, Jingchuan Xue<sup>2</sup>, Chuan-zi Gao<sup>1</sup>, Rong-liang Qiu<sup>1</sup>, Yan-xi Li<sup>1</sup>, Xiao Li<sup>1</sup>, Ming-zhi
- 5 Huang<sup>3</sup>, Kurunthachalam Kannan<sup>2, 4\*</sup>
- 6 <sup>1</sup> School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental
- 7 Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
- 8 <sup>2</sup> Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences,
- 9 School of Public Health, State University of New York at Albany, Albany, NY 12201, USA
- 10 <sup>3</sup> Department of Water Resources and Environment, Guangdong Provincial Key Laboratory of Urbanization and
- 11 Geo-simulation, Sun Yat-sen University, Guangzhou 510275, PR China
- <sup>4</sup> Biochemistry Department, Faculty of Science and Experimental Biochemistry Unit, King Fahd Medical Research
- 13 Center, King Abdulaziz University, Jeddah, Saudi Arabia

#### 14 **Corresponding author:**

#### 15 K. Kannan

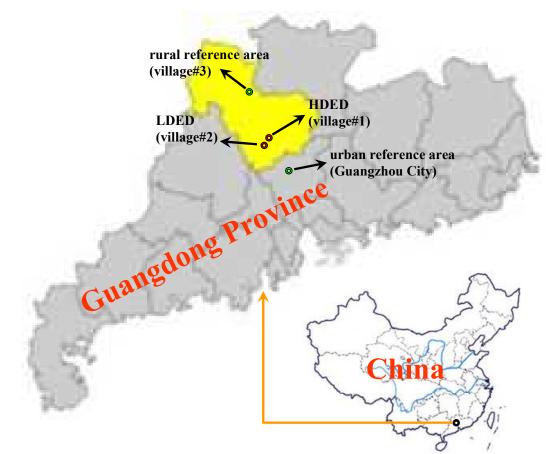
- 16 Wadsworth Center
- 17 Empire State Plaza, PO Box 509
- 18 Albany, NY 12201-0509
- 19 Tel: +1-518-474-0015
- 20 Fax: +1-518-473-2895
- 21 E-mail: kkannan@wadsworth.org
- 22

#### 23 Tao Zhang

- 24 School of Environmental Science and Engineering, Sun Yat-Sen University
- 25 135 Xingang West Street, Guangzhou, 510275, China
- 26 Tel: 86-22-84113454
- 27 Email: zhangt47@mail.sysu.edu.cn
- 28
- 29 Submission to: Environmental Science Technology
- 30

#### 31 Supporting information including 5 pages which contains 2 tables and 1 figure.

32 Chemicals and Reagents. Eight bisphenols, including bisphenol A [BPA; 2,2-bis(4-33 hydroxyphenyl)propane] (purity: 97%), bisphenol S (BPS; 4,4'-sulfonyldiphenol), bisphenol F (BPF; 34 4,4'-dihydroxydiphenylmethane), bisphenol P [BPP; 4,4'-(1,4-phenylenediisopropylidene)bisphenol; 99%], bisphenol Z [BPZ; 4,4'-cyclohexylidenebisphenol; 98%], bisphenol AF [BPAF; 4,4'-35 36 (hexafluoroisopropylidene)diphenol] (97%), and bisphenol AP [BPAP: 4,4'-(1-37 phenylethylidene)bisphenol; 99%] were obtained from Sigma-Aldrich (St. Louis, MO, USA); 38 bisphenol B [BPB; 2,2-bis(4-hydroxyphenyl)butane] (98%) was purchased from TCI America 39 (Portland, OR, USA). The molecular structures of bisphenols are shown in Table S1. Three internal standards, including  ${}^{13}C_{12}$ -labeled BPA (99%) and  ${}^{15}N_5$ -8-OHdG (> 98%) were purchased from 40 41 Cambridge Isotope Laboratories (Andover, MA, USA); creatinine-d<sub>3</sub> ( $\geq$  99%) was obtained from 42 CDN Isotopes (Pointe-Claire, Quebec, Canada). HPLC grade ethyl acetate and methanol were from 43 Mallinckrodt Baker (Phillipsburg, NJ, USA). Milli-Q water was provided through an ultrapure water 44 system (Barnstead International, Dubuque, IA, USA). *B*-glucuronidase from *Helix pomatia* (145,700) 45 units/mL  $\beta$ -glucuronidase; 887 units/mL sulfatase), 8-hydroxy-2'-deoxyguanosine (99%), creatinine 46  $(\geq 99\%)$ , acetic acid  $(\geq 99.7\%)$ , and ammonium acetate  $(\geq 98\%)$  were purchased from Sigma-Aldrich 47 (St. Louis, MO, USA).


| <b>Table S1.</b> Landem MS Parameters for the Analysis of Bisphenols. |                                    |                    |                               |                              |                            |                                            |  |  |  |
|-----------------------------------------------------------------------|------------------------------------|--------------------|-------------------------------|------------------------------|----------------------------|--------------------------------------------|--|--|--|
| Molecular structures                                                  | Chemicals                          | MS/MS ion<br>(m/z) | Declustering<br>potential (V) | Entrance<br>potential<br>(V) | Collision<br>energy<br>(V) | Collision<br>cell exit<br>potential<br>(V) |  |  |  |
| но-СН <sub>3</sub> -Он                                                | BPA                                | 227 > 212          | -80                           | -12                          | -25                        | -5                                         |  |  |  |
| HO OF OH                                                              | BPS                                | 249 > 108          | -40                           | -12                          | -30                        | -5                                         |  |  |  |
| но-                                                                   | BPF                                | 199 > 93           | -40                           | -12                          | -25                        | -5                                         |  |  |  |
| но-ССН <sub>3</sub> -он<br>СН <sub>3</sub> -Он                        | BPB                                | 241 > 212          | -40                           | -12                          | -25                        | -10                                        |  |  |  |
| ностон                                                                | BPZ                                | 267 > 173          | -40                           | -12                          | -32                        | -5                                         |  |  |  |
| HO HJC CH <sub>3</sub> OH                                             | BPP                                | 345 > 330          | -40                           | -12                          | -30                        | -10                                        |  |  |  |
| но-С-СН3-ОН                                                           | BPAP                               | 289 > 274          | -35                           | -12                          | -28                        | -10                                        |  |  |  |
| но-С-Е-Г-ОН                                                           | BPAF                               | 335 > 265          | -40                           | -12                          | -32                        | -5                                         |  |  |  |
| H <sub>3</sub> C CH <sub>3</sub><br>* * OH                            | <sup>13</sup> C <sub>12</sub> -BPA | 239 > 92           | -80                           | -12                          | -25                        | -5                                         |  |  |  |

## Table S1. Tandem MS Parameters for the Analysis of Bisphenols.

| Table S2. Detailed Information of Subjects Recr | ruited in This Study. |
|-------------------------------------------------|-----------------------|

|                           |                   |       | age distribution |                 |                  |             | gender<br>distribution |         | occupational<br>distribution |                  |
|---------------------------|-------------------|-------|------------------|-----------------|------------------|-------------|------------------------|---------|------------------------------|------------------|
| sampling sites            |                   | total | 0 > -<br>6 yrs   | > 6 -<br>18 yrs | > 18 -<br>60 yrs | > 60<br>yrs | males                  | females | <b>OP</b> <sup>d</sup>       | NOP <sup>e</sup> |
| e-waste dismantling areas | all <sup>a</sup>  | 116   | 14               | 28              | 60               | 14          | 66                     | 50      | 20                           | 96               |
|                           | HDED $^{b}$       | 51    | 6                | 13              | 25               | 7           | 28                     | 23      | 12                           | 39               |
|                           | LDED <sup>c</sup> | 65    | 8                | 15              | 35               | 7           | 38                     | 27      | 8                            | 57               |
| rural reference area      | all               | 22    | 2                | 0               | 12               | 8           | 11                     | 11      | 0                            | 0                |
| urban reference area      | all               | 20    | 0                | 0               | 20               | 0           | 9                      | 11      | 0                            | 0                |

<sup>*a*</sup> all: all participants from this area. <sup>*b*</sup> HDED: participants from high-density e-waste dismantling workshop area. <sup>*c*</sup> LDED: participants from lowdensity e-waste dismantling workshop area. <sup>*d*</sup> OP: occupational people. <sup>*e*</sup> NOP: non-occupational people.



**Figure S1**. Sampling locations of samples collected from e-waste dismantling and two reference areas in Guangdong Province, China. Yellow background represents Qingyuan City; HDED and LDED represent high-density and low-density e-waste dismantling workshops area, respectively.