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Equivalent Circuit Model

When a linearly polarized plane wave is normally incident on a two-dimensional conduc-

tive sheet, the transmission, re�ection, and absorption can be described using the simple

transmission-line model shown in Fig. S1.
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Figure S1: Transmission line model of re�ection, transmission and absorption in a conductive
sheet.

In this model, the incident and substrate regions are modeled as transmission lines with

characteristic impedances of Z1 ≡ Z0/
√
ε1 and Z2 ≡ Z0/

√
ε2, respectively, and the two-

dimensional sheet is modeled with a frequency-dependent lumped conductance σ(ω). For

a wave incident on the sheet from region 1, the re�ection, transmission and absorption are

then calculated to be:

r(ω) =

∣∣∣∣Y1 − Y2 − σ(ω)

Y1 + Y2 + σ(ω)

∣∣∣∣2 (S1)

τ(ω) =
4Y1Y2

|Y1 + Y2 + σ(ω)|2
(S2)

A(ω) = 1− r(ω)− τ(ω) =
4Y1Re

{
σ(ω)

}
|Y1 + Y2 + σ(ω)|2

(S3)

where Yi = 1/Zi.

When experimentally measuring the linear transmission using Fourier transform infrared

spectroscopy, it is conventional to normalize the transmission relative to that when the

conductive sheet is absent (i.e., when σ(ω) = 0). From (S2), we �nd

τ(ω)

τ0
=

|Y1 + Y2|2

|Y1 + Y2 + σ(ω)|2
=

[
1 +

σ(ω)

Y1 + Y2

]−2

(S4)
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Drude Model

The sheet conductance of an unpatterned graphene sheet is described by a two-dimensional

Drude conductivity:

σ(ω) =
D

π(Γ− iω)
(S5)

where D is the Drude weight and Γ is the momentum scattering rate. Both D and Γ are tem-

perature dependent, but at room temperature they are related to the carrier concentration

and mobility, respectively. The corresponding sheet impedance appearing in the equivalent

circuit is

Z(ω) =
1

σ(ω)
=
πΓ

D
− iπω

D
≡ R− iωL (S6)

where R ≡ πΓ/D is the DC sheet resistance of graphene and L ≡ π/D is the kinetic

inductance, as shown in Fig. S2.
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Figure S2: Equivalent circuit for Drude absorption by an unpatterned graphene sheet on a
substrate.

This model correctly predicts the Drude absorption, re�ection, and transmission in the

terahertz regime.

Drude Lorentz Model

When a conductor is patterned into an array of ribbons with period Λ and width w, it forms

a capacitive grid that can be modeled by a sheet capacitance of1

C = 2ε0ε̄Λ ln[sec(πw/2Λ)]/π (S7)

3



where ε̄ ≡ (ε1 + ε2)/2 is the average dielectric constant. Accounting for the sheet resistance

and kinetic inductance of the graphene that comprises the ribbons, the equivalent sheet

impedance may be modeled by a resistor, capacitor and inductor in series, as shown in

Fig. S3:2

Z(ω) = R
Λ

w
+ iωL

Λ

w
− i

ωC
(S8)
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Figure S3: Equivalent circuit of graphene ribbon array.

where R and L are the graphene sheet resistance and kinetic inductance, and the addi-

tional factor of Λ/w accounts for the �lling fraction of the graphene. Using the expressions

for R, L and C de�ned in (S6) and (S7), one �nds an equivalent conductivity of

σ(ω) =
1

Z(ω)
=
w

Λ

D

π[Γ− i(ω2 − ω2
p)/ω]

(S9)

where the resonant (or plasmon) frequency is given by

ω2
p ≡

Dw

2Λ2ε0ε̄ ln [sec (πw/2Λ)]
(S10)

The conductivity given in (S9) is of the same form as that obtained from the Drude-

Lorentz model of conductivity for bound electrons, assuming a resonant oscillation frequency

of ωp. When incorporated into (S4), this model accurately approximates the relative trans-

mission spectrum of the graphene ribbons.

The transmission line model presented in Figs. S1-S3 can be generalized to multilayer
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and �nite-thickness substrates by adding additional �nite-length transmission line segments.

Because the plasmon �elds are highly localized near the graphene surface, we treated the

oxide layer immediately below the graphene as semi-in�nite for the purpose of estimating

the plasmon resonance, absorption, and relative transmission. Finite element time domain

simulations con�rm the validity of this approximation.

Fluence Dependence

As shown in Fig. 3c, the pump-induced change in transmission ∆τ increases approximately

with the �uence F 1/2. Here we present a approximate model to explain the nature of this

dependence.

The on-resonant transmission through the plasmonic ribbons can be expressed in terms

of the three temperature dependent parameters D, Γ and ω2
p using (S2) and (S9):

τ =
4Y1Y2∣∣∣∣Y1 + Y2 +

w

Λ

D

π[Γ− i(ω2 − ω2
p)/ω]

∣∣∣∣2 (S11)

When the relative changes in these parameters are small, as is the case for the measurements

reported here, the resulting fractional change in transmission ∆τ/τ may be approximated

by Taylor-expanding (S11) to �rst order, with the assumption that ω = ωp,

∆τ

τ
=

2
w

Λ

D

πΓ[
Y1 + Y2 +

w

Λ

D

πΓ

] (
∆Γ

Γ
− ∆D

D

)
(S12)

We note that when evaluated at the resonant frequency, the thermally-induced red-shift ∆ω2
p

causes only a higher-order change in ∆τ , which is omitted in (S12).
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The Drude weight can be approximated as

D(T ) =
2e2

h̄2
kBT ln

[
2 cosh

(
µ(T )

kBT

)]
(S13)

' 2e2

h̄2
µ(T ) (S14)

' 2e2εF

h̄2

(
1− π2k2BT

2

6ε2F

)
(S15)

In the second line, we have used the fact that even for the hottest electron temperatures con-

sidered (660 K = 57 meV), the Fermi energy (350 meV) and chemical potential signi�cantly

exceed kBT . In the third line we have employed the Sommerfeld expansion to approximate

the relation between electron temperature T and chemical potential µ(T ). The fractional

decrease in Drude weight is then found to be:

∆D

D
= −π

2k2BT
2

6ε2F
(S16)

We note that the change is estimated relative to that at absolute zero temperature, whereas

in the measurements, the lattice temperature was small (T0 = 20 K), but non-zero.

The scattering rate can likewise be approximated as:

Γ(T ) =
Γ0εF
µ(T )

+
εFV

2
DkBT

4h̄3v2Fρs
2

(S17)

' Γ0

(
1 +

π2k2BT
2

6ε2F

)
+
εFV

2
DkBT

4h̄3v2Fρs
2

(S18)

where we have again assumed εF � kBT and employed the Sommerfeld expansion. The

fraction increase in scattering rate (relative to absolute zero temperature) is then given by:

∆Γ

Γ
=

εFV
2
DkBT

4Γ0h̄
3v2Fρs

2
+
π2k2BT

2

6ε2F
(S19)

When (S16) (S19) are combined as in (S12), both e�ects sum to cause an increase in the
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transmission that is proportional to:

(
∆Γ

Γ
− ∆D

D

)
=

εFV
2
DkBT

4Γ0h̄
3v2Fρs

2
+
π2k2BT

2

3ε2F
(S20)

The �rst term (∝ T ) is associated with the temperature-dependent LA phonon scattering

rate, and the second term (∝ T 2) results from the temperature-dependent chemical potential.

The relative strength of these two terms is related to the deformation potential VD, which

was adjusted to match the experimentally observed �uence dependence. For the parameters

considered in the experiment, these two terms would be equal to one another at an electron

temperature of T = 336 K. For the range of experimental conditions considered here, neither

term can be neglected, and hence we expect a dependence of ∆τ on electron temperature T

that falls somewhere between linear and quadratic.

For the narrow-band terahertz pulses considered here, the relationship between peak

temperature T and �uence F can be estimated by assuming that the peak temperature and

peak intensity are nearly coincident in time. From equation (2) in the main text,

βT 3
max = A(ω)Imax (S21)

where Tmax denotes the peak electron temperature, and Imax = 0.94F/∆tFWHM is the peak

intensity of a Gaussian pulse with �uence F and duration ∆tFWHM. We have again neglected

the small term βT 3
0 on the left-hand side that describes the lattice temperature, and ignored

the higher-order temperature-dependent change in the absorption coe�cient A appearing on

the right-hand side. (S21) predicts that the peak temperature will scale as F 1/3, as con�rmed

by the numerical simulations of Fig. 3c.

Substituting this relationship into (S20), one concludes that for the experimental con-

ditions considered here the change in transmission ∆τ should exhibit a non-power-law de-

pendence on �uence that falls intermediate between F 1/3 and F 2/3. As shown in Fig. 3b,

empirically observed and simulated scaling relation close to F 1/2 is consistent with this
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model. We note that including the temperature-dependent LA phonon scattering in ad-

dition to conventional Coulomb impurities was essential to correctly match the observed

�uence dependence.

Frequency Dependence of the Nonlinear Absorption

The increased carrier temperature changes the strength of the plasmon absorption as well

as its resonance frequency. Hence, the nonlinear absorption is highly frequency dependent.

While both e�ects lead to an increase of the transmission at resonance, the situation changes

for photon frequencies below resonance. In this case, red shift of the plasmon resonance leads

to a decrease of the transmission, opposed to the e�ect of the weakened plasmon absorption.

Whether the overall change in transmission is positive or negative depends on which of

these processes dominates. To investigate this behavior, we calculated the change of the

transmission as a function of the probe photon frequency with the model described in the

main text. The parameters of the calculation were the same as in the simulation of the

experiment, only the photon frequency of the probe was varied. The calculated change

in transmission as a function of the probe frequency for di�erent pump-induced electron

temperature rise is depicted in Fig. S4. Our calculations show clearly that the red shift

is the dominating e�ect and therewith the overall pump-induced change in transmission is

predicted to be negative for photon frequencies below resonance.
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Figure S4: Peak change of transmission as function of frequency calculated for the sample
used in our experiments.
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