Supporting Information

Evaluation of Thiol Raman Activities and pKa Values using Internallyreferenced Raman-based pH Titration

Nuwanthi Suwandaratne, * Juan Hu, * Kumudu Siriwardana, * Manuel Gadogbe, * and Dongmao Zhang, *, +

⁺Department of Chemistry, Mississippi State University, Mississippi State, MS 39762

*Department of Mathematical Sciences, DePaul University, Chicago, IL 60604

*Corresponding author. Email: dz33@msstate.edu

Contents:	Page
S1. Derivation of Eq. 5 in the manuscript	S 3
S2. Derivation of Eq. 9 in the manuscript	S4
S3. R code for least square curve-fitting with Eq. 9	S 8
S4. Raman-based pH titration for the thiol pK _a determination for Glutathione	S 9
S5. Raman-based pH titration for the thiol pK _a determination for 2-Mercaptoethanol	S10
S6. Raman-based pH titration for the thiol pK _a determination for Cysteamine	S11
S7. Comparison of the thiol pK _a determination for DTT using the peak intensity ratio and integrated peak area ratio.	S12

S1. Derivation of Eq. 5 in the manuscript

$$pH - pK_a = \log \frac{R^0 - R^{pH}}{R^{pH}}$$
 Eq. S1 (Eq. 4 in manuscript)

By rearranging Eq. S1,

$$10^{(pH-pKa)} = \frac{R^{0} - R^{pH}}{R^{pH}}$$
 Eq. S2

By simplifying Eq. S2,

$$10^{(pH-pKa)} = \frac{R^{0}}{R^{pH}} - 1$$
 Eq. S3

By further rearranging Eq. S3,

$$R^{pH} = \frac{R^0}{1 + 10^{(pH - pK_a)}}$$
 Eq. S4

$$R^{pH} = \frac{R^0}{1 + e^{2.303(pH - pK_a)}}$$
 Eq. S5 (Eq. 5 in manuscript)

S2. Derivation of Eq. 9 in the manuscript

Using the standard Henderson-Hasselbatch equation for conversion of dithiol to mono protonated dithiol.

$$pH = pK_{a1} + \log \frac{[RS_2H^-]_{pH}}{[RS_2H_2]_{pH}}$$
 Eq. S6

Using the standard Henderson-Hasselbatch equation for conversion of mono protonated dithiol to fully protonated dithiol.

$$pH = pK_{a2} + \log \frac{[RS_2^{2-}]_{pH}}{[RS_2H^-]_{pH}}$$
 Eq. S7

By adding Eq. S6 and Eq. S7,

$$2pH = pK_{a1} + pK_{a2} + \log \frac{[RS_2^{2^-}]_{pH}}{[RS_2H_2]_{pH}}$$
 Eq. S8

The concentration of intact dithiol $[RS_2H_2]_0$ is equal to the sum of non-ionized dithiol concentration $[RS_2H_2]_{pH}$ and concentration of mono thiolated dithiol $[RS_2H^-]_{pH}$ and fully protonated dithiol $[RS_2^{2-}]_{pH}$ at specified pH conditions.

$$[RS_2H_2]_0 = [RS_2H_2]_{pH} + [RS_2H^-]_{pH} + [RS_2^{2-}]_{pH}$$
 Eq. S9

By rearranging Eq. S9,

$$[RS_2^{2-}]_{pH} = [RS_2H_2]_0 - [RS_2H_2]_{pH} - [RS_2H^-]_{pH}$$
 Eq. S10

By substituting $[RS_2^{2-}]_{pH}$ (Eq. S10) in Eq. S8,

$$2pH = pK + \log \frac{[RS_2H_2]_0 - [RS_2H_2]_{pH} - [RS_2H^-]_{pH}}{[RS_2H_2]_{pH}}$$
 Eq. S11

Where,

$$pK = pK_{a1} + pK_{a2}$$
 Eq. S12

$$R^{0} = \frac{I_{SH}^{0}}{I_{ref}^{0}} = \frac{[RS_{2}H_{2}]_{0}\sigma_{S_{2}H_{2}}}{[REF]_{0}\sigma_{ref}}$$
 Eq. S13

By rearranging Eq. S10,

$$[RS_2H_2]_0 = \frac{[REF]_0 \sigma_{ref}}{\sigma_{S_2H_2}}R^0$$
 Eq.S14

By rearranging Eq. 6,

$$[RS_2H^-]_{pH} = [RS_2H_2]_{pH}.10^{pH-pK_{a1}}$$
 Eq. S15

$$R^{pH} = \frac{I_{SH}^{pH}}{I_{ref}^{pH}} = \frac{[RS_2H_2]_{pH} \sigma_{S_2H_2} + [RS_2H^-]_{pH} \sigma_{S_2H^-}}{[REF]_0 \sigma_{ref}}$$
Eq. S16

By substituting $[RS_2H^-]_{pH}$ (Eq. S15) in Eq. S16,

$$R^{pH} = \frac{[RS_2H_2]_{pH} \sigma_{S_2H_2} + ([RS_2H_2]_{pH}.10^{pH-pK_{a1}})\sigma_{S_2H^-}}{[REF]_0 \sigma_{ref}}$$
Eq. S17

By rearranging Eq. S17,

$$[RS_{2}H_{2}]_{pH} = \frac{[REF]_{0}\sigma_{ref}}{\sigma_{S_{2}H_{2}} + \sigma_{S_{2}H^{-}}.10^{pH-pK_{a1}}}R_{pH}$$
 Eq. S18

By substituting $[RS_2H_2]_0$ (Eq. S14) and $[RS_2H^-]_{pH}$ (Eq. S15) in Eq. S11,

$$2pH = pK + \log \frac{[REF]_0 \sigma_{ref} R^0}{\sigma_{S_2 H_2}} - [RS_2 H_2]_{pH} - [RS_2 H_2]_{pH} \cdot 10^{pH - pK_{a_1}}}{[RS_2 H_2]_{pH}}$$
 Eq. S19

Simplifying Eq. S19 into Eq, S20.

$$2pH = pK + \log \frac{\frac{[REF]_0 \sigma_{ref}}{\sigma_{S2H2}} R^0 - [RS_2 H_2]_{pH} (1 + 10^{pH - pK_{a1}})}{[RS_2 H_2]_{pH}}$$
 Eq. S20

Substituting $[RS_2H_2]_{pH}$ (Eq. S18) in Eq. S20 leads to Eq. S21,

$$2pH = pK + \log \frac{[REF]_{0} \sigma_{ref}}{\sigma_{S_{2}H_{2}}} R^{0} - \frac{[REF]_{0} \sigma_{ref}}{\sigma_{S_{2}H_{2}} + \sigma_{S_{2}H^{-}} x 10^{pH - pK_{a1}}} R^{pH} (1 + 10^{pH - pK_{a1}})}{\frac{[REF]_{0} \sigma_{ref}}{\sigma_{S_{2}H_{2}} + \sigma_{S_{2}H^{-}} x 10^{pH - pK_{a1}}} R^{pH}}$$
 Eq. S21

By multiplying both numerator and denominator of log term by $\frac{\sigma_{S_2H_2}}{[REF]_0\sigma_{ref}}$,

$$(2pH = pK + \log \frac{[REF]_{0}\sigma_{ref}}{\sigma_{S_{2}H_{2}}}R^{0} - \frac{[REF]_{0}\sigma_{ref}}{\sigma_{S_{2}H_{2}} + \sigma_{S_{2}H^{-}}x10^{pH-pK_{a1}}}R^{pH}(1+10^{pH-pK_{a1}})]\frac{\sigma_{S_{2}H_{2}}}{[REF]_{0}\sigma_{ref}})$$

$$[\frac{[REF]_{0}\sigma_{ref}}{\sigma_{S_{2}H_{2}} + \sigma_{S_{2}H^{-}}x10^{pH-pK_{a1}}}R^{pH}]\frac{\sigma_{S_{2}H_{2}}}{[REF]_{0}\sigma_{ref}}$$

$$2pH = pK + \log \frac{R^{0} - \frac{\sigma_{S_{2}H_{2}}R^{pH}(1 + 10^{pH - pK_{a1}})}{\sigma_{S_{2}H_{2}} + \sigma_{S_{2}H^{-}}x10^{pH - pK_{a1}}}}{\frac{\sigma_{S_{2}H_{2}}}{\sigma_{S_{2}H_{2}} + \sigma_{S_{2}H^{-}}x10^{pH - pK_{a1}}}R^{pH}}$$
 Eq. S22

By multiplying both numerator and denominator of log term by (1/ $\sigma_{\rm S2H2}$),

$$2pH = pK + \log \frac{R^{pH} (1 + 10^{pH - pK_{a1}})}{1 + (\sigma_{S_2H^-} / \sigma_{S_2H_2}) 10^{pH - pK_{a1}}}$$

$$Eq. S23$$

$$\frac{R^{pH}}{1 + (\sigma_{S_2H^-} / \sigma_{S_2H_2}) . 10^{pH - pK_{a1}}}$$

But,

$$\sigma_{S_2H^-}/\sigma_{S_2H_2}=\alpha$$
 Eq. S24

$$2pH = pK + \log \frac{R^{0} - \frac{R^{pH} (1 + 10^{pH - pK_{a1}})}{1 + \alpha 10^{pH - pK_{a1}}}}{R^{pH}}$$
Eq. S25

By multiplying both numerator and denominator of log term by $1 + \alpha 10^{pH-pKa1}$,

$$2pH = pK + \log \frac{R^{0} (1 + \alpha 10^{pH - pK_{a1}}) - R^{pH} (1 + 10^{pH - pK_{a1}})}{R^{pH}}$$
 Eq. S26

$$2pH = pK + \log \frac{R^0 + R^0 \alpha 10^{pH - pK_{a1}} - R^{pH} - R^{pH} 10^{pH - pK_{a1}}}{R^{pH}}$$
 Eq. S27

By rearranging Eq.S27,

$$10^{(2pH-pK)} = \frac{R^{\circ} + \alpha R^{\circ} 10^{(pH-pK_{a_1})}}{R^{pH}} - (1 + 10^{(pH-pK_{a_1})})$$
 Eq. S28

$$R^{pH} = \frac{R^0 + \alpha R^0 10^{(pH - pK_{a_1})}}{10^{(2pH - pK)} + (1 + 10^{(pH - pK_{a_1})})}$$
Eq. S29

$$R^{pH} = \frac{R^0 + \alpha R^0 10^{(pH - pK_{a_1})}}{10^{(2pH - pK_{a_1} - pK_{a_2})} + (1 + 10^{(pH - pK_{a_1})})}$$
Eq. S30

By Simplifying Eq. S30,

$$R^{pH} = \frac{R^0 + \alpha R^0 10^{(pH - pKa_1)}}{1 + 10^{(pH - pK_{a_1})} (1 + 10^{(pH - pK_{a_2})})}$$
 Eq. S31

S3. R code for least square curve-fitting with Eq. 9

```
####fr is the least square function that need to be optimized####
fr=function(par,ph,Rph){
R0=par[1]
alpha=par[2]
pka1=par[3]
pka2=par[4]
sum(((R0+alpha*R0*10^{h-pka1}))/(1+10^{h-pka1})*(1+10^{h-pka2}))-Rph)^2)
# pka.fit is the function to fit the parameters
# par is a vector of the initial guess for the parameters R0,alpha, pka1 and pka2
# ph is the experimental value for ph
# Rph is the experimental value for Rph
# Returning values are fitted parameters, fitted Rph and MSE
#######
pka.fit=function(par,ph,Rph){
res=optim(par, fr, ph=ph, Rph=Rph)
R0.f=res par[1]
alpha.f=res$par[2]
pka1.f=res$par[3]
pka2.f=res$par[4]
Rph.f = (R0.f + alpha.f * R0.f * 10^(ph-pka1.f))/(1+10^(ph-pka1.f) * (1+10^(ph-pka2.f)))
MSE=sum((Rph.f-Rph)^2)
return(list(R0.f=R0.f,alpha.f=alpha.f,pka1.f=pka1.f, pka2.f=pka2.f, Rph.f=Rph.f, MSE=MSE))
```

S4. Raman-based pH titration for the thiol pK_a determination for Glutathione

Figure S1: Internally-referenced Raman pH titration for the determination of thiol pK_a values in GSH. (A) Representative Raman spectra of GSH as a function of solution pH ((a) SO_4^{2-} , (b) SH peak). The spectra are normalized by the sulfate peak intensity. (B) Solution pH (red circles, left scale) and I_{S-H}/I_{SO4}^{2-} (black squares, right scale) as a function of titrant (500 mM NaOH) volume. (C) The relative S-H peak intensity as a function of solution pH. The solid curves are by fitting the experimental data with the Boltzmann function fitting using Origin Pro. The GSH and Na₂SO₄ concentrations in the initial titration solution are 0.22 M and 0.15 M, respectively.

S5. Raman-based pH titration for the thiol pK_a determination for 2-Mercaptoethanol

Figure S2: Internally-referenced Raman pH titration for the determination of thiol pK_a values in 2-ME. (A) Representative Raman spectra of 2-ME as a function of solution pH ((a) SO₄²⁻, (b) SH peak). The spectra are normalized by the sulfate peak intensity. (B) Solution pH (red circles, left scale) and I_{S-H}/I_{SO4}²⁻(black squares, right scale) as a function of titrant (500 mM NaOH) volume. (C) The relative S-H peak intensity as a function of solution pH. The solid curves are by fitting the experimental data with the Boltzmann function fitting using Origin Pro. The 2-ME and Na₂SO₄ concentrations in the initial titration solution are 0.42 M and 0.15 M, respectively.

S6. Raman-based pH titration for the thiol pKa determination for Cysteamine

Figure S3: Internally-referenced Raman pH titration for determination of the thiol pK_a values in CyA. (A) Representative Raman spectra of CyA as a function of solution pH. (a. SO_4^{2-} , b.SH peak) The spectra are normalized by the sulfate peak intensity. (B) Solution pH (red circles, left scale) and I_{S-H}/I_{SO4}^{2-} (black squares, right scale) as a function of titrant (500 mM NaOH) volume. (C) The relative S-H peak intensity as a function of solution pH. The solid curves are by fitting the experimental data with the Boltzmann function fitting using Origin Pro. The CyA and Na₂SO₄ concentrations in the initial titration solution are 2.5 M and 0.15 M, respectively.

S7. Comparison of the thiol pKa determination for DTT using the peak intensity ratio and integrated peak area ratio.

Figure S4: (A) Representative Raman spectra of DTT as a function of solution pH. ((a) SO₄²⁻, (b) S-H peak) The spectra are normalized by the sulfate peak intensity. (B) the S-H/ SO₄²⁻ peak intensity ratio as a function of solution pH. (C) the S-H/ SO₄²⁻ integrated peak intensity ratio as a function of solution pH. The solid curve in (B) and (C) are obtained by least-square curve-fitting the experimental data with the Eq. 9 using the R program shown in the supporting information. The DTT thiol pK_a values determined with the intensity ratio are very similar to those obtained with curve-fitting the integrated peak area ratios.