Supporting Information

Tryptic stability of synthetic bactenecin derivatives is determined by the side chain length of cationic residues and the peptide conformation

Mojtaba Bagheri, ${ }^{*}{ }^{*}$ Shima Arasteh ${ }^{a}$, Evan F. Haney ${ }^{b}$, Robert E. W. Hancock ${ }^{* b}$
${ }^{a}$ Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 14176-14335Tehran, Iran, ${ }^{b}$ Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada

Corresponding authors:
Dr. Mojtaba Bagheri,
Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran,
16 Azar Street,
14176-14335 Tehran, Iran
E-mail: mojtabagheri@ut.ac.ir,
Tel: +98 (21) 6696 9255; Fax: +98 (21) 66404680

Dr. Robert E. W. Hancock
Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
E-mail: bob@hancocklab.com
Tel: +1 (604) 822 2682; Fax: +1 (604) 8275566

Table of contents

Table S1. The sequences of the synthetic bactenecin peptides and their analogs S3
Figure S1. RP-HPLC spectra of the synthetic bactenecin-derived AMPs S4
Figure S2. Mass spectra of synthetic bactenecin-derived AMPs S12
Figure S3. Ramachandran plots of each amino acid residues in the 1 derived AMPs for the structure with the highest percentage of occurrence in water S21
Figure S4. Ramachandran plots of each amino acid residues in the 10 derived AMPs for the structure with the highest percentage of occurrence in water S22
Figure S5. RP-HPLC spectra of the reaction mixture of each individual synthetic bactenecin-derived AMPs incubated with trypsin S23
Figure S6. Mass spectra of the reaction mixture of each individual synthetic bactenecin-derived AMPs incubated with trypsin S31
Figure S7. The raw ITC data (power vs. time) and the integrated data for injection of the 1 and 10 derivedpeptides into the calorimeter cell containing trypsin at $310^{\circ} \mathrm{K}$S58
Figure S8. The representative structure of trypsin used in the docking studies S59
Figure S9. The molecular docked models of synthetic bactenecin 1 and its analogues with trypsin S60
Figure S 10 . The molecular docked model of synthetic bactenecin 10 and its analogues with trypsin S64

Table S1. The sequences of the synthetic bactenecin peptides and their analogues

Peptide code	Sequence
1	Lys-Arg-Trp-Trp-Lys-Trp-Ile-Arg-Trp-NH2
2^{a}	Lys-Arg-Trp-Trp-Lys-Trp-Ile-Arg-Trp- NH_{2}
3	Trp-Arg-Ile-Trp-Lys-Trp-Trp-Arg-Lys- NH_{2}
4	Arg-Lys-Trp-Trp-Arg-Trp-Ile-Lys-Trp-NH2
5	Dab-Dab-Trp-Trp-Dab-Trp-Ile-Dab-Trp- NH_{2}
6	Orn-Orn-Trp-Trp-Orn-Trp-Ile-Orn-Trp-NH2
7	Har-Har-Trp-Trp-Har-Trp-Ile-Har-Trp- NH_{2}
8	$\text { Dab-Har-Trp-Trp-Dab-Trp-Ile-Har-Trp-NH } 2$
9	Orn-Har-Trp-Trp-Orn-Trp-Ile-Har-Trp-NH2
10	Lys-Arg-Trp-Trp-Lys-Trp-Trp-Arg-Arg- NH_{2}
11	Lys-Arg-Trp-Trp-Lys-Trp-Trp-Arg-Arg- NH_{2}
12	Arg-Arg-Trp-Trp-Lys-Trp-Trp-Arg-Lys- NH_{2}
13	Arg-Lys-Trp-Trp-Arg-Trp-Trp-Lys-Lys- NH_{2}
14	Dab-Dab-Trp-Trp-Dab-Trp-Trp-Dab-Dab-NH2
15	Orn-Orn-Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH2
16	Har-Har-Trp-Trp-Har-Trp-Trp-Har-Har- NH_{2}
17	Dab-Har-Trp-Trp-Dab-Trp-Trp-Har-Har- NH_{2}
18	Orn-Har-Trp-Trp-Orn-Trp-Trp-Har-Har-NH2

Figure S1. RP-HPLC spectra of the synthetic bactenecin-derived AMPs

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	27.148	11883913	96.35	783609	94.49
2	27.717	449558	3.65	45676	5.51

5

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	27.394	31186141	100.00	809985	100.00

6

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	$\%$ Area	Height (V)	$\%$ Height
1	27.102	41467130	100.00	1902051	100.00

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	26.567	975534	4.79	60729	15.68
2	27.397	19388831	95.21	326690	84.32

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	24.992	43856370	100.00	2732073	100.00

11

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	24.780	19350236	100.00	820719	100.00

	RT (min)	Area $(\mathrm{(V*} \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	24.790	25655886	100.00	1278975	100.00

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	$\%$ Height
1	24.787	48101892	100.00	2437496	100.00

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	24.577	24794329	100.00	599472	100.00

	RT (min)	Area $(\mathrm{V} * \mathrm{sec})$	\% Area	Height (V)	\% Height
1	24.826	9022603	100.00	170362	100.00

	RT (min)	Area $(\mathrm{V} \mathrm{sec})$	\% Area	Height (V)	\% Height
1	25.301	31638622	100.00	866338	100.00

	RT (min)	Area $(\mathrm{V}$ sec $)$	\% Area	Height (V)	\% Height
1	25.212	27873057	94.05	989471	96.82
2	27.297	1764761	5.95	32505	3.18

Figure S2. Mass spectra of synthetic bactenecin-derived AMPs. The values are monoisotopic masses in positive mode.

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund.
130		77893
158.9		77841
274.2	1	311022
302.2		91912
318.1		161996
362		94240
482		763461
499.2		98036
501.1		88568
722.5		505432

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=722.4^{a},\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=482.0$
${ }^{a}$ These values are the calculated mass values for the respective peptides.
User Spectra

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund.
302		234748
458.2	1	288131
459.2	1	91252
482		98099
499.1		71367
500.3		66172
557.2		77102
601.2	1	172559
602.2	1	69376
722.5		106466

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=722.4,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=482.0,\left[\mathrm{M}+2 \mathrm{TFA}+\mathrm{H}^{3+}\right]^{3+}=557.9^{b}$
${ }^{b}$ The calculated masses may reflect the mass of the peptides with TFA adduct ion; e.g., $[\mathrm{M}+\mathrm{xTFA}+\mathrm{nH}]^{\mathrm{n}+}$, where x is the number of TFA adduct ion, and n represents multiple-charge ionization of peptides from protonation. The monoisotopic mass of TFA is 113.99 Da .
User Spectra
Fragmentor Voltage Collision Energy Ionization Mode

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	z	Abund.
116.1		63614
154		70912
199		61460
244.1	1	495043
245.1	1	80116
400.2	1	133999
482		56105
499.2		85819
543.2	1	111402
722.5		99026

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=722.4,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=482.0$

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	Abund.
130	64455
159	86977
274.1	135066
318.2	62181
321	156159
361.8	123469
458.3	53090
471.1	50700
482	924981
722.5	598406

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=722.4,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=482.0$

$\left[\mathrm{M}+\mathrm{H}^{1+}\right]^{1+}=1275.8,\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=638.4,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=425.9$

User Spectra

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund.
115		81442
130		144632
159	1	210092
274.1		211178
318.1		122252
439		133479
444.6		449990
638.5		75134
666.5		524785
1331.6	1	72481

$\left[\mathrm{M}+\mathrm{H}^{1+}\right]^{1+}=1331.8,\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=666.4,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=444.6$

User Spectra
Fragmentor Voltage Collision Energy Ionization Mode

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	Abund.
130	71799
159	117997
274.2	109054
318.2	142649
372.2	50444
389.9	97588
467	58062
472.7	685163
519.4	164256
708.5	612096

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=708.4,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=472.6$
User Spectra
9

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	Abund.
130	76560
159	130697
274.2	212212
302.1	65525
318.2	118411
472.6	80871
476.3	51301
482.1	761430
708.5	70294
722.5	617793

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=722.4,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=481.9$
User Spectra
Fragmentor Voltage \quad Collision Energy \quad Ionization Mode
$x 102+$ Scan (0.382 min) bag-36.d
10
Peak List

$\boldsymbol{m} / \boldsymbol{z}$	z	Abund.
130		38998
159		44139
274.2	1	124167
302.2		39967
318.2		85810
368.3		66223
372.5		141317
400.7		32226
496.4		413198
744		241710

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=743.9,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=496.3,\left[\mathrm{M}+\mathrm{H}^{4+}\right]^{4+}=372.5$

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=743.9,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=496.3,\left[\mathrm{M}+\mathrm{H}^{4+}\right]^{4+}=372.5$

[^0]User Spectra
13

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund.
274.2		92613
318.2	1	151813
362.2		78777
365.5		138746
372.6		74897
487		364602
496.4		144475
543.2		108075
730		249741
744.1		94798

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=729.9,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=487.0,\left[\mathrm{M}+\mathrm{H}^{4+}\right]^{4+}=365.5$
14

$\left[\mathrm{M}+\mathrm{H}^{1+}\right]^{1+}=1262.8,\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=631.9$

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=736.9,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=491.6,\left[\mathrm{M}+\mathrm{H}^{4+}\right]^{4+}=369.0$

User Spectra

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund.
130		81220
159		121537
274.2	1	231058
302.2		68492
318.2		138385
371.8		195480
376		170543
491.7		85886
501.1		795609
751		362752

$\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=750.9,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=501.0,\left[\mathrm{M}+\mathrm{H}^{4+}\right]^{4+}=376.0$

Figure S3. Ramachandran plots of each amino acid residues in the 1 derived AMPs for the structure with the highest percentage of occurrence in water. The three-letter amino acid codes from left to right represent the residues in the sequences starting from the $2^{\text {nd }}$ residue at the peptide N terminal to the $8^{\text {th }}$ at the C-terminal.

Figure S4. Ramachandran plots of each amino acid residues in the 10 derived AMPs for the structure with the highest percentage of occurrence in water. The three-letter amino acid codes from left to right represent the residues in the sequences starting from the $2^{\text {nd }}$ residue at the peptide N terminal to the $8^{\text {th }}$ at the C-terminal.

Figure S5. RP-HPLC spectra of the reaction mixture of each individual synthetic bactenecin-derived AMPs incubated with trypsin. Left and right spectra were recorded after 2 h and 24 h incubation, respectively.

1
Not determined

	RT (min)	Area (V*sec)	\% Area	Height (V)	$\%$ Height
1	25.333	13001191	29.48	1031427	17.80
2	25.946	8405109	19.06	1625079	28.05
3	26.092	8621698	19.55	1310912	22.62
4	26.609	14070998	31.91	1826946	31.53

	RT (min)	Area $\left(\mathrm{V}^{*}\right.$ sec $)$	\% Area	Height (V)	$\%$ Height
1	26.467	1011273	8.63	-30416	7.41
2	27.281	3645777	31.12	126062	30.72
3	27.548	6209156	53.00	215372	52.49
4	28.462	849982	7.25	38479	9.38

	$\begin{array}{c}\text { RT } \\ (\text { min })\end{array}$	$\begin{array}{c}\text { Area } \\ \left(V^{*} \text { sec }\right)\end{array}$	\% Area	$\begin{array}{c}\text { Height } \\ (V)\end{array}$	$\begin{array}{c}\% \\ \text { Height }\end{array}$						
1	24.614	3583893	37.68	342443	38.58						
2	25.198	4421324	46.48	369775	41.66						
3	26.475	1507111	15.84	175323	19.75		428.462	849982	7.25	38479	9.38
---:	---:	---:	---:	---:	---:						

	$\begin{gathered} \text { RT } \\ (\text { min) } \end{gathered}$	$\begin{gathered} \text { Area } \\ \left(V V^{*} \mathrm{sec}\right) \end{gathered}$	\% Are	Height (V)	$\begin{gathered} \% \\ \text { Height } \end{gathered}$
1	19.599	1838440	8.43	75763	4.08
2	22	12843	5.89	114686	6.17
3	23.592	6627827	30.39	440533	23.70
4	24.131	2104371	9.65	116065	6.24
	26.562	995759	45.65	9	59.80

$\begin{array}{c}R T \\ (\text { min })\end{array}$	$\begin{array}{c}\text { Area } \\ (V * \text { vec })\end{array}$	\% Area	$\begin{array}{c}\text { Height } \\ \text { (V) }\end{array}$	$\begin{array}{c}\% \\ \text { Height }\end{array}$

	19.599	4343694	38.17	182080	44.67
2	25.889	7036083	61.83	225524	55.33

	$R T$ $($ min $)$	Area $\left(V^{*}\right.$ sec $)$	$\%$ Area	Height $($ (V)	$\%$ Height
1	19.542	4824240	26.56	197840	16.41
2	22.225	1562293	8.60	136987	11.37
3	22.440	4512258	24.84	224417	18.62
4	26.040	1294132	7.13	79748	6.62
5	26.189	1308022	7.20	81545	6.77
6	26.571	4662302	25.67	484746	40.22

$\begin{array}{c}\text { RT } \\ (\text { min })\end{array}$	$\begin{array}{c}\text { Area } \\ \left(V^{*} \text { sec }\right)\end{array}$	\% Area	$\begin{array}{c}\text { Height } \\ (\mathbb{V})\end{array}$	$\begin{array}{c}\% \\ \text { Height }\end{array}$

2	22.128	2837168	12.18	332424	18.61

3	22.258	9929396	42.63	731003	40.92
	2.98	127220			1270

| 4 | 24.999 | 1272203 | 5.46 | 127670 | 7.15 |
| :--- | :--- | :--- | :--- | :--- | :--- | | 5 | 26.524 | 3342753 | 14.35 | 376363 | 21.07 |
| :--- | :--- | :--- | :--- | :--- | :--- |

RT											
(min)	$\begin{array}{c}\text { Area } \\ \text { (V.sec) }\end{array}$	\% Area	$\begin{array}{c}\text { Height } \\ \text { (V) }\end{array}$	$\begin{array}{c}\% \\ \text { Height }\end{array}$			(ming	(V)			
:---	:---	:---	:---	:---	:---						
1	24.757	6742896	100.00	319308	100.00						

$($ min $)$	$($ V*sec $)$		(V)	Height
123.333	1082974	13.15	119029	21.25

| 2 | 24.876 | 4009100 | 48.69 | 333464 | 59.54 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3	28.652	3142690	38.16	107571	19.21

$\begin{array}{c}\text { RT } \\ (\text { min })\end{array}$	$\begin{array}{c}\text { Area } \\ \text { (V seec) }\end{array}$	$\%$ Area	$\begin{array}{c}\text { Height } \\ \text { (V) }\end{array}$	$\begin{array}{c}\% \\ \text { Height }\end{array}$

 \begin{tabular}{|l|l|l|l|l|l|}
\hline 2 \& 23.696 \& 2269585 \& 13.08 \& 249398 \& 28.04

\hline \& 2.65 \& 22 \& 5.3 \&

\hline

\hline 3 \& 24.669 \& 10122206 \& 58.32 \& 377370 \& 42.44

\hline

\hline 46.433 \& 1200915 \& 6.92 \& 76213 \& 8.57

\hline \& 28 \& \& \& 7.8 \& 610

\hline

\hline 5 \& 28.292 \& 1366805 \& 7.88

\hline 61101 \& 6.87

\hline
\end{tabular}

	RT (min)	Area $\left(V^{*}\right.$ sec $)$	\% Area	Height (V)	$\%$ Height
1	23.786	5056478	29.38	528096	27.93
2	24.667	823040	4.78	162693	8.60
3	24.764	7737352	44.95	775338	41.00
426.190	1390224	8.08	169667	8.97	
5	26.511	2204924	12.81	255138	13.49

	RT $($ min $)$	Area $\left(V^{*}\right.$ sec	$\%$ Area	Height (V)	$\%$ Height
1222.609	1498640	10.08	113879	14.23	
223.920	2713264	18.24	143865	17.98	
324.529	1793021	12.05	139000	17.37	
425.244	3913721	26.31	177577	22.19	
5	26.998	2789413	18.75	126568	15.82
6	27.754	1292310	8.69	59680	7.46
7	30.189	874233	5.88	39544	4.94

	RT (min)	Area $\left(V^{*}\right.$ sec $)$	$\%$ Area	Height (V)	$\%$ Height
1	23.543	2036062	9.87	127334	6.76
2	23.991	7121377	34.51	676470	35.94
3	24.588	4785831	23.20	439482	23.35
4	25.261	6689465	32.42	639190	33.95

	$\begin{array}{c}\text { RT } \\ \text { (min) }\end{array}$	$\begin{array}{c}\text { Area } \\ \text { (V*sec) }\end{array}$	$\begin{array}{c}\% \text { Area }\end{array}$	$\begin{array}{c}\text { Height } \\ \text { (V) }\end{array}$	$\begin{array}{c}\% \\ \text { Height }\end{array}$						
126.357	5180863	43.77	141521	41.78							
2							26.720	6654384	56.23	197231	58.22
:---	:---	:---	:---	:---	:---						

	Peak Name	RT (min)	Area (V*sec)	\% Area	Height (V)	$\%$ Height
1	Peak1	23.723	8492882	48.15	807463	48.71
2	Peak2	25.103	9145389	51.85	850250	51.29

	RT (min)	Area (V sec)	\% Area	Height (V)	$\%$ Height
126.367	2491002	27.98	117938	28.98	
2	26.501	6413279	72.02	288963	71.02

	$R T$ $($ min $)$	Area $\left(V^{*}\right.$ sec $)$	$\%$ Area	Height (V) $)$	$\%$ Height
1	23.803	9228135	44.22	883963	43.65
2	24.929	10625166	50.92	1027216	50.73
3	26.033	1014661	4.86	113741	5.62

 monoisotopic masses in positive mode.

Trp-Ile-Arg-OH;
$[\mathrm{M}+\mathrm{H}]_{\text {found }}^{+}=474.1,[\mathrm{M}+\mathrm{H}]_{\text {calculated }}^{+}=474.3$

User Spectra

Trp-Ile-Arg-OH;
$[\mathrm{M}+\mathrm{H}]^{+}$found $=474.1,[\mathrm{M}+\mathrm{H}]^{+}{ }_{\text {calculated }}=474.3$
Trp-Trp-Lys-OH;
$[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=290.1^{a},[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=290.1$
${ }^{a}$ Monoisotopic mass of HOAc is 60.02 Da

2

Intact $\mathbf{2}^{b}$;
$[\mathrm{M}+2 \mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=838.7,[\mathrm{M}+2 \mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=839.4$ $[\mathrm{M}+6 \mathrm{HOAc}+5 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=792.2,[\mathrm{M}+6 \mathrm{HOAc}+5 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=791.9$
$[\mathrm{M}+5 \mathrm{HOAc}+4 \mathrm{H}]^{4+}$ found $=437.0,[\mathrm{M}+5 \mathrm{HOAc}+4 \mathrm{H}]^{4+}{ }_{\text {calculated }}=436.7$
${ }^{b}$ all-D $\mathrm{HHC}-10$ and ${ }^{\text {Retro-inverso }} \mathrm{HHC}-10$ were in impure forms
continued in next page

Intact 2
$[\mathrm{M}+10 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=834.3,[\mathrm{M}+10 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=834.0$
$[\mathrm{M}+6 \mathrm{HOAc}+5 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=792.3,[\mathrm{M}+6 \mathrm{HOAc}+5 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ calculated $=791.9$

Intact 2;
$[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=722.6,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=722.4$

Intact 3;
$[\mathrm{M}+7 \mathrm{HOAc}+\mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=660.6,[\mathrm{M}+7 \mathrm{HOAc}+\mathrm{TFA}+3 \mathrm{H}]_{\text {calculated }}^{3+}=660.0$
continued in next page

Intact 3;
$[\mathrm{M}+12 \mathrm{HOAc}+3 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=835.2,[\mathrm{M}+12 \mathrm{HOAc}+3 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ calculated $=836.0$ $[\mathrm{M}+10 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]_{\text {found }}^{3+}=834.4,[\mathrm{M}+10 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}^{\text {calculated }}=834.0$

Intact 3;
$[\mathrm{M}+7 \mathrm{HOAc}+\mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=660.6,[\mathrm{M}+7 \mathrm{HOAc}+\mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=660.0$
$[\mathrm{M}+10 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=834.3,[\mathrm{M}+10 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=834.0$

Peak List

$\boldsymbol{m} / \mathbf{z}$	\mathbf{z}	Abund.
1044.9	32507	
159	104871	
186.9	45780	
218.1	38048	
226	1	246173
227	1	31928
246.1	39594	
274.2		144258
275.1	28305	
318.1	65216	

Lys-Trp-Trp-Arg-OH;
$[\mathrm{M}+3 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=437.1,[\mathrm{M}+3 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=437.8$

continued in next page
Dab-Trp-Trp-Dab-Trp-Ile-Dab-Trp-NH2;
$[\mathrm{M}+1 \mathrm{HOAc}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=412.2,[\mathrm{M}+1 \mathrm{HOAc}+3 \mathrm{H}]^{3+}$ calculated $=412.6$
Trp-Trp-Dab-Trp-Ile-Dab-Trp- NH_{2};
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=625.2,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=625.3$

Dab-Trp-Trp-Dab-Trp-Ile-Dab-Trp-NH ${ }_{2}$
$[\mathrm{M}+\mathrm{HOAc}+3 \mathrm{H}]^{3+}$ found $=412.2,[\mathrm{M}+\mathrm{HOAc}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=412.6$
Trp-Trp-Dab-Trp-Ile-Dab-Trp- NH_{2};
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]_{\text {found }}^{2+}=625.2,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]_{\text {calculated }}^{2+}=625.3$

continued in next page

Trp-Trp-Dab-Trp-Ile-Dab-Trp- NH_{2};
$[\mathrm{M}+1 \mathrm{HOAc}+1 \mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=625.3,[\mathrm{M}+1 \mathrm{HOAc}+1 \mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=625.3$
Trp-Trp-Dab-OH;
$[\mathrm{M}+2 \mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {found }}=725.3,[\mathrm{M}+2 \mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]_{\text {calculated }}^{+}=725.2$

Trp-Trp-Dab-OH;
$[\mathrm{M}+2 \mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]_{\text {found }}^{+}=725.2,[\mathrm{M}+2 \mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {calculated }}=725.2$

Orn-Trp-Trp-Orn-Trp-Ile-Orn-Trp-NH2;
$[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=639.3,[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=639.4$
Trp-Ile-Orn-Trp-NH2
$[\mathrm{M}+\mathrm{H}]_{\text {found }}^{+}=617.3,[\mathrm{M}+\mathrm{H}]_{\text {calculated }}^{+}=617.4$
continued in next page

Orn-Trp-Trp-Orn-Trp-Ile-Orn-Trp-NH2;
$\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=639.3,[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=639.4$
Trp-Ile-Orn-Trp-NH2;
$[\mathrm{M}+\mathrm{H}]_{\text {found }}^{+}=617.2,[\mathrm{M}+\mathrm{H}]^{+}{ }_{\text {calculated }}=617.4$

6

Peak List

$\boldsymbol{m} / \mathbf{z}$	\mathbf{z}	Abund.
100		10384
105		13925
130.1		60556
148.9		22933
239		24601
617.3		11015
6399.3	1	72503
640.3	1	29998
666.5		13199
753.3	1	13469

Orn-Trp-Trp-Orn-Trp-Ile-Orn-Trp- NH_{2};
$[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=639.3,[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=639.4$
Trp-Trp-Orn-Trp-Ile-Orn-Trp-NH2;
$[\mathrm{M}+2 \mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=666.5,[\mathrm{M}+2 \mathrm{TFA}+2 \mathrm{H}]^{2+}$ calculated $=666.3$
Trp-Ile-Orn-Trp- NH_{2};
$[\mathrm{M}+\mathrm{H}]_{\text {found }}^{+}=617.3,[\mathrm{M}+\mathrm{H}]_{\text {calculated }}^{+}=617.4$

User Spectra

7
 Peak List

$\boldsymbol{m} / \mathbf{z}$	\mathbf{z}	Abund.
159		86371
187		18517
226		28246
242.2	1	58201
274.1	1	68127
318.2		33413
430.8		17197
673.3	1	154456
674.3	1	65626
695.3	1	35312

Trp-Ile-Har-Trp-NH2;
$[\mathrm{M}+\mathrm{H}]^{+}{ }_{\text {found }}=673.3,[\mathrm{M}+\mathrm{H}]^{+}{ }_{\text {calculated }}=673.4$

Trp-Ile-Har-Trp-NH2;
$[\mathrm{M}+\mathrm{H}]^{+}$found $=673.3,[\mathrm{M}+\mathrm{H}]^{+}$calculated $=673.4$
Trp-Ile-Har-OH;
$[\mathrm{M}+\mathrm{H}]^{+}$found $=488.2,[\mathrm{M}+\mathrm{H}]^{+}{ }_{\text {calculated }}=488.3$

Peak List
$\boldsymbol{m} / \mathbf{z}$ \mathbf{z} Abund. $\mathbf{1 0 5}$ 1056 130 1 25913 144 14329 145 10833 148.9 14247 159 54671 187 14595 226 1 43732 239 16330 274.1 1 17219 Fragmentor Voltage

8

Peak List

$\boldsymbol{m} / \mathbf{z}$	\mathbf{z}	Abund.
105		12287
130.1	1	42417
148.9	1854	
158.9	14812	
238.9		26805
472.5		13922
615.9	36534	
626.9	1458	
708.5	34568	
719.4	13997	

Dab-Har-Trp-Trp-Dab-Trp-Ile-Har-OH;
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ found $=615.9,[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated $=615.9$
Har-Trp-Trp-Dab-Trp-Ile-Har-OH;
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=436.2,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=435.5$
Trp-Trp-Dab-Trp-Ile-Har-OH;
$[\mathrm{M}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=472.5,[\mathrm{M}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=472.8$
Trp-Trp-Dab-OH
$[\mathrm{M}+2 \mathrm{TFA}+\mathrm{H}]_{\text {found }}^{+}=719.4,[\mathrm{M}+2 \mathrm{TFA}+\mathrm{H}]^{+}$calculated $=719.3$
Fragmentor Voltage Collision Energy Tonzion Mode

Esi
$\times 10^{5}+$ Scan (0.276 min) mb-10724h.d
$10^{5}+$ Scan (0.276 min)
$200 \quad 400 \quad 600 \begin{gathered}800 \\ \text { Counts vs. Mass-to-Charge (m/z) }\end{gathered}{ }^{1000} 1200$
eak List
Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund.
144		36610
159	1	165379
187		41805
204		40082
218.1		58049
226	1	156887
246.1		69855
2745.1	1	2317313
275.1	1	40409
318.1		99774

Trp-Ile-Har-Trp-NH2;
$[\mathrm{M}+\mathrm{H}]_{\text {found }}^{+}=673.3,[\mathrm{M}+\mathrm{H}]^{+}$calculated $=673.4$
Trp-Trp-Orn-OH
$[\mathrm{M}+4 \mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=430.7,[\mathrm{M}+4 \mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=430.1$
continued in next page

User Spectra

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund.
$\mathbf{1 5 8 . 9}$		1292388
187		32472
218.1		54361
226	1	122973
246.1		54630
274.1		20046
275.2		33953
298.2		32169
318.1	1	81998
488.2		31792

Trp-Trp-Orn-Trp-Ile-Har-OH;
$[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=488.2,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=487.8$

9

Orn-Har-Trp-Trp-Orn-Trp-Ile-Har-OH
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ found $=629.9,[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated $=629.9$
Har-Trp-Trp-Orn-Trp-Ile-Har-OH;
$[\mathrm{M}+5 \mathrm{HOAc}+3 \mathrm{H}]^{3+}$ found $=482.0,[\mathrm{M}+5 \mathrm{HOAc}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=482.2$
Trp-Trp-Orn-Trp-Ile-Har-OH;
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ found $=487.2,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=487.8$
Trp-Ile-Har-Trp-NH2;
$[\mathrm{M}+\mathrm{H}]_{\text {found }}^{+}=673.3,[\mathrm{M}+\mathrm{H}]_{\text {calculated }}^{+}=673.3$
Trp-Ile-Har-OH
$[\mathrm{M}+2 \mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {found }}=722.5,[\mathrm{M}+2 \mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {calculated }}=722.3$
User Spectra

not detectable

not detectable
continued in next page
Intact 11;
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ found $=744.0,[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated $=743.9$
$[\mathrm{M}+3 \mathrm{H}]^{3+}$ found $=496.5,[\mathrm{M}+3 \mathrm{H}]^{3+}$ calculated $=496.3$
$[\mathrm{M}+3 \mathrm{HOAc}+3 \mathrm{TFA}+4 \mathrm{H}]^{4+}{ }_{\text {found }}=503.7,[\mathrm{M}+3 \mathrm{HOAc}+3 \mathrm{TFA}+4 \mathrm{H}]^{4+}{ }_{\text {calculated }}=503.0$

11

continued in next page
Intact 11;
$[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=744.0,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=743.9$

Fragmentor Voltage
135 $\quad \begin{gathered}\text { Collision Energy } \\ 0\end{gathered} \quad \begin{gathered}\text { Ionization } \\ \text { Esi }\end{gathered}$
$\times 104+$ Scan (0.604 min) mb-36D24h.d

Intact 11;
$[\mathrm{M}+3 \mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=834.4,[\mathrm{M}+3 \mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=833.9$
$[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=744.0,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=743.9$
$[\mathrm{M}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=496.3,[\mathrm{M}+3 \mathrm{H}]^{3+}$ calculated $=496.3$
$[\mathrm{M}+3 \mathrm{HOAc}+3 \mathrm{TFA}+4 \mathrm{H}]^{4+}{ }_{\text {found }}=503.6,[\mathrm{M}+3 \mathrm{HOAc}+3 \mathrm{TFA}+4 \mathrm{H}]_{\text {calculated }}^{4+}=503.0$
User Spectra

Esi

Intact 12;
$[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=744.0,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=743.9$
$[\mathrm{M}+3 \mathrm{HOAc}+3 \mathrm{TFA}+4 \mathrm{H}]^{4+}{ }_{\text {found }}=503.7,[\mathrm{M}+3 \mathrm{HOAc}+3 \mathrm{TFA}+4 \mathrm{H}]^{4+}{ }_{\text {calculated }}=503.0$

Intact 11;
$[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=744.0,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=743.9$
$[\mathrm{M}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=496.3,[\mathrm{M}+3 \mathrm{H}]^{3+}$ calculated $=496.3$
$[\mathrm{M}+3 \mathrm{HOAc}+3 \mathrm{TFA}+4 \mathrm{H}]^{4+}$ found $=503.6,[\mathrm{M}+3 \mathrm{HOAc}+3 \mathrm{TFA}+4 \mathrm{H}]^{4+}{ }_{\text {calculated }}=503.0$

Intact 12;
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ found $=744.0$ or $743.9,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=743.9$
$[\mathrm{M}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=496.4,[\mathrm{M}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=496.3$

continued in next page

12

Intact 12;
$[\mathrm{M}+3 \mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=834.2,[\mathrm{M}+3 \mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=833.9$

13
 Peak List

$\boldsymbol{m} / \mathbf{z}$	\mathbf{z}	Abund.
158.9		49406
244.1		49392
274.1	1	63981
318.2		29433
372.2	1	69040
430.8		27398
599.2		17232
543.2	1	60078
544.2	1	20240
617.2		17232

Trp-Trp-Arg-Trp-Trp-Lys-Lys-NH ${ }_{2}$;
$[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}$ found $=617.2,[\mathrm{M}+\mathrm{HOAc}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=617.8$

Trp-Trp-Arg-Trp-Trp-Lys-OH;
$[\mathrm{M}+\mathrm{HOAc}+5 \mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=838.7,[\mathrm{M}+\mathrm{HOAc}+5 \mathrm{TFA}+2 \mathrm{H}]^{2+}{ }^{\text {calculated }}=839.3$
Trp-Trp-Lys-OH
$[\mathrm{M}+\mathrm{H}]^{+}$found $=519.2,[\mathrm{M}+\mathrm{H}]^{+}{ }_{\text {calculated }}=519.3$

ntact 14;
$[\mathrm{M}+4 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=653.9,[\mathrm{M}+4 \mathrm{HOAc}+4 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculted }}=653.6$
continued in next page

Dab-Trp-Trp-Dab-Trp-Trp-Dab-Dab-NH 2 ; $[\mathrm{M}+2 \mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=695.0,[\mathrm{M}+2 \mathrm{FFA}+2 \mathrm{H}]^{2+}$ calculated $=695.9$

Peak Lst

$\boldsymbol{m} / \mathbf{z}$	\mathbf{z}	Abund.
104.9	AbIn7.	
158.9		12827
218		953
274.1		6081
275.2		1133
318.1	1	2488
430.8		1652
500.1	1	953
515.1		1065
653.9	1209	

14
Fragmentor Voltage
135 $\quad \begin{gathered}\text { Collision Energy } \\ 0\end{gathered} \quad \begin{gathered}\text { Ionization M } \\ \text { Esi }\end{gathered}$

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund.
99		6752
105		8740
118.9		6512
130.1		8939
149		14635
214.2		7778
239	1	17853
2740.1	1	17286
00.9		6617
413.1	1	7494

Intact 14;
$[\mathrm{M}+5 \mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=838.6,[\mathrm{M}+5 \mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=838.9$ $[\mathrm{M}+2 \mathrm{HOAc}+2 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=537.3,[\mathrm{M}+2 \mathrm{HOAc}+2 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=537.6$

Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH2
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=640.2,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=639.8$
Trp-Trp-Orn-OH
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {found }}=680.3,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {calculated }}=679.6$
continued in next page

Peak List
$\boldsymbol{m} / \mathbf{z}$ \mathbf{z} Abund. 130 12303 149 20908 241.1 8900 239 19033 274.2 12259 60.3 22762 641.2 1 11760 636.3 13416 680.2 43540 681.3 1 19795

15

Orn-Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH2;
$[\mathrm{M}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=666.9,[\mathrm{M}+\mathrm{TFA}+2 \mathrm{H}]^{2+}$ calculated $=666.9$
Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH2;
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=640.3,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=639.8$
Trp-Trp-Orn-OH
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {found }}=680.2,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {calculated }}=679.6$
continued in next page

15 Fragmentor Voltage Collision Energy Ionization Mode

Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH ${ }_{2}$;
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=640.2,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=639.8$
Trp-Trp-Orn-OH
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}$found $=680.2,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {calculated }}=679.6$
continued in next page

m / z	z	Abund.
6813		

$\frac{\mathrm{m} / \mathrm{z}}{}$	A	Abund.
681.3		20300

\section*{| Peak List |
| :--- |
| m / z Abund.
 105.1 8752
 |
 | 105.1 | 8752 | |
| ---: | ---: | ---: |
| 13.1 | 1 | 18471 |
| 149 | | 20965 |
| 239 | 1 | 23024 |
| 284.1 | 1 | 8407 |
| 640.2 | 1 | 17534 |
| 64.12 | 1 | 7830 |
| 666.9 | 17049 | |
| 680.3 | | 28012 |
| 688.2 | | 12378 |}

Orn-Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH ${ }_{2}$;
$[\mathrm{M}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=666.9,[\mathrm{M}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=666.9$
Trp-Trp-Orn-OH
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {found }}=680.3,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+\mathrm{H}]^{+}{ }_{\text {calculated }}=679.6$

16

Har-Trp-Trp-Har-Trp-Trp-Har-Har-NH2
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ found $=722.5,[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated $=721.9$
$[\mathrm{M}+3 \mathrm{H}]^{3+}$ found $=482.0,[\mathrm{M}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=481.6$
Trp-Trp-Har-Trp-Trp-Har-OH;
$[\mathrm{M}+3 \mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=722.5,[\mathrm{M}+3 \mathrm{TFA}+2 \mathrm{H}]^{2+}$ calculated $=723.3$
$[\mathrm{M}+3 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=482.1,[\mathrm{M}+3 \mathrm{TFA}+3 \mathrm{H}]^{3+}$ calculated $=482.5$
Trp-Trp-Har-OH;
$[\mathrm{M}+\mathrm{HOAc}+3 \mathrm{TFA}+2 \mathrm{H}]_{\text {found }}^{2+}=482.0,[\mathrm{M}+\mathrm{HOAc}+3 \mathrm{TFA}+2 \mathrm{H}]_{\text {calculated }}^{2+}=482.1$

Har-Trp-Trp-Har-Trp-Trp-Har-Har-NH2
$[\mathrm{M}+2 \mathrm{H}]^{2+}$ found $=722.5,[\mathrm{M}+2 \mathrm{H}]_{\text {calculated }}^{2+}=721.9$
$[\mathrm{M}+3 \mathrm{H}]_{\text {found }}^{3+}=482.0,[\mathrm{M}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=481.6$
Trp-Trp-Har-Trp-Trp-Har-OH;
$[\mathrm{M}+3 \mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=722.5,[\mathrm{M}+3 \mathrm{TFA}+2 \mathrm{H}]^{2+}$ calculated $=723.3$
$[\mathrm{M}+3 \mathrm{TFA}+3 \mathrm{H}]^{3+} \quad=4821,[\mathrm{M}+3 \mathrm{TFA}+3 \mathrm{H}]^{3+} \quad=482$.
Trp-Trp-Har-OH;
$[\mathrm{M}+\mathrm{HOAc}+3 \mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=482.0,[\mathrm{M}+\mathrm{HOAc}+3 \mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=482.1$
continued in next page

m / z	z	Abund.
734		

Har-Trp-Trp-Har-Trp-Trp-Har-Har-NH2
$[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=722.5,[\mathrm{M}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=721.9$
$[\mathrm{M}+3 \mathrm{H}]^{3+}$ found $=481.9,[\mathrm{M}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=481.6$
Trp-Trp-Har-Trp-Trp-Har-Har- NH_{2};
$[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {found }}=723.0,[\mathrm{M}+\mathrm{HOAc}+\mathrm{TFA}+2 \mathrm{H}]^{2+}{ }_{\text {calculated }}=723.8$

Har-Trp-Trp-Dab-Trp-Trp-Har-Har-NH $[\mathrm{M}+4 \mathrm{HOAc}+3 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {found }}=652.4,[\mathrm{M}+4 \mathrm{HOAc}+3 \mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=652.5$

User Spectra

not detectable

$$
\begin{aligned}
& \text { Peak Lst } \\
& \begin{array}{|r|c|}
\hline \boldsymbol{m} / \mathbf{z} & \text { Abund. } \\
\hline 126 & 50693 \\
\hline 129.1 & 15643 \\
\hline 130.1 & 10685 \\
\hline 148.9 & 18988 \\
\hline 188 & 14974 \\
\hline 189.1 & 13791 \\
\hline 299 & 16049 \\
\hline 274.2 & 16111 \\
\hline 666.5 & 14218 \\
\hline 677.5 & 9940 \\
\hline \hline
\end{array}
\end{aligned}
$$

18

Trp-Trp-Orn-Trp-Trp-Har-Har-NH
$[\mathrm{M}+\mathrm{TFA}+2 \mathrm{H}]^{2+}$ found $=666.4,[\mathrm{M}+\mathrm{TFA}+2 \mathrm{H}]^{2+}$ calculated $=666.2$
$[\mathrm{M}+\mathrm{TFA}+3 \mathrm{H}]^{3+}$ found $=444.7,[\mathrm{M}+\mathrm{TFA}+3 \mathrm{H}]^{3+}{ }_{\text {calculated }}=444.5$

Figure S8. The representative structure of trypsin used in the docking studies. The structure with the highest percentage of occurrence generated from cluster analysis of trypsin (PDB ID: 4I8G) MD simulation in water for 20 ns . The left image shows enzyme binding pockets; e.g., S1 (composed of amino acid residues $189-192$, 214-216, 224-228), S1' (composed of amino acid residues 41-45), S2 (composed of amino acid residues $57,215,99$) and S2' (composed of amino acid residues 142-143, 151) in red, yellow, pink and orange colors, respectively. The right image shows the position of histidine-57, aspartate-102 and serin-195 in the enzyme catalytic triad with respect to aspartate-189 in the S 1 binding site.

Figure S9. The molecular docked models of synthetic bactenecin 1 and its analogues with trypsin. The left image is the interaction mode between the peptides and trypsin and right panel is the inset shows the interaction from a close view. The enzyme binding pockets S1 (red color) and S1' (yellow color) are shown here. The colors in the peptide structures define as follow: Trp (orange), Ile (violet), Arg/Har (blue), Lys/Dab/Orn (cyan), and the peptide backbone (green).

Figure S10. The molecular docked model of synthetic bactenecin 10 and its analogues with trypsin. The left image is the interaction mode between the peptides and trypsin and right panel is the inset shows the interaction from a close view. The enzyme binding pockets S1 (red color) and S1' (yellow color) are shown here. The colors in the peptide structures define as follow: Trp (orange), Arg/Har (blue), Lys/Dab/Orn (cyan) and the peptide backbone (green).

[^0]: 12
 User Spectra

 Peak List

 | $\boldsymbol{m} / \boldsymbol{z}$ | Abund. |
 | ---: | ---: |
 | 130 | 83148 |
 | 159 | 102751 |
 | 274.1 | 109280 |
 | 318.2 | 189455 |
 | 362.2 | 96044 |
 | 368.3 | 83049 |
 | 372.5 | 494158 |
 | 496.4 | 1024810 |
 | 744 | 472133 |

 $\left[\mathrm{M}+\mathrm{H}^{2+}\right]^{2+}=743.9,\left[\mathrm{M}+\mathrm{H}^{3+}\right]^{3+}=496.3,\left[\mathrm{M}+\mathrm{H}^{4+}\right]^{4+}=372.5$

