Tryptic stability of synthetic bactenecin derivatives is determined by the side chain length of cationic residues and the peptide conformation

Mojtaba Bagheri,^{*a} Shima Arasteh^a, Evan F. Haney^b, Robert E. W. Hancock^{*b}

^{*a*} Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 14176-14335Tehran, Iran, ^{*b*} Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada

Corresponding authors:

Dr. Mojtaba Bagheri, Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335 Tehran, Iran E-mail: <u>mojtabagheri@ut.ac.ir</u>, Tel: +98 (21) 6696 9255; Fax: +98 (21) 6640 4680

Dr. Robert E. W. Hancock Centre for Microbial Diseases and Immunity Research, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada E-mail: <u>bob@hancocklab.com</u> Tel: +1 (604) 822 2682; Fax: +1 (604) 827 5566

Table of contents

Table S1. The sequences of the synthetic bactenecin peptides and their analogs	S3
Figure S1. RP-HPLC spectra of the synthetic bactenecin-derived AMPs	S4
Figure S2. Mass spectra of synthetic bactenecin-derived AMPs	S12
Figure S3. Ramachandran plots of each amino acid residues in the 1 derived AMPs for the structure highest percentage of occurrence in water	
Figure S4. Ramachandran plots of each amino acid residues in the 10 derived AMPs for the structure highest percentage of occurrence in water	
Figure S5. RP-HPLC spectra of the reaction mixture of each individual synthetic bactenecin-derive incubated with trypsin.	
Figure S6. Mass spectra of the reaction mixture of each individual synthetic bactenecin-derived AMPs is with trypsin	
Figure S7. The raw ITC data (power vs. time) and the integrated data for injection of the 1 and 10 peptides into the calorimeter cell containing trypsin at 310 °K	
Figure S8. The representative structure of trypsin used in the docking studies	S59
Figure S9. The molecular docked models of synthetic bactenecin 1 and its analogues with trypsin	S60
Figure S10. The molecular docked model of synthetic bactenecin 10 and its analogues with trypsin	S64

Peptide code	Sequence		
1	Lys-Arg-Trp-Trp-Lys-Trp-Ile-Arg-Trp-NH ₂		
2^{a}	Lys-Arg-Trp-Trp-Lys-Trp-Ile-Arg-Trp-NH ₂		
3	<u>Trp-Arg-Ile-Trp-Lys-Trp-Trp-Arg-Lys-NH</u> 2		
4	Arg-Lys-Trp-Trp-Arg-Trp-Ile-Lys-Trp-NH ₂		
5	Dab-Dab-Trp-Trp-Dab-Trp-Ile-Dab-Trp-NH ₂		
6	Orn-Orn-Trp-Trp-Orn-Trp-Ile-Orn-Trp-NH ₂		
7	Har-Har-Trp-Trp-Har-Trp-Ile-Har-Trp-NH ₂		
8	Dab-Har-Trp-Trp-Dab-Trp-Ile-Har-Trp-NH ₂		
9	Orn-Har-Trp-Trp-Orn-Trp-Ile-Har-Trp-NH ₂		
10	Lys-Arg-Trp-Trp-Lys-Trp-Trp-Arg-Arg-NH ₂		
11	<u>Lys-Arg-Trp-Trp-Lys-Trp-Trp-Arg-Arg</u> -NH ₂		
12	<u>Arg-Arg-Trp-Trp-Lys-Trp-Trp-Arg-Lys</u> -NH ₂		
13	Arg-Lys-Trp-Trp-Arg-Trp-Trp-Lys-Lys-NH ₂		
14	$Dab\text{-}Dab\text{-}Trp\text{-}Trp\text{-}Dab\text{-}Trp\text{-}Dab\text{-}Dab\text{-}NH_2$		
15	Orn-Orn-Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH ₂		
16	Har-Har-Trp-Trp-Har-Trp-Trp-Har-Har-NH $_2$		
17	$Dab-Har-Trp-Trp-Dab-Trp-Trp-Har-Har-NH_2$		
18	$Orn-Har-Trp-Trp-Orn-Trp-Trp-Har-Har-NH_2$		

Table S1. The sequences of the synthetic bactenecin peptides andtheir analogues

^{*a*} *D*-amino acids are underlined.

S9

S11

Figure S2. Mass spectra of synthetic bactenecin-derived AMPs. The values are monoisotopic masses in positive mode.

^a These values are the calculated mass values for the respective peptides.

 $[M+H^{2+}]^{2+} = 722.4, [M+H^{3+}]^{3+} = 482.0, [M+2TFA+H^{3+}]^{3+} = 557.9^{b}$

^{*b*} The calculated masses may reflect the mass of the peptides with TFA adduct ion; e.g., $[M+xTFA+nH]^{n+}$, where x is the number of TFA adduct ion, and n represents multiple-charge ionization of peptides from protonation. The monoisotopic mass of TFA is 113.99 Da.

 $[M+H^{1+}]^{1+} = 1275.8, [M+H^{2+}]^{2+} = 638.4, [M+H^{3+}]^{3+} = 425.9$

 $[M+H^{1+}]^{1+} = 1331.8, [M+H^{2+}]^{2+} = 666.4, [M+H^{3+}]^{3+} = 444.6$

 $[M+H^{2+}]^{2+} = 708.4, [M+H^{3+}]^{3+} = 472.6$

$$[M+H^{2+}]^{2+} = 778.4, [M+H^{3+}]^{3+} = 519.3, [M+H^{4+}]^{4+} = 389.7$$

7

 $[M+H^{2+}]^{2+} = 722.4, [M+H^{3+}]^{3+} = 481.9$

 $[M+H^{2+}]^{2+} = 743.9, [M+H^{3+}]^{3+} = 496.3, [M+H^{4+}]^{4+} = 372.5$

 $[M+H^{1+}]^{1+} = 1332.8, [M+H^{2+}]^{2+} = 666.9, [M+H^{4+}]^{4+} = 444.9$

$$[M+H^{2+}]^{2+} = 736.9, [M+H^{3+}]^{3+} = 491.6, [M+H^{4+}]^{4+} = 369.0$$

Figure S3. Ramachandran plots of each amino acid residues in the 1 derived AMPs for the structure with the highest percentage of occurrence in water. The three-letter amino acid codes from left to right represent the residues in the sequences starting from the 2^{nd} residue at the peptide *N*-terminal to the 8th at the *C*-terminal.

Figure S4. Ramachandran plots of each amino acid residues in the 10 derived AMPs for the structure with the highest percentage of occurrence in water. The three-letter amino acid codes from left to right represent the residues in the sequences starting from the 2^{nd} residue at the peptide *N*-terminal to the 8th at the *C*-terminal.

Figure S5. RP-HPLC spectra of the reaction mixture of each individual synthetic bactenecin-derived AMPs incubated with trypsin. Left and right spectra were recorded after 2 h and 24 h incubation, respectively.

26.58 608124

44.73 1164805 55.87

2 21.146 7554488

3 24.052 12711148

29.17

0.10		\Box				fm_	
0.00							
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00							
Minutes							
		RT (min)	Area (Ⅳ*sec)	% Area	Height (Ⅳ)	% Height	
	1	19.611	7670579	33.04	330780	18.58	
	2	21.480	7060761	30.42	626051	35.17	
	3	24.385	8483124	36.54	823271	46.25	

Not determined

21.480

19.611

1

4

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

AU

40.00

S26

S29

Figure S6. Mass spectra of the reaction mixture of each individual synthetic bactenecin-derived AMPs incubated with trypsin. Left and right spectra were recorded after 2 h and 24 h incubation, respectively. The values are monoisotopic masses in positive mode.

 $[M+H]^{+}_{found} = 474.1, [M+H]^{+}_{calculated} = 474.3$

^{*a*} Monoisotopic mass of HOAc is 60.02 Da.

0	1600	1800	2000

Intact 2^b ;

 $[M+2HOAc+TFA+2H]^{2+}_{found} = 838.7, [M+2HOAc+TFA+2H]^{2+}_{calculated} = 839.4$ $[M+6HOAc+5TFA+3H]^{3+}_{found} = 792.2, [M+6HOAc+5TFA+3H]^{3+}_{calculated} = 791.9$ $[M+5HOAc+4H]^{4+}_{found} = 437.0, [M+5HOAc+4H]^{4+}_{calculated} = 436.7$ ^{b all-D}HHC-10 and ^{Retro-inverso}HHC-10 were in impure forms.

continued in next page

Intact 2; $[M+10HOAc+4TFA+3H]^{3+}_{found} = 834.3, [M+10HOAc+4T]^{3+}_{found} = 792.3, [M+6HOAc+5TFA+3H]^{3+}_{found} = 792$

$$[FA+3H]^{3+}_{calculated} = 834.0$$

 $[A+3H]^{3+}_{calculated} = 791.9$

Intact 2; $[M+2H]^{2+}_{found} = 722.6, [M+2H]^{2+}_{calculated} = 722.4$

Ionization Mode

Esi

Intact 3; $[M+7HOAc+TFA+3H]^{3+}_{found} = 660.6, [M+7HOAc+TFA+3H]^{3+}_{calculated} = 660.0$

continued in next page

Fragr

ntor Voltage

135

Collision Energy

0

Intact **3**;

 $[M+12HOAc+3TFA+3H]^{3+}_{found} = 835.2, [M+12HOAc+3T]$ $[M+10HOAc+4TFA+3H]^{3+}_{found} = 834.4, [M+10HOAc+4T]$

0	1600	1800	2000

$$[FA+3H]^{3+}_{calculated} = 836.0$$

 $[FA+3H]^{3+}_{calculated} = 834.0$

Intact 3;

3

 $[M+7HOAc+TFA+3H]^{3+}_{found} = 660.6, [M+7HOAc+TFA+3H]^{3+}_{calculated} = 660.0$ $[M+10HOAc+4TFA+3H]^{3+}_{found} = 834.3, [M+10HOAc+4TFA+3H]^{3+}_{calculated} = 834.0$

not detectable

Lys-Trp-Trp-Arg-OH; $[M+3HOAc+4TFA+3H]^{3+}_{found} = 437.1, [M+3HOAc+4TFA]^{3+}$

$$[A+3H]^{3+}_{calculated} = 437.8$$

	a i	*	
00	1600	1800	2000

continued in next page Dab-Trp-Trp-Dab-Trp-Ile-Dab-Trp-NH₂; $[M+1HOAc+3H]^{3+}_{found} = 412.2, [M+1HOAc+3H]^{3+}_{calculated} = 412.6$ Trp-Trp-Dab-Trp-Ile-Dab-Trp-NH₂; $[M+HOAc+TFA+2H]^{2+}_{found} = 625.2, [M+HOAc+TFA+2H]^{2+}_{calculated} = 625.3$

5

Dab-Trp-Trp-Dab-Trp-Ile-Dab-Trp-NH₂; $[M+HOAc+3H]^{3+}_{found} = 412.2, [M+HOAc+3H]^{3+}_{calculated} = 412.6$ Trp-Trp-Dab-Trp-Ile-Dab-Trp-NH₂; $[M+HOAc+TFA+2H]^{2+}_{found} = 625.2, [M+HOAc+TFA+2H]^{2+}_{calculated} = 625.3$

continued in next page Trp-Trp-Dab-Trp-Ile-Dab-Trp-NH₂; $[M+1HOAc+1TFA+2H]^{2+}_{found} = 625.3, [M+1HOAc+1TFA]^{2+}$ Trp-Trp-Dab-OH; $[M+2HOAc+TFA+H]^{+}_{found} = 725.3, [M+2HOAc+TFA+H]^{+}_{calculated} = 725.2$

Trp-Trp-Dab-OH; $[M+2HOAc+TFA+H]^{+}_{found} = 725.2, [M+2HOAc+TFA+H]^{+}_{calculated} = 725.2$

$$(+2H]^{2+}_{calculated} = 625.3$$

Orn-Trp-Trp-Orn-Trp-Ile-Orn-Trp-NH₂;

 $[M+HOAc+2H]^{2+}_{found} = 639.3, [M+HOAc+2H]^{2+}_{calculated} = 639.4$ Trp-Ile-Orn-Trp-NH₂;

 $[M+H]^{+}_{found} = 617.3, [M+H]^{+}_{calculated} = 617.4$

continued in next page

Orn-Trp-Trp-Orn-Trp-Ile-Orn-Trp-NH₂; $[M+HOAc+2H]^{2+}_{found} = 639.3, [M+HOAc+2H]^{2+}_{calculated} = 639.4$ Trp-Ile-Orn-Trp-NH₂; $[M+H]^{+}_{found} = 617.2, [M+H]^{+}_{calculated} = 617.4$

		1	
00	1600	1800	2000

[M+21FA+2H] found = 666.5, [M+21FA+2H] calcu Trp-Ile-Orn-Trp-NH₂;

 $[M+H]^{+}_{found} = 617.3, [M+H]^{+}_{calculated} = 617.4$

Trp-Ile-Har-Trp-NH₂; $[M+H]^{+}_{found} = 673.3, [M+H]^{+}_{calculated} = 673.4$

Trp-Ile-Har-Trp-NH₂; $[M+H]^{+}_{found} = 673.3, [M+H]^{+}_{calculated} = 673.4$ Trp-Ile-Har-OH; $[M+H]^{+}_{found} = 488.2, [M+H]^{+}_{calculated} = 488.3$

0	1600	1800	2000

not detectable

275.1 1

318.1

40409

99774

0	1600	1800	2000

Trp-Ile-Har-Trp-NH₂; $[M+H]^{+}_{found} = 673.3, [M+H]^{+}_{calculated} = 673.4$ Trp-Trp-Orn-OH $[M+4HOAc+TFA+2H]^{2+}_{found} = 430.7, [M+4HOAc+TFA+2H]^{2+}_{calculated} = 430.1$

Trp-Trp-Orn-Trp-Ile-Har-OH; $[M+2H]^{2+}_{found} = 488.2, [M+2H]^{2+}_{calculated} = 487.8$

		<u>,</u>	
0	1600	1800	2000

9

 $[M+2H]^{2+}_{found} = 629.9, [M+2H]^{2+}_{calculated} = 629.9$ Har-Trp-Trp-Orn-Trp-Ile-Har-OH; $[M+5HOAc+3H]^{3+}_{found} = 482.0, [M+5HOAc+3H]^{3+}_{calculated} = 482.2$ Trp-Trp-Orn-Trp-Ile-Har-OH; $[M+2H]^{2+}_{found} = 487.2, [M+2H]^{2+}_{calculated} = 487.8$ Trp-Ile-Har-Trp-NH₂; $[M+H]^{+}_{found} = 673.3, [M+H]^{+}_{calculated} = 673.3$ Trp-Ile-Har-OH

not detectable

User Spectra Collision Energy Fragmentor Voltage Ionization Mode 135 Esi x10 4 + Scan (0.254 min) mb-36D2h.d 274.10000 3 2 755.00000 1246.50000 0 800 1000 1200 1 Counts vs. Mass-to-Charge (m/z) 200 400 600 1800 1400 1600 2000 11 Peak List *m/z* Abund. 12700 105 158.9 44555 274.1 53511 275.2 12037 318.1 20657 430.8 19412 496.5 11372 503.7 10988 744 12604 755 14479 Fragmentor Voltage **Collision Energy** Ionization Mode 135 0 Esi

	ak a		
00	1600	1800	2000

continued in next page Intact 11; $[M+2H]^{2+}_{found} = 744.0, [M+2H]^{2+}_{calculated} = 743.9$ $[M+3H]^{3+}_{found} = 496.5, [M+3H]^{3+}_{calculated} = 496.3$ $[M+3HOAc+3TFA+4H]^{4+}_{found} = 503.7, [M+3HOAc+3TFA+4H]^{4+}_{calculated} = 503.0$

continued in next page Intact 11; $[M+2H]^{2+}_{found} = 744.0, [M+2H]^{2+}_{calculated} = 743.9$

Intact 11; $[M+3HOAc+2H]^{2+}_{found} = 834.4, [M+3HOAc+2H]^{2+}_{calculated} = 833.9$ $[M+2H]^{2+}_{\text{found}} = 744.0, [M+2H]^{2+}_{\text{calculated}} = 743.9$ $[M+3H]^{3+}_{\text{found}} = 496.3, [M+3H]^{3+}_{\text{calculated}} = 496.3$ $[M+3HOAc+3TFA+4H]^{4+}_{found} = 503.6, [M+3HOAc+3TFA+4H]^{4+}_{calculated} = 503.0$ **User Spectra**

Intact 12; $[M+2H]^{2+}_{found} = 744.0, [M+2H]^{2+}_{calculated} = 743.9$ $[M+3HOAc+3TFA+4H]^{4+}_{found} = 503.7, [M+3HOAc+3TFA+4H]^{4+}_{calculated} = 503.0$

Intact 11; $[M+2H]^{2+}_{\text{found}} = 744.0, [M+2H]^{2+}_{\text{calculated}} = 743.9$ $[M+3H]^{3+}_{\text{found}} = 496.3, [M+3H]^{3+}_{\text{calculated}} = 496.3$

Intact 12;

 $[M+2H]^{2+}_{\text{found}} = 744.0 \text{ or } 743.9, [M+2H]^{2+}_{\text{calculated}} = 743.9$ $[M+3H]^{3+}_{\text{found}} = 496.4, [M+3H]^{3+}_{\text{calculated}} = 496.3$

00	1600	1800	2000

Intact 12; $[M+3HOAc+2H]^{2+}_{found} = 834.2, [M+3HOAc+2H]^{2+}_{calculated} = 833.9$

Trp-Trp-Arg-Trp-Trp-Lys-Lys-NH₂; $[M+HOAc+2H]^{2+}_{found} = 617.2, [M+HOAc+2H]^{2+}_{calculated} = 617.8$

not determined

Trp-Trp-Arg-Trp-Trp-Lys-OH; $[M+HOAc+5TFA+2H]^{2+}_{found} = 838.7, [M+HOAc+5TFA+2H]^{2+}_{calculated} = 839.3$ Trp-Trp-Lys-OH $[M+H]^{+}_{found} = 519.2, [M+H]^{+}_{calculated} = 519.3$

User Spectra

 $[M+4HOAc+4TFA+3H]^{3+}_{found} = 653.9, [M+4HOAc+4TFA+3H]^{3+}_{calculated} = 653.6$

Dab-Trp-Trp-Dab-Trp-Trp-Dab-Dab-NH₂; $[M+2TFA+2H]^{2+}_{found} = 695.0, [M+2TFA+2H]^{2+}_{calculated} = 695.9$

Intact 14;

 $[M+5HOAc+TFA+2H]^{2+}_{found} = 838.6, [M+5HOAc+TFA+2H]^{2+}_{calculated} = 838.9$ $[M+2HOAc+2TFA+3H]^{3+}_{found} = 537.3, [M+2HOAc+2TFA+3H]^{3+}_{calculated} = 537.6$

Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH₂;

 $[M+HOAc+TFA+2H]^{2+}_{found} = 640.2, [M+HOAc+TFA+2H]^{2+}_{calculated} = 639.8$ Trp-Trp-Orn-OH $[M+HOAc+TFA+H]^{+}_{found} = 680.3, [M+HOAc+TFA+H]^{+}_{calculated} = 679.6$

Orn-Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH₂;

 $[M+TFA+2H]^{2+}_{found} = 666.9, [M+TFA+2H]^{2+}_{calculated} = 666.9$ Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH₂; $[M+HOAc+TFA+2H]^{2+}_{found} = 640.3, [M+HOAc+TFA+2H]^{2+}_{calculated} = 639.8$ Trp-Trp-Orn-OH $[M+HOAc+TFA+H]^{+}_{found} = 680.2, [M+HOAc+TFA+H]^{+}_{calculated} = 679.6$

Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH₂; $[M+HOAc+TFA+2H]^{2+}_{found} = 640.2$, $[M+HOAc+TFA+2H]^{2+}_{calculated} = 639.8$ Trp-Trp-Orn-OH $[M+HOAc+TFA+H]^{+}_{found} = 680.2$, $[M+HOAc+TFA+H]^{+}_{calculated} = 679.6$

Orn-Trp-Trp-Orn-Trp-Trp-Orn-Orn-NH₂; $[M+TFA+2H]^{2+}_{found} = 666.9, [M+TFA+2H]^{2+}_{calculated} = 666.9$ Trp-Trp-Orn-OH $[M+HOAc+TFA+H]^{+}_{found} = 680.3, [M+HOAc+TFA+H]^{+}_{calculated} = 679.6$

0	1600	1800	2000

)
0 1600 1	800 2000

Har-Trp-Trp-Har-Trp-Trp-Har-Har-NH₂ $[M+2H]^{2+}_{found} = 722.5, [M+2H]^{2+}_{calculated} = 721.9$ $[M+3H]^{3+}_{found} = 481.9, [M+3H]^{3+}_{calculated} = 481.6$ Trp-Trp-Har-Trp-Trp-Har-Har-NH₂; $[M+HOAc+TFA+2H]^{2+}_{found} = 723.0, [M+HOAc+TFA+2H]^{2+}_{calculated} = 723.8$

Har-Trp-Trp-Dab-Trp-Trp-Har-Har-NH₂; $[M+4HOAc+3TFA+3H]^{3+}_{found} = 652.4, [M+4HOAc+3TFA+3H]^{3+}_{calculated} = 652.5$

not detectable

0	1600	1800	2000

Trp-Trp-Orn-Trp-Trp-Har-Har-NH₂

 $[M+TFA+2H]^{2+}_{found} = 666.4, [M+TFA+2H]^{2+}_{calculated} = 666.2$ $[M+TFA+3H]^{3+}_{found} = 444.7, [M+TFA+3H]^{3+}_{calculated} = 444.5$

not detectable

0	1600	1800	2000

Figure S7. The raw ITC data (power vs. time) and the integrated data for injection of the 1 and 10 derived peptides into the calorimeter cell containing trypsin at 310 °K. The fit parameters are $\Delta H^\circ = -34.6 \text{ kJ.mol}^{-1}$, $T\Delta S^\circ = -$ 1.2 kJ.mol⁻¹, $K^{\circ} = 2.4 \times 10^{+4} M^{-1}$, n = 1.3 for **11** and $\Delta H^{\circ} = -49.4 kJ.mol⁻¹$, $T\Delta S^{\circ} = -3.3 kJ.mol⁻¹$, $K^{\circ} = 1.1 \times 10^{+4} M^{-1}$, n = 0.7 for **12**.

Figure S8. The representative structure of trypsin used in the docking studies. The structure with the highest percentage of occurrence generated from cluster analysis of trypsin (PDB ID: 4I8G) MD simulation in water for 20 ns. The left image shows enzyme binding pockets; e.g., S1 (composed of amino acid residues 189-192, 214-216, 224-228), S1' (composed of amino acid residues 41-45), S2 (composed of amino acid residues 57, 215, 99) and S2' (composed of amino acid residues 142-143, 151) in red, yellow, pink and orange colors, respectively. The right image shows the position of histidine-57, aspartate-102 and serin-195 in the enzyme catalytic triad with respect to aspartate-189 in the S1 binding site.

Figure S9. The molecular docked models of synthetic bactenecin 1 and its analogues with trypsin. The left image is the interaction mode between the peptides and trypsin and right panel is the inset shows the interaction from a close view. The enzyme binding pockets S1 (red color) and S1' (yellow color) are shown here. The colors in the peptide structures define as follow: Trp (orange), Ile (violet), Arg/Har (blue), Lys/Dab/Orn (cyan), and the peptide backbone (green).

5

Figure S10. The molecular docked model of synthetic bactenecin 10 and its analogues with trypsin. The left image is the interaction mode between the peptides and trypsin and right panel is the inset shows the interaction from a close view. The enzyme binding pockets S1 (red color) and S1' (yellow color) are shown here. The colors in the peptide structures define as follow: Trp (orange), Arg/Har (blue), Lys/Dab/Orn (cyan) and the peptide backbone (green).

