Supporting Information (SI) for:

Target cultivation and financing parameters for sustainable production of fuel and feed from microalgae

Léda N. Gerber^{*a,b}, Jefferson W. Tester^{a,b}, Colin M. Beal^c, Mark E. Huntley^d, Deborah L. Sills^{*a,b,e}

a) Department of Chemical and Biomolecular Engineering, Cornell University

- b) Cornell Energy Institute, Cornell University
- c) B&D Engineering and Consulting LLC, Lander WY
- d) Marine Laboratory, Nicholas School of the Environment, Duke University
- e) Department of Civil and Environmental Engineering, Bucknell University

Table of contents

1	De	scri	ption of models3
	1.1	Phy	ysical models3
	1.	1.1	Cultivation
	1.	1.2	Processing – fuel only
	1.	1.3	Processing – fuel and feed
	1.2	Eco	onomic model
	1.3	Life	e Cycle Assessment model10
	1.	3.1	Life Cycle Inventory10
	1.	3.2	Life Cycle Impact Assessment14
2	Un	cert	tain parameters
	2.1	For	reground uncertainty15
	2.	1.1	Cultivation15
	2.	1.2	Processing
	2.2	Bac	ckground LCI uncertainty20
	2.3	Bac	ckground economic uncertainty23
	2.4	Мо	nte-Carlo simulations
3	Su	pple	ementary results
4	Re	fere	nces

1 Description of models

1.1 Physical models

1.1.1 Cultivation

The cultivation system, for the marine chlorophyte *Desmodesmus* sp. grown under highnitrogen conditions, was modeled based on the 100ha facility presented in Huntley et al ¹ and Beal et al², with an average productivity of 23 g/m²/day in terms of dry weight. The hybrid system consists of a small number of photo-bioreactors (PBR) used to provide inoculum for a series of open ponds. A 30-year facility lifetime and a 90% capacity factor are assumed for the facility.

The water supply with pumping from the ocean is modeled based on the Texas case study of Beal et al². Table S1 summarizes the major daily consumptions of energy and nutrients for the baseline cultivation case, which is the same for the fuel only (hydrothermal liquefaction (HTL)) and for the fuel and feed pathways, without uncertainties. Energy inputs for the dewatering process with a belt filter press, also the same for the two pathways, are also included in this table.

Cultivation model	Baseline value	Daily	
component with unit		requirements/production	
Electricity for saltwater	mathematical model	14 724	
supply [kWh]	detailed in Beal et al ²		
Electricity to mix PBRs	mathematical model	3 493	
[kWh]	detailed in Beal et al 2		
Electricity to mix open	mathematical model	9 388	
ponds [kWh]	detailed in Beal et al 2		

Table S1: daily requirements of energy and materials for the cultivation and dewatering of algae.

Electricity for CO ₂	mathematical model	3 620
compression and transport	detailed in Beal et al 2	
[kWh]		
Electricity for nutrient	mathematical model	157
mixing [kWh]	detailed in Beal et al ²	
CO ₂ requirement [kg]	$1.776 \text{ g CO}_2/\text{g algae}^2$	49 369
Nitrogen requirement [kg]	0.063 g N/g algae ²	1 380
Phosphorus requirement	0.0057 g P/g algae ²	125
[kg]		
Electricity for dewatering	mathematical model	300
(belt filter press) [kWh]	detailed in Beal et al 2	
Daily algae production after	mathematical model	20 200
dewatering [kg]	detailed in Beal et al ²	

The model assumes that 94% of the biomass is recovered during harvesting of algae in open ponds. Dewatering increases solids concentration in slurry from 2% to 20%, with a 2% fraction of algae lost during this stage². In the case of the fuel only (HTL) route, the catalytic hydrothermal gasification (CHG) stage allows for recycling part of the nutrients. Information on nutrient recycle, not included in Table S1, is detailed in Section 1.1.2 below.

1.1.2 Processing – fuel only (HTL)

For the fuel only pathway, the dewatered algal slurry is sent to HTL for production of biocrude under high pressure and high temperature (300°C) reaction conditions. The process also produces an aqueous phase containing the remaining organic matter, which

undergoes further treatment. Table S2 summarizes the major daily energy and material requirements for the HTL reactor.

HTL model component	Baseline value	Daily	
with unit		requirements/production	
Electricity for HTL [kWh]	0.0835 MJ/kg algae ²	469	
Heat for HTL [MJ]	0.411 MJ/kg algae ²	8 302	
Produced biocrude [kg]	calculated after efficiency detailed below	10 100	

Table S2: daily requirements of energy and materials for HTL in the fuel only pathway.

The baseline biocrude yield is assumed to be $50\%^2$, with an oil density of 0.93 kg/L³. Regarding nutrient balance, it is assumed that 52% of nitrogen is released into the aqueous phase, and therefore available for further recycling², the remaining nitrogen is lost by contaminating the oil phase or it is converted to ammonia during the process. For phosphorus, the amount going to the aqueous phase is assumed to be 75%⁴.

After HTL, the aqueous phase undergoes catalytic hydrothermal gasification (CHG) at 350°C and 206 bars, which converts organic matter into a gaseous mixture of CO₂ and CH₄, nutrients and clean water. Water and nutrients can be recycled and therefore sent back to the cultivation system. Table S3 below summarizes the major daily energy and material flows for the CHG reactor.

Table S3: daily requirements and productions of energy and materials for CHG in the	fuel only pathway.
---	--------------------

CHG model component	Baseline value	Daily
with unit		requirements/production
Electricity for CHG [kWh]	mathematical model	25
	detailed in Beal et al 2	

Heat for CHG [MJ]	mathematical model	5 738
	detailed in Beal et al ²	
Produced syngas by CHG	calculated after gas fraction	111 370
[MJ]	detailed below	
Recovered nitrogen by CHG	calculated after recovered	795
[kg]	fraction detailed below	
Recovered phosphorus by	calculated after recovered	86
CHG [kg]	fraction detailed below	

A baseline syngas yield of 0.5 L/g VS (volatile solids) is assumed for CHG, with average volume fractions of 0.615 for CH₄, 0.016 for H₂, 0.016 for ethane, 0.353 for $\text{CO}_2^{3,5}$. Regarding nutrient recycling, it is assumed that 0.8% of incoming nitrogen is lost as NH₃ during CHG³, and that all of the incoming phosphorus can be recovered, since no information was available with respect to this particular nutrient.

The syngas is then sent to a combined heat and power (CHP) unit for on-site heat and power production. Heat and power integration is then performed to minimize external heat and electricity inputs using the required power and thermal loads for other process stages, as well as their temperature levels ⁶. Table S4 below summarizes the major daily energy productions for CHP.

Table S4: daily productions of energy and materials for CHP for the fuel only pathway.

CHP model component	Baseline value	Daily production
with unit		
Electricity from CHP [kWh]	calculated after efficiency	10 608
	detailed below	
Heat from CHP [MJ]	calculated after efficiency	48 989

detailed below	

The electrical and thermal efficiencies of the CHP unit are assumed to be 34% and 44%, respectively, according to the data available in the US-Environmental Protection Agency catalog on CHP engines ⁷.

1.1.3 Processing – fuel and feed

For the extraction of algal oil from the algal biomass, we modeled the Open Algae wet extraction processes presented Beal et al². It consists in an electro-magnetic lysis of cells, using a lower amount of solvent compared to other oil-extraction processes, heptane in this case. Table S5 below summarizes the major daily energy and material flows for oil extraction and animal feed ingredients production.

oil extraction model	Baseline value	Daily requirements
component with unit		
Electricity for oil extraction	0.311 MJ/kg algae ²	1 745
[kWh]		
Heat for oil extraction [MJ]	0.334 MJ/kg algae ²	6 745
Solvent for oil extraction,	0.003% loss/g algae ²	0.505
including losses [kg]		
Produced biocrude [kg]	calculated after efficiency	5 606
	detailed below	
Produced lipid-extracted	calculated after efficiency	14 595
algae [kg]	detailed below	

Table S5: daily requirements of energy and materials for oil extraction for the fuel and feed pathway.

The required process heat used for extraction is assumed to be supplied by a natural gas boiler. The baseline value for oil extraction efficiency is assumed to be $75\%^2$. In addition, no nutrients are recycled, since they are components of the lipid-extracted algae, further used as animal feed ingredients. Although the drying of lipid-extracted algae is accounted for in the heat requirements, further post-processing of the biomass such as pelletizing is not accounted for. The specifications of the final lipid-extracted algal product are currently not defined and remain highly uncertain. For example, if the algal biomass is used in a co-located animal facility, it can retain some of the moisture and require little additional processing. If it has to be shipped and stored, further postprocessing such as pelletizing will be required.

1.2 Economic model

The techno-economic model is used to calculate the biocrude minimum selling price, in \$/gal. This indicator is calculated using the discounted cash-flow methodology of the National Renewable Energy Laboratory ^{8, 9}. The major assumptions of the technoeconomic model are a discount rate of 10%, a tax rate of 20%, and equity of 40% with a loan term of 10 years at an interest rate of 8%. The maintenance factor, which is the annual percentage of initial capital costs to be attributed every year for equipment maintenance, is assumed to be 3.5%. Equipment is depreciated using a MACRS-7.5 year method. Capital and operating costs have been modeled after the data presented in Beal et al ². The baseline values for the two pathways are detailed in Table S6 below, as initial values for capital costs, and per year of operation for operating costs.

Economic model Specific cost for Total cost for fuel Total cost for fuel

Table S6: Capital and operating baseline data without uncertainties for the two pathways: fuel only and fuel and feed pathways. The data are displayed in an aggregated way for the capital costs, per unit, and in an aggregated way for operating costs per type of material or energy flow. The animal feed ingredient sales are displayed as a negative accounting value, since they decrease annual operating costs.

element	base case	only pathway	and feed pathway			
Total capital costs, in \$						
Land costs	-	242 140	242 140			
Cultivation and	-	48 784 000	48 784 000			
harvesting system						
Belt filter press for	-	1 378 800	1 378 800			
dewatering						
HTL reactor	-	4 752 700	0			
CHG reactor	-	5 110 400	0			
CHP system	-	720 990	0			
Oil extraction	-	0	1 197 636			
system						
Utility system	-	135 490	107 580			
(boiler and heat						
exchangers)						
Operating costs, in \$/y	vr					
Ammonia as N-	802 \$/MT	187 040	441 480			
fertilizer						
DAP as P-fertilizer	623 \$/MT	33 552	108 800			
Carbon dioxide for	0 \$/MT (but the	0	0			
algal growth	electricity required for					
	compression and					
Flootricity		577 500	070 470			
Electricity	0.08 \$/Κ₩Π	577 500	0/84/0			
Natural gas as heat	0.0225 \$/kWh	0	13 852			

Solvent	462 \$/MT	0	76
Animal feed	587 \$/MT	0	(2 814 300)
ingredient sales			

1.3 Life Cycle Assessment model

The functional unit (FU) of the life cycle assessment (LCA) model, 1 ha of cultivation and

processing for facility lifetime – i.e. 30 years, was chosen to avoid co-product allocation

in the case of the fuel and feed pathway.

1.3.1 Life Cycle Inventory

The life cycle inventory for the two pathways is based on the data presented in Beal et al

². The baseline values for the two pathways are detailed in Table S7 below per functional

unit.

Table S7: Life cycle inventories per functional unit (FU) for the base cases without uncertainties for the two pathways: "fuel only" and "fuel and feed". 'EF' stands for elementary flow. The unit of the ecoinvent equivalence is given, as well as the location for which the equivalence is valid (GLO – Global; RoW – Rest of the World without Europe; US – USA; TRE – Texas).

LCI element and	ecoinvent equivalence ¹⁰	quantity for	quantity for
unit		fuel only	fuel and feed
		route/FU	route/FU
N-fertilizer [kg]	ammonia, liquid {RoW} -	54 875	144 420
	ammonia production, steam		
	reforming, liquid		
P-fertilizer [kg]	phosphate fertilizer, as P2O5	8 276	10 893
	{RoW} – diammonium		
	phosphate production		
electricity [MJ]	electricity, medium voltage	7 425 000	11 294 640
	{TRE} – electricity voltage		
	transformation from high to		
	medium voltage		
heat [MJ]	heat production, natural gas,	0	633 240
	at boiler modulating		
	>100kW		
solvent [kg]	heptane {RoW} –	0	47
	molecular sieve separation of		
	naphtha		
low-density	low density polyethylene	61 555	61 555
polyethylene [kg]	{RoW}		
polyvinyl-chloride	polyvinylchloride, bulk	220	220
[kg]	polymerized {RoW}		
process equipment	methanol factory {GLO}	0.0017	0.0012
[unit]			

LDPE disposal [kg]	waste	61 5552	61 555
	polyethylene/polypropylene		
	product {RoW} – treatment		
	of, collection for final		
	disposal		
PVC disposal [kg]	waste polyvinylchloride	220	220
	product {RoW}, treatment of,		
	collection for final disposal		
transports [tkm]	transport, freight, lorry 16-	12 355	12 355
	32 metric ton, EURO3 {RoW}		
replaced gasoline	petrol, low-sulfur {RoW}	-951 970	-528 350
[kg]			
replaced soy in	soybean meal {US}	0	-1 027 400
animal feed [kg]			
replaced corn in	maize grain {US}	0	-342 450
animal feed [kg]			
solvent loss [kg]	EF for heptane, air	0	47
land occupation	EF for land occupation	22 857	22 857
[m2a]			
NO_x in air by CHP	EF for nitrogen oxides, air	157	0
[kg]			
CO in air by CHP	EF for carbon monoxide, air	502	0
[kg]			
CH ₄ biogenic in air	EF for biogenic methane, air	240	0

by CHP [kg]			
NMVOC in air by	EF for NMVOC, air	21	0
CHP [kg]			
N_2O in air by CHP	EF for dinitrogen monoxide,	26	0
[kg]	air		
SO ₂ in air by CHP	EF for sulfur dioxide, air	220	0
[kg]			
Avoided fossil CO ₂	EF for fossil carbon dioxide,	-3 019 700	-1 675 900
in air by replaced	air		
gasoline[kg]			

For the LCA model, to calculate the avoided CO₂ emissions and substituted fossil crude only, we compare the produced biofuel with a gasoline equivalent in terms of energy requirements and emissions. Therefore, for this purpose only we assume a postprocessing step after biocrude production, although this stage is not part of our system limits. It is assumed in both pathways that the biocrude is sent to a hydrotreatment unit for green diesel production, with a quality equivalent to fossil diesel. The hydrotreatment efficiency for this conversion stage is assumed to be 0.97 kg diesel/kg oil ¹¹. The LHV of the produced diesel is then assumed to be 44 MJ/kg and the specific diesel CO₂ emissions that are avoided with the biofuel are assumed to be 3.172 kgCO₂/kg fuel ¹². The hydrotreatment step is included only to calculate the amount of substituted fossil fuel by algal biofuels and its associated avoided CO₂ emissions from combustion. Indeed, accounting for the economics of hydrotreatment would require more information on the quality of produced algal oil by HTL or wet extraction, which is not available.

1.3.2 Life Cycle Impact Assessment

The life cycle impact assessment data for the IMPACT 2002+ method were taken from the ecoinvent database for the four endpoint categories of human health, ecosystem quality, climate change and resources. This method has been chosen since it provides synthetic indicators to ease decision-making while at the same time provides a way of comparing the different impact categories among themselves. The original method uses normalization factors for the European continent, but we used normalization factors for the US context developed by Lautier et al ¹³. Table S8 below details the units of each endpoint category and the normalization factors used to convert the data from Europe to the USA. Each normalization factor is worth one point of environmental impact, which corresponds to the yearly impacts generated by an average European or American in the corresponding impact category. This provides a way of comparing the different impact categories among themselves to endpoint categories to endpoint impact categories and from midpoint categories to endpoint categories to endpoint impact categories and from midpoint categories to endpoint categories to endpoint categories can be found in the documentation of the impact assessment method ^{14, 13}.

Table S8: Factors for normalizing endpoint impact categories to points of environmental impacts for
Impact2002+ method. Values taken from Lautier et al ¹³ . The abbreviations refer to the the following units:
DALY: disability adjusted life years, PDF*m2: potentially depleted fraction of species per meter-square,
kgCO ₂ -eq: kg of CO ₂ equivalent for greenhouse gases, MJ primary: MJ of primary energy embedded or
required for extraction of minerals

Impact category	Europe norm. factor	USA normalization factor
Human Health	7.88E-03	3.88E-02
[DALY/person/year]		
Ecosystem Quality	8.26E+03	4.38E+03
[PDF*m ² /person/year]		
Climate Change	1.05E+04	2.20E+4
[kgCO ₂ -eq/person/year]		

Resources	7.72E+04	2.03E+05
[MJ primary/person/year]		

2 Uncertain parameters

2.1 Foreground uncertainty

The probability distribution functions used to describe the models constructed for algae cultivation and processing are described here. For parameters with sufficient data, we fit normal or lognormal distributions. For parameters with less data we fit triangular distributions, or uniform distributions when just a few data points were available.

2.1.1 Cultivation

Data for the green algae *Desmodesmus sp.*, which was grown at large scale under highnitrogen conditions ¹ were used to calculate productivity and lipid content. Specifically, we extended the calculations of Huntley et al. to estimate 95 percent prediction intervals for productivity and lipid content, in addition to the average values already reported ¹. Model fitting was conducted with the software package R 3.1.2 ¹⁵.

For productivity, the data presented in Figures 7(A), 9(A), and B-2 of Huntley et al. were fit to the linear models shown in Figure S1 a, b and c, and d, respectively. Assuming an initial total nitrogen concentration of 4.8 gm⁻² (high-nitrogen case), and a particulate organic nitrogen concentration of 1.4 gm⁻² on Day 1 (am), productivity (mean \pm standard deviation, of 23 \pm 4.8 gm⁻²day⁻¹, assuming a normal distribution) was calculated using Figure S1 as described in Huntley et al. Similarly, for lipid content, the data presented in Figure 10 of Huntley et al. (*Desmodesmus*, Day 2), was fit to a linear model (Figure S2) to calculate lipid produced at the end of a two-day growth cycle. Lipid (gm⁻²) was calculated for N = 4.2 gm², and the resulting value was divided by the DW of algae at the same nitrogen loading (Huntley et al. 2015). The resulting range of values for lipid content had a mean \pm standard deviation of 0.37 \pm 0.07, and a normal distribution.

Figure S1. Linear fits (blue line) with 95 percent prediction intervals (yellow ribbon) for data (Huntley et al., 2015¹) used to calculate productivity of algae (gm⁻²day⁻¹): (a) Ratio of particulate organic carbon (C) to nitrogen (N) versus initial total nitrogen in pond (N, gm⁻²); (b) C (gm⁻²) versus ash free weight of algae (AFW, gm⁻²); (c) Dry weight of algae (DW, gm⁻²) versus AFW (gm⁻²); and (d) C, day 1 (gm⁻²) versus particulate organic nitrogen (PON, gm⁻²).

Figure S2. Linear fit (blue line) with 95 percent prediction interval (yellow ribbon) for data (Huntley et al., 2015^{1}) used to calculate lipid content of algae (g lipid/g DW): Lipid (gm²) versus initial nitrogen (gm²).

Table S9: distributions and associated parameters used to characterize the uncertainty associated with the foreground model parameters of the algae cultivation.

Model parameter	Distr. law	mode	min	max	mu	sigma
biomass productivity	normal				23	4.475
[g/m2/day]						
lipid fraction [-]	normal				0.37	0.07
stoichiometric CO2	triangular	1.776	1.23	1.88		
requirement [g/g]						
efficiency of CO2	triangular	0.788	0.7	0.95		
intake in ponds [-]						
capacity factor (valid	triangular	0.9	0.8	0.98		
also for processing) [-]						
electricity for	triangular	0.3	0.175			
dewatering [kWh/m3]						

For all the other cultivation parameters, although the design is based on the data of Beal et al ², no data were available for the uncertainty ranges. Therefore, these have been

approximated using the data presented in Sills et al¹¹, which modeled a similar cultivation facility (Table S9).

2.1.2 Processing

Table S10: distributions and associated parameters used to characterize the uncertainty associated with the foreground model parameters of the two pathways for algae processing.

Model parameter	Distr. law	mode	min	max	mu	sigma
Fuel only route (HTL)						
biocrude yield in HTL	triangular	0.5	0.35	0.65		
[-]						
specific heat required	lognormal				-0.86	0.18
for HTL [MJ/kg algae]						
specific elec. required	lognormal				-2.45	0.18
for HTL [MJ/kg algae]						
conversion yield to	uniform		0.55	0.69		
syngas in CHG [-]						
methane fraction of	uniform		0.52	0.59		
syngas in CHG [-]						
pressure of CHG [bar]	uniform		201	211		
Fuel and feed route (wet	extraction of b	vio-oil)	L	1	I	
oil extraction	uniform		0.7	0.9		
efficiency [-]						
specific heat required	lognormal				-1.06	0.18
for extraction [MJ/kg						
algae]						
specific elec. required	lognormal				-1.13	0.18

for extraction [MJ/kg				
algae]				
heptane loss for	lognormal		-10.38	0.18
extraction [-/g algae]				

Values for the biocrude yield from HTL were taken from Frank et al ¹⁶, which reported experimental results for reactions at several temperatures and with several algae strains. Values for the specific heat and electricity requirements have been taken from Sills et al ¹¹, but the uncertainty range was adapted to represent a more mature technology, which is the goal of the present study. Thus, the values that represent very high consumptions of heat and electricity have been removed, since they are not likely to occur with a commercial technology but only with an experimental setup.

Data for the conversion yield of biomass feed to syngas in catalytic hydrothermal gasification (CHG), as well as the methane fraction in syngas and the process operating pressure have been taken from Elliot et al ⁵ for the pilot-scale experiments conducted with algae. Since there were too few replicates available to fit a statistical distribution, a uniform distribution has been used.

For the fuel and feed pathway, a uniform distribution was used, based on the range provided in the sensitivity analysis of Beal et al 2 for the oil extraction efficiency. Modes for the electricity, heat and solvent consumption have also been taken from Beal et al 2 , and their associated uncertainty ranges have been estimated using data of Sills et al 11 .

2.2 Background LCI uncertainty

Uncertainties of off-site emissions in the life cycle inventory over the supply chain of materials, energy and waste disposal are also accounted for in the uncertainty model and in the Monte Carlo simulations. For that purpose, Monte Carlo simulations were run in the software SimaPro 8¹⁷ coupled with the ecoinvent v3.1¹⁰ database to simulate uncertainties associated with the life cycle inventories and to aggregate them in the four chosen final indicators: climate change, ecosystem quality, human health, and depletion of non-renewable resources. Then, using Matlab¹⁸, a lognormal distribution was fit to the 1000 results from Monte Carlo simulations run within SimaPro. The parameters of the lognormal distribution associated with each equivalence of the LCI database ecoinvent v3.1¹⁰ have then been provided as input parameters for the Monte Carlo simulation of uncertainties in the Matlab computational framework presented here. Uncertainty parameters for the equivalences of the life cycle inventory are shown in Table S11 below.

Table S11: parameters of the lognormal distribution for background life cycle inventory data. The unit of the
ecoinvent equivalence is given, as well as the location for which the equivalence is valid (GLO – Global; RoW –
Rest of the World without Europe; US – USA; TRE – Texas).

ecoinvent equivalence	Impact category	Mu	Sigma
ammonia, liquid {RoW} -	climate change	-8.63	0.192
ammonia production, steam	ecosystem quality	-11.5	0.226
reforming, liquid [kg]	human health	-8.45	0.226
	resources	-8.28	0.176
electricity, medium voltage {TRE} –	climate change	-10.8	0.054
electricity voltage transformation	ecosystem quality	-13.4	0.312
from high to medium voltage [MJ]	human health	-10.6	0.312
	resources	-10.7	0.115

extrusion, plastic pipes {RoW} [kg]	climate change	-9.87	0.086
	ecosystem quality	-12.0	0.112
	human health	-9.41	0.112
	resources	-10.0	0.093
heat, district or industrial, natural	climate change	-12.0	0.190
gas {RoW} –	ecosystem quality	-16.1	0.293
heat production, natural gas, at	human health	-12.0	0.293
boiler modulating >100kW [MJ]	resources	-11.8	0.193
heptane {RoW} –	climate change	-10.3	0.131
molecular sieve separation of	ecosystem quality	-12.2	0.247
naphtha [kg]	human health	-10.1	0.212
	resources	-8.78	0.247
maize grain {US} [kg]	climate change	-9.97	0.104
	ecosystem quality	-10.0	0.116
	human health	-9.62	0.116
	resources	-10.3	0.116
methanol factory {GLO} [unit]	climate change	8.09	0.141
	ecosystem quality	8.58	0.181
	human health	9.44	0.181
	resources	8.02	0.141
low density polyethylene {RoW}	climate change	-8.25	0.188
[kg]	ecosystem quality	-10.5	0.212
	human health	-8.27	0.181
	resources	-7.43	0.212

petrol, low-sulfur {RoW} [kg]	climate change	-9.43	0.127
	ecosystem quality	-11.1	0.279
	human health	-8.76	0.279
	resources	-7.85	0.221
phosphate fertilizer, as P2O5 {RoW}	climate change	-8.75	0.181
– diammonium phosphate	ecosystem quality	-8.64	0.227
production [kg]	human health	-7.94	0.227
	resources	-8.70	0.227
polyvinylchloride, bulk polymerized	climate change	-8.51	0.124
{RoW} [kg]	ecosystem quality	-11.9	0.134
	human health	-9.17	0.134
	resources	-7.81	0.125
soybean meal {US} [kg]	climate change	-9.12	0.119
	ecosystem quality	-10.1	0.119
	human health	-9.97	0.119
	resources	-10.6	0.119
transport, freight, lorry 16-32	climate change	-10.9	0.097
metric ton, EURO3 {RoW} [tkm]	ecosystem quality	-10.9	0.234
	human health	-12.1	0.179
	resources	-10.8	0.234
waste polyethylene/polypropylene	climate change	-8.12	0.218
product {RoW} – treatment of,	ecosystem quality	-13.4	0.407
collection for final disposal [kg]	human health	-10.0	0.407
	resources	-12.2	0.299

waste polyvinylchloride product	climate change	-8.37	0.207
{RoW}, treatment of, collection for	ecosystem quality	-10.5	0.265
final disposal [kg]	human health	-8.76	0.262
	resources	-9.60	0.265

2.3 Background economic uncertainty

Since for economics there is no equivalent of a LCI database with harmonized assumptions, data to characterize background uncertainty related to the model economic parameters were collected from literature sources and fit to probability distribution functions to generate uncertainty ranges. When enough data were available, normal or lognormal distributions were fit to the economic parameters. When insufficient information was available, a triangular or uniform distribution was used based on the available information. A summary of economic parameters and their associated probability distribution functions are described in Table S12 below.

Economic parameter	Distr. law	mode	min	max	mu	sigma
ammonia price [\$/MT]	normal				802	76
DAP price [\$/MT]	normal				623	60
maintenance factor [-]	triangular	0.035	0	0.08		
electricity price	lognormal				-2.65	0.26
[\$/kWh]						
natural gas price	lognormal				-3.87	0.32
[\$/kWh]						
discount rate [-]	triangular	0.1	0.055	0.105		
tax rate [-]	triangular	0.2	0	0.4		

Table S12: probability distribution functions and associated parameters used to characterize the uncertainty associated with the background parameters of the TEA model.

interest rate [-]	triangular	0.08	0.05	0.09		
error on investment	uniform		-0.2	0.3		
estimate [-]						
animal feed price	normal				587	47
[\$/MT]						
equity [-]	triangular	0.4	0	1		
loan term [yr]	triangular	10	5	20		
fishmeal price [\$/MT]	lognormal				7.44	0.14

Data for fertilizer prices, ammonia and diammonium phosphate, were taken from the National Agricultural Statistics Services online database of the US Department of Agriculture ¹⁹. The electricity and natural gas data were taken from the online database of the US Energy Information Administration ²⁰. For lipid-extracted algae sold as animal feed, soybean meal price was assumed to be an equivalent, and data from the Food and Agriculture Organization was used ²¹. Data for fishmeal prices, used for the fish feed scenarios were taken from the online data of the commodity market survey ²². All economic data were taken from a period not prior to 2010 until 2015, when most up-to-date data were available.

The distributions of TEA parameters were estimated using data of several previous published TEA studies for algal biofuels or similar biorefinery processes. These data are compiled in Table S13 below. Since there was not enough data to fit normal or lognormal probability distribution functions, and that the boundaries of these parameters are fixed, a triangular distribution has been used, following the approach presented in Sills et al¹¹.

Study	capacity	cultivation	equipment	discount	tax rate [-	interest	equity [-]	loan term
	factor [-]	maintenance	maintenance	rate [-]]	rate [-]		[yr]
		[•]	[•]					
Beal et al ²	0.95	0.02	0.03	0.1	0.2	0.08	0.4	10
Davis et al ²³	N.A.	0.035	0.035	0.1	0.35	0.08	0.4	10
Lundquist et al ²⁴	N.A.	0.02	0.02	N.A.	0.0875	0.05	0	30
Amer et al ²⁵	0.91	0.01	0.05	N.A.	N.A.	0.06	0	15
Delrue et al	N.A.	0.06	0.06	0.08	N.A.	N.A.	N.A.	20
Resureccion et al ²⁷	N.A.	N.A.	N.A.	0.06	0.2	N.A.	N.A.	N.A
Richardson et al ²⁸	N.A.	0.02	0.02	0.1	0.15	0.08	0.4	10
Slade and Bauen ²⁹	0.82/0.98	0.04	0.04	N.A.	0.16	N.A.	N.A.	N.A.
Zhu et al ³⁰	0.9	0.04	0.04	0.1	N.A.	N.A.	1	N.A.
Vlysidis et al ³¹	N.A.	0.07	0.07	N.A.	0	0.07	N.A.	N.A.
Sun et al ³²	0.9	N.A.	N.A.	0.1	0.35	N.A.	N.A,	5/8/10 /15/20

Table S13: summary of literature data for calculating the probability distribution functions associated with the TEA model parameters.

The TEA model corresponds to a Class 3 estimate of the Association for the Advancement of Cost Estimating (AACE). According to Lundquist et al ²⁴, the error on the investment cost estimate for such an estimate should be between -20% and +30%. In the absence of any other data, a uniform probability distribution function for this parameter was assumed with this range.

2.4 Monte-Carlo simulations

The number of iterations in a Monte-Carlo simulation was determined by repeating the Monte-Carlo simulation with a fixed number of iterations (up to 10 000), and by verifying that the results stayed within a certain precision range. For the minimum selling price of biocrude, we selected a precision of <0.1 USD for the median, the quartiles, and the 5% and 95% quantiles, which are the values that we used to report graphically our results. 1000 iterations were determined to be a sufficient number of iterations following that methodology.

3 Supplementary results

Figure S3: Effect of productivity and lipid content improvement on climate change indicator. Center lines represent median values, edges of boxes represent 25th and 75th percentiles, and limiting bars represent 5th and 95th percentiles of the distributions resulting from 1 000 Monte Carlo simulations.

Figure S4: Effect of productivity and lipid content improvement on ecosystem quality indicator. Center lines represent median values, edges of boxes represent 25th and 75th percentiles, and limiting bars represent 5th and 95th percentiles of the distributions resulting from 1 000 Monte Carlo simulations.

Figure S5: Effect of productivity and lipid content improvement on human health indicator. Center lines represent median values, edges of boxes represent 25th and 75th percentiles, and limiting bars represent 5th and 95th percentiles of the distributions resulting from 1 000 Monte Carlo simulations.

4 References

- Huntley, M. E.; Johnson, Z. I.; Brown, S. L.; Sills, D. L.; Gerber, L.; Archibald, I.; Machesky, S. C.; Granados, J.; Beal, C.; Greene, C. H. Demonstrated large-scale production of marine microalgae for fuels and feed. *Algal Research* 2015, *10*, 249-265.
- Beal, C. M.; Gerber, L. N.; D.L., S.; M.E., H.; Machesky, S. C.; Walsh, M. J.; Tester, J. W.; Archibald, I.; Granados, J.; Greene, C. H. Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment. *Algal Research* 2015, *10*, 266-279.
- 3. Jones, S. B.; Zhu, Y.; Anderson, D.; Hallen, R.; Elliott, D.; Schmidt, A.; Albrecht, K.; Hart, T.; Butcher, M.; Drennan, C.; Snowden-Swan, L.; Davis, R.; Kinchin, C. *Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading;* Pacific Northwest National Laboratory:

Richland, WA, 2014.

- 4. Liu, X.; Saydah, B.; Eranki, P.; Colosi, L. M.; Mitchell, B. G.; Rhodes, J.; Clarens, A. F. Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced by hydrothermal liquefaction. *Bioresource Technology* **2013**, *148*, 163-171.
- Elliott, D. C.; Neuenschwander, G. G.; Hart, T. R.; Rotness, L. J.; Zacher, A. H.; Santosa, D. M.; Valkenburg, C.; Jones, S. B.; Tjokro Rahardjo, S. A. *Catalytic Hydrothermal Gasification of Lignig-Rich Biorefinery Residues and Algae;* Pacific Northwest National Laboratory: Richland, WA, 2009.
- 6. Maréchal, F.; Kalitventzeff, B. Process integration: Selection of the optimal utility system. *Computers & Chemical Engineering* **1998**, *22*, 305-356.
- Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D. *Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol - dilute-acid pretreatment and enzymatic hydrolysis of corn stover;* National Renewable Energy Laboratory: Golden, CO.
- 7. United States Environmental Protection Agency. *Technology characterization: reciprocating engines;* US-EPA: Washington, DC, 2008.
- 9. Short, W.; Packey, D. J.; Holt, T. *A manual for the economic evaluation of energy efficiency and renewable energy technologies;* National Renewable Energy Laboratory: Golden, CO, 1995.
- Frischknecht, R.; Jungbluth, N.; Althaus, H. J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; Spielmann, M. The ecoinvent database: overview and methodological framework (7pp). *The International Journal of Life Cycle Assessment* **2005**, *10* (1), 3-9.
- 11. Sills, D. L.; Paramita, V.; Franke, M. J.; Johnson, M. C.; Akabas, T. M.; Greene, C. H.; Tester, J. W. Quantitative Uncertainty Analysis of Life Cycle Assessment for Algal Biofuel Production. *Environmental Science & Technology* **2012**, *47* (2), 687-694.
- 12. Spielmann, M.; Bauer, C.; Dones, R.; Tuschmid, M. *Transport services ecoinvent report* n°14; Paul Scherrer Institute: Villigen, Switzerland, 2007.
- Lautier, A.; Rosenbaum, R. K.; Margni, M.; Bare, J.; Roy, P.-O.; Deschênes, L. Development of normalization factors for Canada and the United States and comparison with European factors. *Science of the Total Environment* **2010**, *409* (1), 33-42.
- Jolliet, O.; Margni, M.; Charles, R.; Humbert, S.; Payet, J.; Rebitzer, G.; Rosenbaum, R. IMPACT 2002+: a new life cycle impact assessment methodology. *The International Journal of Life Cycle Assessment* 2003, 8 (6), 324-330.
- 15. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <u>http://www.R-project.org/</u>.
- 16. Frank, E. D.; Elgowaingy, A.; Han, J.; Wang, Z. Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. *Mitigation and Adaptation Strategies for Global Change* **2013**, *18* (1), 137-158.
- 18. MathWorks. Matlab The language of technical computating. <u>http://www.mathworks.com/products/matlab/</u>.
- 17. PRé Sustainability. SimaPro software and sustinability consulting. <u>http://www.pre-sustainability.com/simapro</u>.

- 19. United States Department of Agriculture. National Agricultural Statistics Services. http://www.nass.usda.gov/ (accessed 2015).
- 20. United States Energy Information Administration. <u>http://www.eia.gov/</u> (accessed 2015).
- 21. Food and Agriculture Organization. <u>http://www.fao.org/economic/est/est-commodities/oilcrops/en/</u> (accessed 2015).
- 22. Index Mundi commodities. http://www.indexmundi.com/commodities/?commodity=fish-meal.
- 23. Davis, R.; Aden, A.; Pienkos, P. T. Techno-economic analysis of autotrophic microalgae for fuel production. *Applied Energy* **2011**, *88* (10), 3524-3531.
- 24. Lundquist, T. J.; Woertz, I. C.; Quinn, N. W. T.; Benemann, J. R. *A realistic technology and engineering assessment of algae biofuel production;* Energy Biosciences Institute, University of California: Berkeley, CA, 2010.
- 25. Amer, L.; Adhikari, B.; Pellegrino, J. Technoeconomic analysis of five microalgae to biofuels processes of varying complexity. *Bioresource Technology* **2011**, *102*, 9350-9359.
- 26. Delrue, F.; Setier, P.-A.; Sahut, C.; Cournac, L.; Roubaud, A.; Peltier, G.; Froment, A.-K. An economic, sustainability and energetic model of biodiesel production from microalgae. *Bioresource Technology* **2012**, *111*, 191-200.
- 28. Richardson, J. W.; Johnson, M. D.; Outlaw, J. L. Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. *Algal Research* **2012**, *1* (1), 93-100.
- Resureccion, E. P.; Colosi, L. M.; White, M. A.; Clarens, A. F. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. *Bioresource Technology* 2012, *126*, 298-306.
- 29. Slade, R.; Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. *Biomass & Bioenergy* **2013**, *53*, 29-38.
- 30. Zhu, Y.; Biddy, M. J.; Jones, S. B.; Elliott, D. C.; Schmidt, A. J. Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. *Applied Energy* **2014**, *129*, 384-394.
- Vlysidis, A.; Binns, M.; Webb, C.; Theodoropoulos, C. A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals. *Energy* 2011, *36*, 4671-4683.
- 32. Sun, A.; Davis, R.; Starbuck, M.; Ben-Amotz, A.; Pate, R.; Pienkos, P. T. Comparative cost analysis of algal oil production fron biofuels. *Energy* **2011**, *36*, 5169-5179.