Electronic supplementary information

C(*sp*²)–H Functionalization of 2*H*–Indazoles at C3-Position *via* Palladium(II)–Catalyzed Isocyanide Insertions Strategy Leading to Diverse Heterocycles

Shinde Vidyacharan, Arumugavel Murugan and Duddu S. Sharada*

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Medak District 502285, Telangana, India. Phone: +91(40) 2301 7058, E-mail: <u>sharada@iith.ac.in</u>

Table of Contents

The Details of Precursors Synthesis	(S2-S4)
X-Ray Crystal Structure Data for (5a)	(S4-S5)
Copies of ¹ H, ¹³ C NMR Spectra of All Compounds	(S7-S47)

Except 1d the Following 2-Azidoaldehydes are known in the Literature (Table 1).^{24a,b}

The Following 2-Azido-4-chlorobenzaldehyde 1d was Synthesized Using the Below Strategy (Table 2)

 Table 3. 2-(2H-Indazol-2-yl)anilines (3ba-3bg)
 Synthesized From Following Method:

Table 4 Screening of Isocyanide Equivalents for The Synthesis of Benzoxazinoindazole (5a)

Table 5 Optimization Reaction Conditions for The Synthesis of Benzoxazinoindazole (6a)^{*a,b*}

s.no	catalyst	base (equiv.)	oxidant (equiv.)	solvent (2 mL)	time (h)	yield (%)
1^c	Pd(OAc) ₂	-	-	toluene	24	45
2	$Pd(OAc)_2$	-	$Cu(OAc)_2(1)$	toluene	24	38
3	Pd(OAc) ₂	-	$CuCl_2.2H_2O(1)$	toluene	24	50
4	Pd(OAc) ₂	-	Cu(TFA) ₂ .XH ₂ O (1)	toluene	24	45
5	$Pd(OAc)_2$	-	Cu(OAc) ₂ .2H ₂ O (1)	toluene	24	35
6	$Pd(OAc)_2$	$K_2CO_3(1)$	$CuCl_2.2H_2O(1)$	toluene	24	45
7	$Pd(OAc)_2$	Et ₃ N (1)	$CuCl_2.2H_2O(1)$	toluene	24	25
8	Pd(OAc) ₂	$Cs_2CO_3(1)$	CuCl ₂ .2H ₂ O (1)	toluene	24	50
9	$Pd(OAc)_2$	KOAc (1)	$CuCl_2.2H_2O(1)$	toluene	24	40
10	$Pd(OAc)_2$	NaOAc (1)	CuCl ₂ .2H ₂ O (1)	toluene	24	20
11	$Pd(OAc)_2$	NaO ^t Bu (1)	CuCl ₂ .2H ₂ O (1)	toluene	24	20
12	$Pd(OAc)_2$	Ag ₂ CO ₃	CuCl ₂ .2H ₂ O (1)	toluene	24	45
13	Pd(OAc) ₂	$Cs_2CO_3(1)$	CuCl ₂ .2H ₂ O (0.2)	toluene	15	40
14	$Pd(OAc)_2$	$Cs_2CO_3(1)$	CuCl ₂ .2H ₂ O (0.3)	toluene	15	60
15	$Pd(OAc)_2$	$Cs_2CO_3(1)$	CuCl ₂ .2H ₂ O (0.5)	toluene	15	58
16	$Pd(OAc)_2$	$Cs_2CO_3(1)$	CuCl ₂ .2H ₂ O (0.8)	toluene	15	48
17	Pd(OAc) ₂	$Cs_2CO_3(0.5)$	CuCl ₂ .2H ₂ O (0.3)	toluene	15	72
18	Pd(OAc) ₂	Cs ₂ CO ₃ (0.5)	CuCl ₂ .2H ₂ O (0.3)	THF	15	45
19	Pd(OAc) ₂	Cs ₂ CO ₃ (0.5)	CuCl ₂ .2H ₂ O (0.3)	ACN	15	20

20	Pd(OAc) ₂	Cs ₂ CO ₃ (0.5)	CuCl ₂ .2H ₂ O (0.3)	DMSO	15	20
21	Pd(OAc) ₂	$Cs_2CO_3(0.5)$	CuCl ₂ .2H ₂ O (0.3)	1,4-Dioxane	15	50
22	Pd(OAc) ₂	$Cs_2CO_3(1)$	CuCl ₂ .2H ₂ O (0.3)	toluene	15	62
23 ^c	Pd(OAc) ₂	$Cs_2CO_3(0.5)$	CuCl ₂ .2H ₂ O (0.3)	toluene	15	65

^{*a*}All reactions were carried out on 1 mmol scale of **3ba** and 1.5 mmol of **4a**. ^{*b*}Isolated yields of chromatographically pure products. ^{*c*}4Å MS (100 mg) were used.

Figure 1. X-Ray Crystal Structure Data for (*Z*)-*N*-(6*H*-Benzo[5,6][1,4]oxazino[4,3-*b*]indazol-6-ylidene)cyclohexanamine (5a) CCDC 1442923

X-ray crystal structure of product **5a**. Thermal ellipsoids are drawn at 25% probability level.

Identification code	exp_5371
Empirical formula	$C_{20}H_{19}N_3O$
Formula weight	317.39
Temperature/K	298
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	18.3402(17)
b/Å	5.2971(6)
c/Å	17.7876(19)

α/°	90
β/°	108.308(12)
γ/°	90
Volume/Å ³	1640.6(3)
Z	4
$\rho_{calc}g/cm^3$	1.2849
µ/mm ⁻¹	0.642
F(000)	674.0
Crystal size/mm ³	$0.24 \times 0.2 \times 0.14$
Radiation	Cu K α (λ = 1.54184)
2Θ range for data collection/°	10.1 to 143.18
Index ranges	$-18 \le h \le 22, -6 \le k \le 5, -21 \le l \le 15$
Reflections collected	5076
Independent reflections	3129 [$R_{int} = 0.0185, R_{sigma} = 0.0307$]
Data/restraints/parameters	3129/0/216
Goodness-of-fit on F ²	1.065
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0528, wR_2 = 0.1402$
Final R indexes [all data]	$R_1=0.0781,wR_2=0.1597$
Largest diff. peak/hole / e Å ⁻³	0.28/-0.27

Copies of ¹H, ¹³C NMR Spectra of all Compounds

¹³C NMR (100 MHz) spectrum of compound 1d in CDCl₃

¹H NMR (400 MHz) spectrum of compound **3aa** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound **3aa** in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **3ab** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **3ac** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **3ac** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **3ad** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **3ad** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **3ae** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound **3ae** in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **3af** in CDCl₃

 ^1H NMR (400 MHz) spectrum of compound 3ag in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **3ag** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **3ah** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **3ah** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **3bd** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound **3bd** in CDCl_3

¹H NMR (400 MHz) spectrum of compound **3be** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **3be** in CDCl₃

 ^1H NMR (400 MHz) spectrum of compound **3bf** in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **3bf** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **3bg** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **5a** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound 5b in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **5c** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound 5d in CDCl_3

¹³C NMR (100 MHz) spectrum of compound 5e in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound 5f in CDCl_3

 ^{13}C NMR (100 MHz) spectrum of compound 5g in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **5h** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **5j** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound 5k in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **5l** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **5m** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **5n** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **5r** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound 6a in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **6b** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **6c** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **6c** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **6d** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound 6e in CDCl_3

¹H NMR (400 MHz) spectrum of compound **6f** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound **6f** in CDCl_3

¹³C NMR (100 MHz) spectrum of compound 6g in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **6h** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **7a** in CDCl₃

 ^{13}C NMR (100 MHz) spectrum of compound 7a in CDCl_3

 ^1H NMR (400 MHz) spectrum of compound 7b in CDCl_3

¹³C NMR (100 MHz) spectrum of compound **7b** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **7c** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound **7c** in CDCl₃

¹H NMR (400 MHz) spectrum of compound **7d** in CDCl₃

¹³C NMR (100 MHz) spectrum of compound 7d in CDCl₃

¹H NMR (400 MHz) spectrum of compound 7e in CDCl₃

¹³C NMR (100 MHz) spectrum of compound 7e in CDCl₃