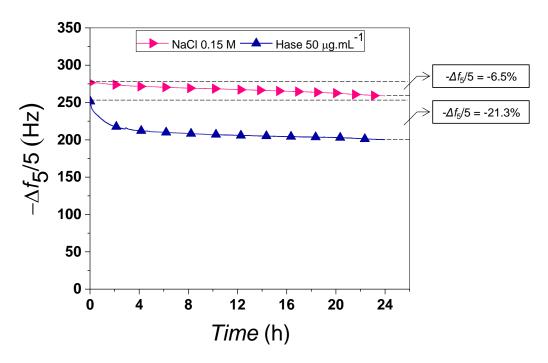

Supporting Information

Enzymatic Degradation of Polysaccharide-Based Layer-by-Layer Structures


Matias J. Cardoso^{†,‡}, Sofia G. Caridade^{†,‡}, Rui R. Costa^{†,‡}, João F. Mano^{†,‡,*}

†3B's Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.

‡ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.

Figure S1. Representative QCM-D results of *in situ* buildup of (CHT/HA)₃ thin films, followed by 1% (w/v) glutaraldehyde injection during 1 min for cross-linking and a rinsing step afterwards during 10 minutes to stop the reaction. The 5th overtone with normalized variations of frequency ($\Delta f_5/5$, •), and dissipation (ΔD_5 , \Box) are represented. (1) Addition of CHT; (2) and (4) rinsing steps with NaCl 0.15 M; (3) addition of HA. The cross-linking step caused variations of $\Delta f_5/5$ and ΔD_5 , of -3.5% and -4.3%, respectively. The negative variations of these parameters indicate release of water caused by the cross-linking.

Figure S2. Normalized frequency variations for the 5th overtone $(-\Delta f_5/5)$ during 24h for cross-linked (CHT-HA)₃ thin films after adding NaCl 0.15 M (\triangleright) and Hase at 50 μ g·mL⁻¹ (\blacktriangle).

After treating the data with the Voigt-based viscoelastic model, the observed signal variations for NaCl- and Hase-incubated samples accounted for **thickness reductions of 2% and 23%**, **respectively**.