Supporting Information for "Quantum Mechanics / Molecular Mechanics Method combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations"

Lin Shen and Weitao Yang^*

Department of Chemistry, Duke University, Durham, North Carolina 27708, USA

	TIP3P/PW			TIP3P/BMW			
$\varepsilon_{ m rmix}$	1.45	1.75	2.50	1.00	1.10	1.30	
$\mathrm{Ru}\left(\mathrm{H_{2}O}\right)_{6}^{2+}$	0.06	0.02	0.01	0.12	0.11	0.06	
$\mathrm{Ru}\left(\mathrm{H_{2}O}\right)_{6}^{3+}$	0.06	0.03	0.01	0.13	0.11	0.05	
$\mathrm{Fe}\left(\mathrm{H_{2}O}\right)_{6}^{2+}$	0.08	0.02	0.01	0.14	0.11	0.05	
$Fe(H_2O)_6^{3+}$	0.09	0.03	0.01	0.13	0.11	0.05	

Table 1: Average restraint energies per TIP3P water molecule of the aqueous ruthenium and iron in the reduced and oxidized states calculated with QM/TIP3P/PW and QM/TIP3P/BMW methods by varying $\varepsilon_{\rm rmix}$ (AA-CG). Energy units are in kcal/mol.

Table 2: External electrostatic potentials generated by solvent molecules at the center of the QM subsystems of the aqueous ruthenium and iron in the reduced and oxidized states calculated with QM/TIP3P/PW and QM/TIP3P/BMW methods by varying $\varepsilon_{\rm rmix}$ (AA-CG). The results obtained with QM/(AA+CG) method are also listed as a comparison. Energy units are in hartree.

	AA + CG	TIP3P/PW			TIP3P/BMW		
$\varepsilon_{ m rmix}$		1.45	1.75	2.50	1.00	1.10	1.30
$\mathrm{Ru}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{2+}$	-0.3067	-0.2960	-0.2803	-0.2544	-0.3032	-0.2855	-0.2722
$\mathrm{Ru}(\mathrm{H_2O})_6^{3+}$	-0.4571	-0.4447	-0.4212	-0.3937	-0.4561	-0.4386	-0.4215
$\mathrm{Fe}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{2+}$	-0.3158	-0.3146	-0.2927	-0.2663	-0.3174	-0.2973	-0.2842
$\mathrm{Fe}\left(\mathrm{H}_{2}\mathrm{O}\right)_{6}^{3+}$	-0.4711	-0.4624	-0.4390	-0.4067	-0.4723	-0.4527	-0.4364

Figure 1: Metal–oxygen radial distribution functions of aqueous ruthenium and iron in the reduced and oxidized states with QM/TIP3P/BMW model with different relative dielectric permittivities between AA and CG.

Figure 2: Metal–oxygen radial distribution functions of aqueous ruthenium and iron in the reduced and oxidized states with QM/TIP3P/PW model with different relative dielectric permittivities between AA and CG.

Figure 3: Ensemble average of $\varepsilon_{\text{HOMO}}$ at different fractional numbers of electrons with QM/(AA+CG) model.

Figure 4: Total energy as a function of time for one representative trajectory in aqueous ruthenium(II) by using QM/(AA+CG) model for NVE simulation with integration time step as 1 fs.