Supporting Information

Spin-Paramagnet Communication between Nitroxide

Radical and Metallofullerene

Bo Wut, Yongjian Lit, Li Jiangt, Chunru Wangt, and Taishan Wangt

[†]Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Corresponding Author

*wangtais@iccas.ac.cn

Contents

Figure S1. The first stage HPLC profile of the toluene extract of the soot containing endohedral metallofullerenes (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent).

Figure S2. Chromatograms of the isolated $DySc_2N@C_{80}$, $Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$ after purified by the multistage HPLC technique.

Figure S3. MALDI-TOF mass spectra of purified DySc₂N@C₈₀, Dy₂ScN@C₈₀ and Sc₃N@C₈₀.

Figure S4. UV/Vis-NIR spectra of purified $DySc_2N@C_{80}$, $Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$ in toluene.

Figure S5. The synthesis procedure of DySc₂N@C₈₀, Dy₂ScN@C₈₀ and Sc₃N@C₈₀ derivatives.

Figure S6. HPLC profiles of the cycloaddition of $DySc_2N@C_{80}$, $Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$ derivatives.

Figure S7. UV/Vis-NIR spectra of DySc₂N@C₈₀, Dy₂ScN@C₈₀ and Sc₃N@C₈₀ derivatives.

Figure S8. The ESR spectra of $DySc_2N@C_{80}$, $Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$ derivatives at the same concentration at room temperature in toluene solution.

Experimental Section:

1. The synthesis and purification of DySc₂N@C₈₀, Dy₂ScN@C₈₀ and Sc₃N@C₈₀.

Graphite rods were core-drilled and subsequently packed with a mixture of Sc/Ni₂, Dy/Ni₂ alloy and graphite powder in a weight ratio of Sc: Dy: C = 3: 12: 1. These rods were then vaporized in a Krätschmer-Huffman generator at 194 Torr He and 6 Torr N₂. The resulting soot was Soxlet-extracted with toluene for 24 h. The target products were isolated from various empty fullerenes and other scandium metallofullerenes by HPLC.

Figure S1. The first stage HPLC profile of toluene extract of the soot containing endohedral metallofullerenes (20×250 mm Buckyprep column; flow rate 12 mL/min; toluene as eluent). DySc₂N@C₈₀, Dy₂ScN@C₈₀ and Sc₃N@C₈₀ containing fraction were collected and enriched, following a multistage HPLC technique to isolate and purify the target products.

2. HPLC data of purified $DySc_2N@C_{80}$, $Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$.

Figure S2. Chromatograms of the isolated **a**, $DySc_2N@C_{80}$, **b**, $Dy_2ScN@C_{80}$ and **c**, $Sc_3N@C_{80}$ after purified by the multistage HPLC technique. HPLC conditions: 10×250 mm Buckyprep column, 12 mL/min flow rate with toluene, 330 nm detection.

Figure S3. MALDI-TOF mass spectra of purified **a**, $DySc_2N@C_{80}$, **b**, $Dy_2ScN@C_{80}$ and **c**, $Sc_3N@C_{80}$. The insets show the experimental and calculated isotope distributions of $DySc_2N@C_{80}$, $Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$.

4. UV/Vis-NIR spectra of purified DySc₂N@C₈₀, Dy₂ScN@C₈₀ and Sc₃N@C₈₀.

Figure S4. UV/Vis-NIR spectra of purified **a**, $DySc_2N@C_{80}$, **b**, $Dy_2ScN@C_{80}$ and **c**, $Sc_3N@C_{80}$ in toluene.

5. The synthesis and purification of DySc₂N@C₈₀, Dy₂ScN@C₈₀ and Sc₃N@C₈₀ derivatives.

Figure S5. The synthesis procedure of I, II and III.

6. HPLC data of purified $DySc_2N@C_{80}$, $Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$ derivatives.

Figure S6. HPLC profiles of the cycloaddition of **a**, I, **b**, II and **c**, III. HPLC conditions: 10×250 mm Buckyprep column, 12 mL/min flow rate with toluene, 330 nm detection.

7. The UV/Vis-NIR spectra of $DySc_2N@C_{80}$, $Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$ derivatives.

Figure S7. UV/Vis-NIR spectra of purified **a**, I, **b**, II and **c**, III in toluene.

8. The ESR spectra of $DySc_2N@C_{80}, Dy_2ScN@C_{80}$ and $Sc_3N@C_{80}$ derivatives.

Figure S8. The ESR spectra of I, II and III at the same concentration at room temperature in toluene solution.