SUPPORTING INFORMATION

Structure-based design of an in vivo active selective BRD9 inhibitor
Laetitia J. Martin,,$^{*}{ }^{\dagger}$ Manfred Koegl, ${ }^{\dagger}$ Gerd Bader, ${ }^{\dagger}$ Xiao-Ling Cockcroft, ${ }^{\dagger}$ Oleg Fedorov, ${ }^{\S}$ Dennis Fiegen, ${ }^{\dagger}$ Thomas Gerstberger, ${ }^{\dagger}$ Marco H. Hofmann, ${ }^{\dagger}$ Anja F. Hohmann, ${ }^{\|}$Dirk Kessler, ${ }^{\dagger}$ Stefan Knapp, ${ }^{\S}$ Petr Knesl, ${ }^{\dagger}$ Stefan Kornigg, ${ }^{\dagger}$ Susanne Müller, ${ }^{\S}$ Herbert Nar, ${ }^{\dagger}$ Catherine Rogers, ${ }^{\S}$ Klaus Rumpel, ${ }^{\dagger}$ Otmar Schaaf, ${ }^{\dagger}$ Steffen Steurer, ${ }^{\dagger}$ Cynthia Tallant, ${ }^{\S}$ Christopher R. Vakoc, ${ }^{\|}$Markus Zeeb, ${ }^{\dagger}$ Andreas Zoephel, ${ }^{\dagger}$ Mark Pearson, ${ }^{\dagger}$ Guido Boehmelt, ${ }^{\dagger}$ and Darryl McConnell ${ }^{\dagger}$
${ }^{\dagger}$ Boehringer Ingelheim RCV GmbH \& Co KG, Vienna 1121, Austria
${ }^{\ddagger}$ Boehringer Ingelheim Pharma GmbH \& Co KG, Biberach 88400, Germany
${ }^{\text {§ }}$ SGC, University of Oxford, Oxford OX3 7DQ, United Kingdom
${ }^{\|}$Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, United States
*Corresponding Author: E-mail address: laetitia_janine.martin@boehringer-ingelheim.com

Table of contents

Synthetic Procedures S3
Method description S39
Screening description S57
Stereo images of compound $\mathbf{3}, \mathbf{4}, \mathbf{1 1}, \mathbf{1}$ and $\mathbf{2}$ bound to BRD9 S62
Bromodomain selectivity profile using differential scanning fluorimetry against 48 bromodomains for $\mathbf{1}$ and 2 S67
DiscoveRx selectivity data for $\mathbf{1}$ and $\mathbf{2}$ S71
ITC analysis of $\mathbf{1}$ in CECR2 S73
ITC analysis of $\mathbf{2}$ in BRD7 and CECR2 S74
Recovery After Photobleaching (FRAP) assay U2OS cells transfected with GFP-BRD7 for $\mathbf{1}$ and 2 S75
Recovery After Photobleaching (FRAP) assay U2OS cells transfected with GFP-CECR2 for 2 S77
Selectivity profile of $\mathbf{2}$ towards kinase and GPCR S78
PK profile of $\mathbf{1}$ and $\mathbf{2}$ in mice upon i.v. and p.o. administration S79
Representation of the EC50s of $\mathbf{2}$ over various cell lines S85
Dose dependent partial reduction in MYC levels by BRD9 inhibitors S86
Small molecules screening data S87
Crystallographic data collection and refinement statistics S89
Literature BRD9 inhibitors S91
References S92

Synthesis of Compounds

List of abbreviations

AcOH	Acetic acid
MeCN	Acetonitrile
Boc	tert.butoxy carbonyl; di-tert-butyl dicarbonate
cHex	Cyclohexane
DAD	Diode array detector
DCM	Dichloromethane, CH $_{2} \mathrm{Cl}_{2}$
dppf	1,1'-Bis(diphenylphosphino)ferrocene
DIPEA	Diisopropylethyl amine
DME	1,2-Dimethoxyethane
DMF	N,N-Dimethylformamide
DMSO	Dimethylsulphoxide
EtOAc or EA	Ethyl acetate
EtOH	Ethanol
h	Hour(s)
HPLC	High performance liquid chromatography
HRMS	High resolution mass spectroscopy
INT	Intermediate
KOAc	Potassium acetate
LC	Liquid Chromatography
M	Molar (mol/L)
MeOH	Methanol
$\mu \mathrm{L}$	Microliter
$\mu \mathrm{m}$	Micrometer
min	Minute(s)
mL	Milliliter
mm	Mass spectrometry
MS	MsCl
nm	Nanometer

NMR	Nuclear magnetic resonance
PE	Petrolether
$\mathrm{Pd}_{2} \mathrm{dba}_{3}$	Tris(dibenzylideneacetone)dipalladium(0)
Pd(dppf)Cl	
2	[1,1'-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)
ppm	Parts per million
prot.	Protonated
RP	Reversed phase
rt	Room temperature (20 to $\left.25^{\circ} \mathrm{C}\right)$
SM	Starting material
TEA	Triethylamine
TFA	Trifluoroacetic acid
THF	Tetrahydrofuran
t $_{\text {R }}$	Retention time [min]
XPhos	2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl

General Methods

Unless otherwise indicated all reactions were carried out in standard commercially available glassware using standard synthetic chemistry methods. Air-sensitive and moisture-sensitive reactions were performed under an atmosphere of dry nitrogen or argon with dried glassware. Commercial starting materials were used without further purification. Solvents used for reactions were of commercial "dry"- or "extra-dry" or "analytical" grade. All other solvents used were reagent grade.

Preparative RP-HPLC was carried out on Agilent or Gilson systems using columns from Waters (Sunfire C18 OBD, 5 or $10 \mu \mathrm{~m}$, 20x50 mm, 30x50 mm or 50 x 150 mm ; X-Bridge C18 OBD, 5 or $10 \mu \mathrm{~m}, 20 \mathrm{x} 50,30 \mathrm{x} 50$, or 50 x 150 mm) or YMC (Triart C18, 5 or $10 \mu \mathrm{~m}, 20 \mathrm{x} 50$ mm , or 30 x 50 mm). Unless otherwise indicated compounds were eluted with $\mathrm{MeCN} /$ water gradients using either acidic ($0.2 \% \mathrm{HCOOH}$ or TFA) or basic water ($5 \mathrm{~mL} 2 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}+$ $2 \mathrm{~mL} \mathrm{NH}_{3}(32 \%)$ made up to 1 L with water).

NMR experiments were recorded on Bruker Avance 400 MHz and 500 MHz spectrometers at 298 K . Samples were dissolved in $600 \mu \mathrm{~L}$ DMSO-d6 or CDCl_{3} and TMS was added as an internal standard. 1D 1H spectra were acquired with 30° excitation pulses and an interpulse delay of 4.2 sec with 64 k datapoints and 20 ppm sweep width. 1D 13C spectra were acquired
with broadband composite pulse decoupling (WALTZ16) and an interpulse delay of 3.3 sec with 64 k datapoints and a sweep width of 240 ppm . Processing and analysis of 1D spectra was performed with Bruker Topspin 2.0 software. No zero filling was performed and spectra were manually integrated after automatic baseline correction. Chemical shifts are reported in ppm on the δ scale.

Analytical LC/MS data [LC/MS(BAS1)] were measured on an Agilent HPLC 1100 Series with Agilent LC/MSD SL detector using a Waters X-Bridge C18, $2.5 \mu \mathrm{~m}, 2.1 \times 20 \mathrm{~mm}$ column (Part.No. 186003201) and solvent A [20mM aqueous $\mathrm{NH}_{4} \mathrm{HCO}_{3} / \mathrm{NH}_{3}$ (pH 9)] and solvent B [acetonitrile HPLC grade] as eluent (additional settings: flow $1 \mathrm{~mL} / \mathrm{min}$; injection volume $5 \mu \mathrm{l}$; column temp. $60^{\circ} \mathrm{C}$). Standard gradient: $0.00 \mathrm{~min}: 10 \% \mathrm{~B} ; 0.00-1.50 \mathrm{~min}: 10 \%$-> 95% B; $1.50-2.00 \mathrm{~min}: 95 \%$ B; $2.00-2.10 \mathrm{~min}: 95 \%$-> 10% B. For some intermediates analytical LC/MS data was measured using different methods: LC/MS(31) was measured on a Shamadzu HPLC LC-20AB, SPD-M20A $190-370 \mathrm{~nm}$ system using a Luna C18(2), $5 \mu \mathrm{~m}$, $50 \times 2 \mathrm{~mm}$ column and solvent $\mathrm{A}\left[\mathrm{H}_{2} \mathrm{O}\right.$ containing $0.0375 \% \mathrm{TFA}$] and solvent B [acetonitrile HPLC grade containing $0.018 \% \mathrm{TFA}$] as eluent (additional settings: flow $0.8 \mathrm{~mL} / \mathrm{min}$, column temp. $40^{\circ} \mathrm{C}$). Standard gradient: $0.00 \mathrm{~min}: 10 \% \mathrm{~B} ; 0.00-4.00 \mathrm{~min}: 10 \%$-> 80% B; $4.00-4.90$ min: $80 \% \mathrm{~B} ; 4.90$ - $4.92 \mathrm{~min}: 80 \%$ B -> $10 \% \mathrm{~B} ; 4.92-5.50 \mathrm{~min}: 10 \%$ В. LC/MS(32) was measured on an Agilent HPLC 1200 Series (DAD 200-400 nm) with an Agilent 6120 MS system using a Luna C18(2), $3 \mu \mathrm{~m}, 30 \times 2 \mathrm{~mm}$ column and solvent A $\left[\mathrm{H}_{2} \mathrm{O}\right.$ containing 0.0375 \% TFA] and solvent B [acetonitrile HPLC grade containing 0.018 \% TFA] as eluent (additional settings: flow $1.0 \mathrm{~mL} / \mathrm{min}$, column temp. $50^{\circ} \mathrm{C}$). Standard gradient: 0.00 $\min : 10 \%$ B; $0.00-1.15 \mathrm{~min}: 10 \%$-> 80% B; $1.15-1.55 \mathrm{~min}: 80 \%$ B; $1.55-1.56 \mathrm{~min}$: 80% B -> 10% B; 1.56 - $2.99 \mathrm{~min}: 10 \%$ B. LC/MS(45) was measured on an Agilent HPLC 1100/1200 Series (DAD 200-400 nm) with an Agilent LC/MSD SL MS system using a Waters X-Bridge C18, $2.5 \mu \mathrm{~m}, 2.1 \times 30 \mathrm{~mm}$ column and solvent $\mathrm{A}\left[0,1 \% \mathrm{NH}_{4} \mathrm{HCO}_{3} / 0,1 \%\right.$ NH_{3} in $\mathrm{H}_{2} \mathrm{O}$] and solvent B [acetonitrile HPLC grade] as eluent (additional settings: flow 1.4 $\mathrm{mL} / \mathrm{min}$, column temp. $45^{\circ} \mathrm{C}$). Standard gradient: $0.00-1.00 \mathrm{~min}: 10 \%->95 \% \mathrm{~B} ; 1.00-$ $1.30 \mathrm{~min}: 95 \%$ B. LC/MS(51) and LC/MS(52) were measured on an Agilent HPLC 1100/1200 Series (DAD 200-400 nm) with an Agilent LC/MSD SL MS system using a YMC Triart C18, $3.0 \mu \mathrm{~m}, 2.0 \times 30 \mathrm{~mm}$ column and solvent A [0.1% formic acid in water] and solvent B [0.1\% formic acid in Acetonitrile (HPLC grade)] as eluent (additional settings: flow $1.4 \mathrm{~mL} / \mathrm{min}$, column temp. $45^{\circ} \mathrm{C}$). Standard gradient: $0.00-1.00 \mathrm{~min}: 15 \%$-> 100% B; $1.00-1.1 \mathrm{~min}: 100 \%$ B.

HRMS data were recorded using a Thermo Scientific Orbitrap Elite Hybrid Ion Trap/Orbitrap Spectrometer system with an Ultimate 3000 Series LPG-3400XRS Pump system. The mass calibration was performed using the Pierce LTQ Velos ESI positive ion calibration solution from Thermo Scientific (Lot PF200011, Product Nr. 88323).

All biologically evaluated compounds exist in $>95 \%$ purity as shown by LC/MS, additionally for $\mathbf{1}$ and $\mathbf{2}$ purity $>95 \%$ was shown by Q-NMR.

Compound $\mathbf{3}$ is commercially available from e.g. ChemDiv.

Synthesis of compound $\mathbf{1}^{1}$

Supplementary Scheme 14: Synthesis of compound (1)

4-\{4-[(dimethylamino)methyl]-2,6-dimethoxyphenyl\}-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (1)

$24(200 \mathrm{mg} ; 837 \mu \mathrm{~mol})$ and \{[2,6-dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2yl)phenyl]methyl $\}$-dimethylamine (49) ($375 \mathrm{mg} ; 1.26 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(70.4 \mathrm{mg}$; $86.2 \mu \mathrm{~mol})$ are suspended in DMF (2.0 mL) under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution (2 N ; $1.05 \mathrm{~mL} ; 2.10 \mathrm{mmol}$) is subsequently added and the resulting mixture is heated at $80^{\circ} \mathrm{C}$ for 1 h. After cooling to rt, DMF is evaporated and a the residue is purified by flash chromatography on silica gel using a DCM/MeOH gradient as eluent (0:100 --> 90:10; Meoh made basic with $0.1 \% \mathrm{NH}_{3}$) to give pre-purified material. Subsequent preparative RP-HPLC
chromatography yields highly pure 4 -\{4-[(dimethylamino)methyl]-2,6-dimethoxy-phenyl\}-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (1) ($210 \mathrm{mg} ; 594 \mu \mathrm{~mol} ; 71 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO) $\delta 160.9,159.4$ (2C), 151.4, 150.9, 141.5, 138.3, 135.5, 120.2, 117.8, 116.5, 113.9, 105.8 (2C), 56.3 (2C), 50.0, 45.5 (2C), 36.9; HRMS (CI+): calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{MH}+$) 354.1812, found $354.1808, \Delta-1.1 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=354 ; \mathrm{t}_{\mathrm{R}}=0.91 \mathrm{~min}$.

Synthesis of compound 4

Supplementary Scheme 1: Synthesis of compound (4)

4-(1,5-dimethyl-6-oxo-1,6-dihydropyridin-3-yl)benzamide (4)

5-bromo-1,3-dimethyl-1,2-dihydropyridin-2-one (28) (83.3 mg ; $412 \mu \mathrm{~mol}$; commercial from AlfaAesar) and (4-carbamoylphenyl)boronic acid (29) (66.0 mg ; $400 \mu \mathrm{~mol}$; commercial from $\mathrm{ABCR})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(32.7 \mathrm{mg} ; 40.0 \mu \mathrm{~mol})$ are suspended in DMF $(800 \mu \mathrm{~L})$ under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution ($2 \mathrm{~N} ; 500 \mu \mathrm{~L} ; 1.00 \mathrm{mmol}$) is subsequently added and the resulting mixture is heated at $100^{\circ} \mathrm{C}$ for 3 h . After cooling to rt , water is added (several drops) and the mixture is filtered and purified by preparative RP-HPLC (column: Sunfire C-18
$30 \times 50 \mathrm{~mm}$) using a MeCN/water gradient under acidic conditions. The product containing fractions are freeze dried. Further purification is achieved by automated silica gel chromatography (Combiflash; column: Redisep RF, 12g) using a DCM/MeOH gradient as eluent (100:0 --> 90:10; MeOH). The product containing fractions are evaporated, dissolved in $\mathrm{MeCN} /$ water and freeze dried to give 4-(1,5-dimethyl-6-oxo-1,6-dihydropyridin-3yl)benzamide (4) (38.6 mg ; $159 \mu \mathrm{~mol} ; 40 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 8.11(\mathrm{~s}, 1 \mathrm{H}$), $7.99(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 3.53$ (s, 3H), $2.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO) $\delta 167.9,162.2,139.5,136.0,135.6,132.6$, 128.6 (2C), 128.3, 125.1 (2C), 116.7, 37.8, 17.5; HRMS (CI+): calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(\mathrm{MH}+)$ 243.11280, found 243.11235, $\Delta-1.85 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=243 ; \mathrm{t}_{\mathrm{R}}=0.39$ min.

Synthesis of compound 5

Supplementary Scheme 2: Synthesis of compound (5)

5-[4-(hydroxymethyl)phenyl]-1,3-dimethyl-1,2-dihydropyridin-2-one (31)

5-bromo-1,3-dimethyl-1,2-dihydropyridin-2-one (28) (9.70 g; 48.0 mmol ; commercial from AlfaAesar), [4-(hydroxymethyl)phenyl]boronic acid (30) (10.9 g; 71.7 mmol ; commercial from ABCR) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(46.9 \mathrm{~g} ; 144 \mathrm{mmol})$ are dissolved in a 5:1 mixture of 1,4-dioxane
and water (200 mL). $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(3.84 \mathrm{~g} ; 5.25 \mathrm{mmol})$ is added under an inert atmosphere (argon) and the mixture is heated at $90{ }^{\circ} \mathrm{C}$ for 12 h . After cooling, 1,4-dioxane is removed under reduced pressure, water is added and the mixture is extracted three times with DCM. The combined organic layer is washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude product is purified by flash chromatography on SiO_{2} using a PE/EA gradient (5:1 --> 2:1). The product containing fractions are evaporated to give pure 5-[4-(hydroxymethyl)phenyl]-1,3-dimethyl-1,2-dihydropyridin-2-one (31) (4.40 g; 19.2 mmol ; 40%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.35 (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.21 ($\mathrm{s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=230 ; \mathrm{t}_{\mathrm{R}}=0.69 \mathrm{~min}$.

5-\{4-[(dimethylamino)methyl]phenyl\}-1,3-dimethyl-1,2-dihydropyridin-2-one (5)

$31(500 \mathrm{mg} ; 2.18 \mathrm{mmol})$ is dissolved in $\mathrm{DCM}(10 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Phosphorous tribromide ($295 \mathrm{mg} ; 1.09 \mathrm{mmol}$) is added dropwise and the resulting mixture is stirred for 30 min . at $0{ }^{\circ} \mathrm{C}$. After completion, water is added and the mixture is extracted three times with DCM. The combined aqueous layer is washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give crude 5-[4-(bromomethyl)phenyl]-1,3-dimethyl-1,2-dihydropyridin-2-one (32), which is used without further purification.

Crude 32 is dissolved in DCM (5 mL). Dimethylamine ($5.45 \mathrm{~mL} ; 10.9 \mathrm{mmol}, 2 \mathrm{M}$ solution in $\mathrm{MeOH})$ is added and the resulting mixture is stirred at rt for 12 h . All solvents are removed under reduced pressure and the residue is taken-up in a small amount of MeCN and purified by preparative RP HPLC. The product containing fractions are freeze dried to give 5-\{4-[(dimethylamino)methyl]phenyl\}-1,3-dimethyl-1,2-dihydropyridin-2-one (5) (40.0 mg ; 156 $\mu \mathrm{mol} ; 7.2 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 6 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}) \delta 162.1,137.9,136.3,135.4,134.7$, 129.7 (2C), 128.1, 125.6 (2C),
117.5, 63.5, 45.4 (2C), 37.7, 17.5; HRMS (CI+): calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}(\mathrm{MH}+)$ 257.16483, found 257.16484, $\Delta-0.1 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=257 ; \mathrm{t}_{\mathrm{R}}=0.93 \mathrm{~min}$.

Synthesis of compound 6

Supplementary Scheme 3: Synthesis of compound (6)

1,3-dimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (34)

5-bromo-1,3-dimethyl-1,2-dihydropyridin-2-one (28) (10.0 g; 49.5 mmol), bis(pinacolato)diboron (33) (17.2 g; 67.7 mmol , commercial from CombiBlocks), $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(2.00 \mathrm{~g}$; 2.45 mmol) and potassium acetate $(9.42 \mathrm{~g} ; 96.0 \mathrm{mmol})$ are suspended in 1,4-dioxane (100 mL) under argon and the resulting mixture is heated at $90^{\circ} \mathrm{C}$ for 3 h . After cooling to rt the reaction mixture is filtered through Celite and washed with 1,4 -dioxane (2 x 100 mL). The filtrate is concentrated under reduced pressure, the residue is taken-up in DCM (200 mL) and washed with water (100 mL). The organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product is purified by silica gel chromatography (Combiflash; column: Redisep RF, 330g) using a cHex/EA gradient as eluent (100:0 --> $0: 100$). The product containing fractions are evaporated to give 1,3-dimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (34) ($8.35 \mathrm{~g} ; 33.5 \mathrm{mmol} ; 68 \%$) as a dark yellow oil, which slowly crystallizes. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 7.87$ (s, 1H), 7.39 (s, $1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) ; \mathrm{LC} / \mathrm{MS}(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=250 ; \mathrm{t}_{\mathrm{R}}=0.87 \mathrm{~min}$.

5-[4-(hydroxymethyl)-3-methoxyphenyl]-1,3-dimethyl-1,2-dihydropyridin-2-one (36)

(4-bromo-2-methoxyphenyl)-methanol (35) (1.05 g 4.84 mmol ; commercial from Aldrich), $\mathbf{3 4}$ $(1.20 \mathrm{~g} ; 4.82 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(393 \mathrm{mg} ; 481 \mu \mathrm{~mol})$ are suspended in DMF (5 mL) under argon. A degassed solution of sodium carbonate ($2 \mathrm{~N} ; 6.02 \mathrm{~mL} ; 12.0 \mathrm{mmol}$) is added and the resulting mixture is heated at $100^{\circ} \mathrm{C}$ for 1 h . After cooling to rt water is added and the mixture is extracted three times with DCM (30 mL each). The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude product is purified by silica gel chromatography (Combiflash; column: Redisep RF, 40g) using a cHex/EA gradient as eluent (100:0 --> 0:100). The product containing fractions are evaporated to give 5-[4-(hydroxymethyl)-3-methoxyphenyl]-1,3-dimethyl-1,2-dihydropyridin-2-one (36) (0.97 g ; 3.74 mmol; 77%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 8.00(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, \mathrm{J}=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{t}$, $\mathrm{J}=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;$ LC/MS $(B A S 1):[M+H]^{+}=260 ; \mathrm{t}_{\mathrm{R}}=0.95 \mathrm{~min}$.

5-\{4-[(dimethylamino)methyl]-3-methoxyphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2-one

 (6)
$36(100 \mathrm{mg} ; 386 \mu \mathrm{~mol})$ is dissolved in DCM (1.0 mL). DIPEA ($149 \mathrm{mg} ; 1.16 \mathrm{mmol}$) and methansulfonyl chloride (66.2 mg ; $578 \mu \mathrm{~mol}$) is added drop wise and the mixture is stirred at rt for 16 h . Dimethylamine hydrochloride ($94.6 \mathrm{mg} ; 1.16 \mathrm{mmol}$) is added and stirring is
continued for 8 h . The reaction mixture is concentrated under reduced pressure, dissolved in DMSO (1.0 mL) and purified by preparative RP-HPLC (column: X-Bridge C-18 $30 \times 50 \mathrm{~mm}$) using a $\mathrm{MeCN} /$ water gradient under basic conditions. The product containing fractions are freeze dried. Further purification is achieved by preparative RP-HPLC (column: Sunfire C-18 $30 \times 50 \mathrm{~mm}$) using a $\mathrm{MeCN} /$ water gradient under acidic conditions. The product containing fractions are freeze dried to give pure 5 -\{4-[(dimethylamino)methyl]-3-methoxyphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2-one (6) ($18.1 \mathrm{mg} ; 63.2 \mu \mathrm{~mol} ; 16 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 9.32$ (s, 1H, ammonium ion), 8.12 (d, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.86-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.44$ (d, J = 7.8 Hz, 1H), $7.29(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, \mathrm{J}=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 3.95$ (s, 3H), $3.54(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{~s}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO, 1 C missing) δ $162.2,158.8,140.2,136.2,135.6,133.5,128.2,117.7,116.8,108.6,56.4,55.3,42.7$ (2C), 37.8, 17.5; HRMS (CI+): calculated for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{MH}+)$ 287.17540, found 287.17523, Δ $0.60 \mathrm{ppm} ; \mathrm{LC} / \mathrm{MS}(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=287 ; \mathrm{t}_{\mathrm{R}}=0.91 \mathrm{~min}$.

Synthesis of compound 7

Supplementary Scheme 4: Synthesis of compound (7)
[(4-Bromo-2,6-dimethoxyphenyl)methyl]dimethylamine (38)

A mixture of $\mathrm{NaOAc}(17.7 \mathrm{~g} ; 216 \mathrm{mmol})$, $\mathrm{AcOH}(8.65 \mathrm{~g} ; 144 \mathrm{mmol})$ and dimethylamine hydrochloride ($17.6 \mathrm{~g} ; 216 \mathrm{mmol}$) in DCM $(600 \mathrm{~mL})$ is stirred for 10 min at rt . 4-Bromo-2,6-
dimethoxybenzaldehyde (37) (35.3 g ; 144 mmol , commercial from Activate) is added and stirring is continued. After 30 min sodium triacetoxyborohydride ($63.1 \mathrm{~g} ; 298 \mathrm{mmol}$) is added in one portion and the reaction mixture is stirred at rt for 16 h . Saturated NaHCO_{3} solution is added and the layers are separated. The aqueous layer is extracted three times with DCM. The combined organic layer is dried over MgSO_{4}, filtered and evaporated to give pure [(4-bromo-2,6-dimethoxyphenyl)methyl]dimethylamine (38) (27.3 g ; $99.6 \mathrm{mmol} ; 69 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.70$ (s, 2H), 3.81 (s, 6H), 3.48 (s, 2H), 2.26 ($\mathrm{s}, 6 \mathrm{H}$); LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=274 / 276 ; \mathrm{t}_{\mathrm{R}}=1.11 \mathrm{~min}$.

5-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2one (7)

38 (110 $\mathrm{mg} ; 401 \mu \mathrm{~mol}$), 1,3-dimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (34) ($100 \mathrm{mg} ; 401 \mu \mathrm{~mol}$) and $\left.\mathrm{Pd}^{(d p p f}\right) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(32.7 \mathrm{mg} ; 40.1 \mu \mathrm{~mol})$ are suspended in DMF ($800 \mu \mathrm{~L}$) under argon. A degassed solution of sodium carbonate (2 N , $500 \mu \mathrm{~L} ; 1.00 \mathrm{mmol})$ is added and the resulting mixture is heated at $100{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt, water is added and the mixture is purified by preparative RP-HPLC (column: XBridge C-18 30x50 mm) using a $\mathrm{MeCN} /$ water gradient under basic conditions. The product containing fractions are freeze dried to give 5-\{4-[(dimethylamino)methyl]-3,5dimethoxyphenyl \}-1,3-dimethyl-1,2-dihydropyridin-2-one (7) (48.3 mg; $153 \mu \mathrm{~mol} ; 38 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 8.04$ (d, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 (dd, J = 2.6, 1.3 Hz, 1H), 6.79 (s , $2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO) $\delta 162.2,159.6$ (2C), 137.4, 136.5, 135.1, 127.9, 118.0, 112.9, 101.6 (2C), 56.3 (2C), 49.9, 45.4 (2C), 37.7, 17.5; HRMS (CI+): calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{MH}+)$ 317.18597, found 317.18558, $\Delta-1.26 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=317 ; \mathrm{t}_{\mathrm{R}}=0.88 \mathrm{~min}$.

Synthesis of compound 8

Supplementary Scheme 5: Synthesis of compound (8)

5-\{4-[(dimethylamino)methyl]-3-methoxy-5-methylphenyl\}-1,3-dimethyl-1,2-dihydro-pyridin-2-one (8)

To a solution of 4-bromo-2-methoxy-6-methyl-benzonitrile (39) (1.00 g; 4.42 mmol ; commercial from ArkPharm) and 1,3-dimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (34) (1.10 g ; 4.42 mmol) in 1,4-dioxane (50 mL) and water (2 mL) is added cesium carbonate (4.50 g ; 13.9 mmol) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(200 \mathrm{mg} ; 0.27 \mathrm{mmol})$. The reaction mixture is stirred at $90^{\circ} \mathrm{C}$ for 2 h . The reaction mixture is then filtered through celite. The filtrate is concentrated, dissolved in EA and washed with brine. The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue is purified by preparative RP-HPLC using a MeCN/water gradient as eluent to give 4-(1,5-dimethyl-6-oxo-1,6-dihydro-pyridin-3-yl)-2-methoxy-6-methylbenzonitrile (40) (480 mg; $1.79 \mathrm{mmol} ; 40 \%)$ which is directly used for the next step. $\mathrm{LC} / \mathrm{MS}(\mathbf{4 0}):(\mathrm{M}+\mathrm{H})+=269 ; \mathrm{t}_{\mathrm{R}}=$ 1.16 min . To a solution of $\mathbf{4 0}(200 \mathrm{mg} ; 745 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ is added aqueous ammonia ($500 \mu \mathrm{~L}$) and Raney-Ni (200 mg). The mixture is degassed and refilled with H_{2} twice and stirred at rt under 50 Psi for 16 h . The reaction mixture is filtered and the residue is washed with $\mathrm{THF} / \mathrm{MeOH}$. The filtrated is then concentrated to give $5-\{4-$ [(dimethylamino)methyl]-3-methoxy-5-methylphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2one (41) (150 mg ; $550 \mu \mathrm{~mol} ; 74 \%$), which is directly used in the next step. LC/MS(41):
$(\mathrm{M}+\mathrm{H})+=273 ; \mathrm{t}_{\mathrm{R}}=0.8 \mathrm{~min}$. A mixture of $\mathbf{4 1}(50.0 \mathrm{mg} ; 184 \mu \mathrm{~mol})$, aqueous formaldehyde (50 $\mu \mathrm{L})$, formic acid $(50 \mu \mathrm{~L})$ and acetic acid $(1.0 \mathrm{~mL})$ is heated at reflux for 16 h . After cooling to rt , the reaction mixture is concentrated under reduced pressure and the residue is dissolved in MeOH and purified by preparative RP-HPLC using a McCN/water gradient as eluent. The product containing fractions are freeze dried to give 5-\{4-[(dimethylamino)methyl]-3-methoxy-5-methylphenyl \}-1,3-dimethyl-1,2-dihydropyridin-2-one (8) ($28.0 \mathrm{mg} ; 93.2 \mu \mathrm{~mol}$; 51%). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 9.38$ ($\mathrm{s}, 1 \mathrm{H}$, prot. amine), 8.11 ($\mathrm{s}, 1 \mathrm{H}$), $7.82(\mathrm{~s}, 1 \mathrm{H})$, $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.78(\mathrm{~m}$, $6 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$) δ 162.2, 159.2, 140.8, 139.2, 136.2, 135.5, 128.1, 120.1, 116.9, 115.9, 106.0, 56.5, 52.5, 42.9 (2C), 37.8, 20.0, 17.5; HRMS (CI+): calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{MH}+$) 301.19105, found 301.19069, $\Delta-1.21 \mathrm{ppm}$; LC/MS $(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]+=301 ; \mathrm{t}_{\mathrm{R}}=1.02 \mathrm{~min}$.

Synthesis of compound 9

Supplementary Scheme 6: Synthesis of compound (9)

5-\{4-[(dimethylamino)methyl]-3-ethyl-5-methoxyphenyl\}-1,3-dimethyl-1,2-dihydro-pyridin-2-one (9)

To a solution of 4-bromo-2-ethyl-6-methoxybenzonitrile (42) (480 mg; 2.00 mmol ; commercial from FCHGroup) and bis(pinacolato)diboron (33) (558 mg ; 2.20 mmol) in 1,4dioxane (9.0 mL) is added $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(146 \mathrm{mg} ; 0.20 \mathrm{mmol})$ and potassium acetate (588 mg ; 6.00 mmol) and the mixture is refluxed for 24 h . After cooling to rt , EA and water is added, the layers are separated and the aqueous layer is extracted three times with EA. The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude material is purified by silica gel chromatography to give 2-ethyl-6-methoxy-4-(tetramethyl-1,3,2-dioxaborolan-2yl)benzonitrile (43) ($570 \mathrm{mg} ; 1.98 \mathrm{mmol} ; 99 \%$) which is directly used for the next step. LC/MS(43): $(\mathrm{M}+\mathrm{H})+=288 ; \mathrm{t}_{\mathrm{R}}=1.86 \mathrm{~min}$. To a solution of $43(570 \mathrm{mg} ; 1.99 \mathrm{mmol})$ and $5-$ bromo-1,3-dimethyl-1,2-dihydropyridin-2-one (28) ($440 \mathrm{mg} ; 2.18 \mathrm{mmol}$) in 1,4-dioxane (20 $\mathrm{mL})$ and water $(1.0 \mathrm{~mL})$ is added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.00 \mathrm{~g} ; 6.15 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(100 \mathrm{mg} ; 137$ $\mu \mathrm{mol})$. The mixture is heated to $90^{\circ} \mathrm{C}$ for 2 h . The reaction is filtered over a pad of celite and the filtrate is concentrated. The residue is dissolved in EA, washed with brine. The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude material is purified by preparative RP-HPLC to give 4-(1,5-dimethyl-6-oxo-1,6-dihydropyridin-3-yl)-2-ethyl-6-methoxybenzonitrile (44) ($350 \mathrm{mg} ; 1.24 \mathrm{mmol} ; 62 \%$), which is directly used for the next step. LC-MS(44): $(\mathrm{M}+\mathrm{H})^{+}=283 ; \mathrm{t}_{\mathrm{R}}=1.36 \mathrm{~min}$. To a solution of $44(350 \mathrm{mg} ; 1.24 \mathrm{mmol})$ in $\mathrm{MeOH}(20.0 \mathrm{~mL})$ is added aq. $\mathrm{NH}_{3}(1.0 \mathrm{~mL})$ and Raney nickel (300 mg). The mixture is degassed and refilled with H_{2} twice and stirred under 50 Psi at rt for 16 h . The reaction mixture is filter, washed with THF/MeOH and concentrated to give 5-[4-(aminomethyl)-3-ethyl-5-methoxyphenyl]-1,3-dimethyl-1,2-dihydropyridin-2-one, which is without further purification dissolved in $\mathrm{AcOH}(2.0 \mathrm{~mL})$. Aqueous formaldehyde ($100 \mu \mathrm{l}$) and formic acid $(100 \mu \mathrm{~L})$ is added and the mixture is heated to reflux for 24 h . After cooling to rt the reaction mixture is evaporated, taken-up in MeOH and purified by preparative RP-HPLC to give 5-\{4-[(dimethylamino)methyl]-3-ethyl-5-methoxyphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2-one (9) ($32.8 \mathrm{mg} ; 104 \mu \mathrm{~mol} ; 8.4 \%$ for last two steps). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 9.15(\mathrm{~s}, 1 \mathrm{H}$; prot. amine), $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.79(\mathrm{~m}, 8 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, \mathrm{J}$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 162.2,159.1,146.6,139.5,136.2,135.5$, 128.1, 118.4, 117.0, 115.1, 106.0, 56.5, 52.1, 42.9 (2C), 37.7, 25.8, 17.5, 16.3; HRMS (CI+): calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{MH}+)$ 315.20670, found 315.20627, Δ-0.43 ppm; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]+=315 ; \mathrm{t}_{\mathrm{R}}=1.09 \mathrm{~min}$.

Supplementary Scheme 7: Synthesis of compound (10)

5-\{4-[(dimethylamino)methyl]-2,5-dimethoxyphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2one (10)

26 (120 $\mathrm{mg} ; 438 \quad \mu \mathrm{~mol}$), 1,3-dimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (34) (120 mg ; $482 \mu \mathrm{~mol}$), and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(36.9 \mathrm{mg} ; 45.2 \mu \mathrm{~mol}$) are suspended in DMF (1.0 mL) under argon. A degassed solution of sodium carbonate (2 N , $438 \mu \mathrm{~L} ; 876 \mu \mathrm{~mol})$ is added and the resulting mixture is heated at $80^{\circ} \mathrm{C}$ for 1 h . After cooling to rt water is added and the mixture is purified by preparative RP-HPLC (column: X-Bridge C -18 30x50 mm) using a $\mathrm{MeCN} /$ water gradient under basic conditions. The product containing fractions are freeze dried to give 5-\{4-[(dimethylamino)methyl]-2,5-dimethoxyphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2-one (10) ($48.0 \mathrm{mg} ; 152 \mu \mathrm{~mol} ; 35 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO) $\delta 161.9,151.8,150.4,139.1,136.6,127.0,126.8,124.9,115.7,114.2,113.1$, 57.0, 56.6, 56.5, 45.7 (2C), 37.6, 17.5; HRMS (CI+): calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{MH}+)$ 317.18597, found 317.18577, $\Delta-0.62 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]+=317 ; \mathrm{t}_{\mathrm{R}}=0.98 \mathrm{~min}$.

Supplementary Scheme 8: Synthesis of compound (11)

1-[(4-bromo-2,6-dimethoxyphenyl)methyl]azetidin-3-ol (45)

A mixture of $\mathrm{NaOAc}(95.4 \mathrm{mg} ; 1.16 \mathrm{mmol})$, $\mathrm{AcOH}(46.6 \mathrm{mg} ; 776 \mu \mathrm{~mol})$ and azetidin-3-ol $(134 \mathrm{mg} ; 1.22 \mathrm{mmol})$ in DCM $(2.0 \mathrm{~mL})$ is stirred for 10 min at $0^{\circ} \mathrm{C}$. 4 -Bromo-2,6dimethoxybenzaldehyde (37) ($200 \mathrm{mg} ; 816 \mu \mathrm{~mol}$) is added and stirring is continued. After 30 min sodium triacetoxyborohydride ($339 \mathrm{mg} ; 1.60 \mathrm{mmol}$) is added in one portion and the reaction mixture is stirred at rt for 16 h . Saturated NaHCO_{3} solution is added and the layers are separated. The aqueous layer is extracted three times with DCM. The combined organic layer is dried over MgSO_{4}, filtered and evaporated to give 1-[(4-bromo-2,6-dimethoxyphenyl)methyl]azetidin-3-ol (45) (220 mg; $99.6 \mathrm{mmol} ; 89 \%$). LC/MS(45): $[\mathrm{M}+\mathrm{H}]^{+}=302 / 304 ; \mathrm{t}_{\mathrm{R}}=0.49 \mathrm{~min}$

5-\{4-[(3-hydroxyazetidin-1-yl)methyl]-3,5-dimethoxyphenyl\}-1,3-dimethyl-1,2-

 dihydropyridin-2-one (11)

45 (80.0 mg; $264 \mu \mathrm{~mol}$), 1,3-dimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (34) ($100 \mathrm{mg} ; 401 \mu \mathrm{~mol}$) and $\left.\mathrm{Pd}^{(d p p f}\right) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(21.6 \mathrm{mg} ; 26.4 \mu \mathrm{~mol})$ are suspended in DMF ($800 \mu \mathrm{~L}$) under argon. A degassed solution of sodium carbonate (2 N ; $331 \mu \mathrm{~L} ; 662 \mu \mathrm{~mol})$ is added and the resulting mixture is heated to $100{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt water is added and the mixture is purified by preparative RP-HPLC (column: XBridge $\mathrm{C}-1830 \times 50 \mathrm{~mm}$) using a $\mathrm{MeCN} /$ water gradient under basic conditions. The product containing fractions are freeze dried to give 5-\{4-[(3-hydroxyazetidin-1-yl)methyl]-3,5-dimethoxyphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2-one (11) ($22.7 \mathrm{mg} ; 65.9 \mu \mathrm{~mol} ; 25 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 8.04$ (d, J = $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.81 ($\mathrm{s}, 1 \mathrm{H}$), 6.79 (s, 2H), 5.12 (d, $\mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.51-3.55(\mathrm{~m}, 5 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.79$ (ddd, J = 6.2, 6.2, $2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 162.2$, 159.4 (2C), 137.4, 136.5, 135.1, 127.9, 118.0, 112.3, 101.6 (2C), 63.4 (2C), 61.1, 56.2 (2C), 48.2, 37.7, 17.5; HRMS (CI+): calculated for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{MH}+$) 345.18088, found 345.18048, Δ $1.17 \mathrm{ppm} ; \mathrm{LC} / \mathrm{MS}(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=345 ; \mathrm{t}_{\mathrm{R}}=0.81 \mathrm{~min}$.

Synthesis of compound 12

Supplementary Scheme 9: Synthesis of compound (12)

4-(1,5-dimethyl-6-oxo-1,6-dihydropyridin-3-yl)-2,6-dimethoxybenzaldehyde (46)

4-bromo-2,6-dimethoxybenzaldehyde (37) (518 mg; 2.11 mmol), 1,3-dimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (34) ($500 \mathrm{mg} ; 2.01 \mathrm{mmol}$) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(169 \mathrm{mg} ; 207 \mu \mathrm{~mol})$ are suspended in DMF (4.0 mL) under argon. A degassed solution of sodium carbonate ($2 \mathrm{~N}, 2.51 \mathrm{~mL} ; 5.02 \mathrm{mmol}$) is added and the resulting mixture is heated at $100{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt , water is added and the mixture is filtered and purified by by preparative RP-HPLC (column: X-Bridge C-18 30x50 mm) using a $\mathrm{MeCN} /$ water gradient under basic conditions. The product containing fractions are freeze dried to give 4-(1,5-dimethyl-6-oxo-1,6-dihydropyridin-3-yl)-2,6-dimethoxy-benzaldehyde (46) (460 mg; $1.60 \mathrm{mmol} ; 80 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}$ $=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.90(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$. LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=288 ; \mathrm{t}_{\mathrm{R}}=0.84 \mathrm{~min}$.

5-\{4-[(3-aminoazetidin-1-yl)methyl]-3,5-dimethoxyphenyl\}-1,3-dimethyl-1,2-

 dihydropyridin-2-one (12)

A mixture of $\mathrm{NaOAc}(40.7 \mathrm{mg} ; 496 \mu \mathrm{~mol})$, $\mathrm{AcOH}(19.9 \mathrm{mg} ; 331 \mu \mathrm{~mol})$ and tert-butyl N -(azetidin-3-yl)carbamate (85.4 mg ; $496 \mu \mathrm{~mol}$; commercial from Chontech) in DCM (2.0 mL) is stirred for 10 min at $0^{\circ} \mathrm{C} .46(100 \mathrm{mg} ; 348 \mu \mathrm{~mol})$ is added and stirring is continued. After 30 min sodium triacetoxyborohydride ($144 \mathrm{mg} ; 697 \mu \mathrm{~mol}$) is added in one portion and the reaction mixture is stirred at rt for 16 h . Saturated NaHCO_{3} solution is added and the layers
are separated. The aqueous layer is extracted three times with DCM. The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude material is purified by silica gel chromatography (Combiflash; column: Redisep RF, 12g) using a DCM/MeOH gradient as eluent (100:0 --> 90:10). The product containing fractions are evaporated to give tert-butyl N -(1-\{[4-(1,5-dimethyl-6-oxo-1,6-dihydropyridin-3-yl)-2,6-dimethoxyphenyl]-methyl $\}$ azetidin3 -yl)carbamate (90.0 mg ; $203 \mu \mathrm{~mol} ; 58 \%$), which is directly dissolved in DCM (10 mL). HCl in 1,4-dioxane (4 N solution; $507 \mu \mathrm{l} ; 2.03 \mathrm{mmol}$) is added and the reaction mixture is stirred at rt for 16 h . All volatiles are removed in vacuo and the residue is re-dissolved in MeOH . The free base of 5-\{4-[(3-aminoazetidin-1-yl)methyl]-3,5-dimethoxyphenyl\}-1,3-dimethyl-1,2-dihydropyridin-2-one (12) ($60.0 \mathrm{mg} ; 175 \mu \mathrm{~mol} ; 86 \%)$ is generated using a SPX-cartridge. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6, 1H under DMSO signal) $\delta 8.07$ (d, J = $2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.83 (d, J = $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{t}$, $\mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$. HRMS (CI+): calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{MH}+)$ 344.19687, found 344.19660, $\Delta-0.77 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=344 ; \mathrm{t}_{\mathrm{R}}=0.94 \mathrm{~min}$.

Synthesis of compound $\mathbf{1 3}^{1}$

Supplementary Scheme 10: Synthesis of compound (13)

5-bromo-1,3,6-trimethyl-1,2-dihydropyridin-2-one (48)

To a suspension of 5-bromo-3,6-dimethyl-1,2-dihydropyridin-2-one (47) (2.54 g; 12.6 mmol) and potassium carbonate ($4.13 \mathrm{~g} ; 29.9 \mathrm{mmol}$) in THF (25 mL), iodomethane ($811 \mu \mathrm{~L} ; 13.1$ mmol) is added and the resulting mixture is stirred at $80^{\circ} \mathrm{C}$ for 16 h . Ammonia (10% aqueous solution; 30 mL) is added followed by water (50 mL). THF is removed under reduced pressure and the aqueous residue is extracted three times with DCM . The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give crude 5-bromo-1,3,6-trimethyl-1,2-dihydropyridin-2-one (48) ($2.58 \mathrm{~g} ; 11.9 \mathrm{mmol} ; 95 \%$) which is used without further purification. For analytical purposes a small amount was purified by silica gel chromatography. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 7.47$ ($\mathrm{s}, 1 \mathrm{H}$), 3.51 ($\mathrm{s}, 3 \mathrm{H}$), 2.47 ($\mathrm{s}, 3 \mathrm{H}$), $1.98(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{LC} / \mathrm{MS}(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=216 / 218 ; \mathrm{t}_{\mathrm{R}}=0.84 \mathrm{~min}$.

\{[2,6-Dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methyl\}dimethylamine

 (49)
[(4-bromo-2,6-dimethoxyphenyl)methyl]dimethylamine (38) (15.7 g; 57.3 mmol) and bis(pinacolato)diboron (33) (43.6 g; 1.86 mol) are dissolved/suspended in 1,4-dioxane (300 mL) under N_{2}. Potassium acetate ($\left.17.0 \mathrm{~g} ; 58.8 \mathrm{mmol}\right), \mathrm{Pd}_{2} \mathrm{dba}_{3}(1.00 \mathrm{~g} ; 1.09 \mathrm{mmol})$ and 2-dicyclohexyl-phosphino- $2^{\prime}, 4^{\prime}, 6^{\prime}$-triisopropylbiphenyl $(1.00 \mathrm{~g} ; 2.10 \mathrm{mmol})$ is added and the mixture is stirred at $90^{\circ} \mathrm{C}$ for 8 h . After cooling to rt the mixture is concentrated and the residue is taken-up in DCM. Water is added, the layers are separated and the aqueous phase is extracted two times with DCM. The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude product is purified by preparative RP-HPLC using a $\mathrm{MeCN} /$ water (0.2 \% TFA added to the water) gradient as eluent to give the TFA salt of \{[2,6-dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methyl\}-dimethylamine (49) which is
transferred into the corresponding hydrochloride by dissolving and stirring in $\mathrm{HCl} / \mathrm{MeOH}$ for $30 \mathrm{~min}(5.45 \mathrm{~g} ; 17.0 \mathrm{mmol} ; 30 \%) .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d6) $\delta 9.44$ (s, 1H), 6.95 (s, $2 \mathrm{H}), 4.21(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 12 \mathrm{H})$, LC/MS $\left(\right.$ BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=240$ (ester cleaved under basic conditions); $\mathrm{t}_{\mathrm{R}}=0.20 \mathrm{~min}$.

5-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-1,3,6-trimethyl-1,2-dihydro-pyridin-2-one (13)

48 ($100 \mathrm{mg} ; 462 \mu \mathrm{~mol})$, 49 ($216 \mathrm{mg} ; 672 \mu \mathrm{~mol}$) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(38.8 \mathrm{mg} ; 47.5 \mu \mathrm{~mol})$ are suspended in DMF (2.0 mL) under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution ($2 \mathrm{~N} ; 576 \mu \mathrm{~L} ; 1.15$ mmol) is subsequently added and the resulting mixture is heated to $100^{\circ} \mathrm{C}$ for 1 h . After cooling to rt water is added (several drops) and the mixture is filtered and purified by preparative RP-HPLC (column: X-Bridge C-18 $30 \times 50 \mathrm{~mm}$) using a MeCN/water gradient under basic conditions. The product containing fractions are freeze dried. Further purification is achieved by automated silica gel chromatography (Combiflash; column: Redisep RF, 12g) using a $\mathrm{DCM} / \mathrm{MeOH}$ gradient as eluent (100:0 --> 90:10; MeOH made basic with $0.1 \% \mathrm{NH}_{3}$). The product containing fractions are evaporated, dissolved in $\mathrm{MeCN} /$ water and freeze dried to give $\quad 5-\{4-[($ dimethylamino $) m e t h y l]-3,5-$ dimethoxyphenyl $\}-1,3,6$-trimethyl-1,2-dihydro-pyridin-2-one (13) ($46.0 \mathrm{mg} ; 139 \mu \mathrm{~mol} ; 30 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 7.29$ (s, $1 \mathrm{H}), 6.53$ ($\mathrm{s}, 2 \mathrm{H}$), 3.77 ($\mathrm{s}, 6 \mathrm{H}$), 3.53 (s, 3H), 3.47 ($\mathrm{s}, 2 \mathrm{H}$), 2.32 ($\mathrm{s}, 3 \mathrm{H}$), 2.16 (s, 6H), 2.04 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO, 1 C missing) $\delta 162.7$, 159.0 (2C), 141.9, 140.5, 138.7, 124.2, 118.9, 105.9 (2C), 56.2 (2C), 50.0, 45.3 (2C), 31.9, 18.5, 17.4; HRMS (CI+): calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{MH}+)$ 331.20162, found 331.20123, Δ-1.17 ppm; LC/MS $(B A S 1):[M+H]^{+}=331 ; \mathrm{t}_{\mathrm{R}}=0.92 \mathrm{~min}$.

Synthesis of compound 14

Supplementary Scheme 11: Synthesis of compound (14)

5-bromo-1,3,4-trimethyl-1,2-dihydropyridin-2-one (51)

To a suspension of 5-bromo-3,4-dimethyl-1,2-dihydropyridin-2-one (50) (2.50 g; 12.4 mmol) and potassium carbonate ($4.28 \mathrm{~g} ; 31.0 \mathrm{mmol}$) in THF (25 mL), iodomethane ($840 \mu \mathrm{~L} ; 13.6$ mmol) is added and the resulting mixture is stirred at rt for 16 h . The reaction mixture is evaporated and the crude material is purified by silica gel chromatography (Combiflash; column: Redisep RF, 40 g) using a cHex/EA gradient as eluent (100:0 --> 50:50). Product containing fractions are evaporated to give 5-bromo-1,3,4-trimethyl-1,2-dihydropyridin-2-one (51) $(2.30 \mathrm{~g} ; 10.6 \mathrm{mmol} ; 86 \%)$. LC/MS (51): $[\mathrm{M}+\mathrm{H}]^{+}=216 / 218 ; \mathrm{t}_{\mathrm{R}}=0.42 \mathrm{~min}$

1,3,4-trimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (52)

51 (1.00 g ; 4.63 mmol), bis(pinacolato)diboron (33) ($1.76 \mathrm{~g} ; 6.94 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}$ ($378 \mathrm{mg} ; 46.3 \mu \mathrm{~mol}$) and potassium acetate ($908 \mathrm{mg} ; 9.26 \mathrm{mmol}$) are suspended in $1,4-$ dioxane (5.0 mL) under argon and the resulting mixture is heated to $80^{\circ} \mathrm{C}$ for 16 h . After cooling to rt, the reaction mixture is concentrated under reduced pressure, the residue is takenup in DCM/MeOH and purified by silica gel chromatography (Combiflash; column: Redisep

RF, 40 g) using a chex/EA gradient as eluent (80:20 --> 20:80). The product containing fractions are evaporated to give 1,3,4-trimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (52) ($1.20 \mathrm{~g} ; 4.56 \mathrm{mmol} ; 98 \%)$. LC/MS(52): $[\mathrm{M}+\mathrm{H}]^{+}=264 ; \mathrm{t}_{\mathrm{R}}=0.64$ min

5-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-1,3,4-trimethyl-1,2-dihydro-pyridin-2-one (14)

52 (100 mg ; $380 \mu \mathrm{~mol}$), [(4-bromo-2,6-dimethoxyphenyl)methyl]dimethylamine (38) (104 $\mathrm{mg} ; 379 \mu \mathrm{~mol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(31.0 \mathrm{mg} ; 38.0 \mu \mathrm{~mol})$ are suspended in DMF ($800 \mu \mathrm{~L}$) under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution ($2 \mathrm{~N} ; 475 \mu \mathrm{~L} ; 950 \mu \mathrm{~mol}$) is subsequently added and the resulting mixture is heated at $100{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt water is added (several drops) and the mixture is filtered and purified by preparative RP-HPLC (column: X-Bridge C$1830 \times 50 \mathrm{~mm}$) using a $\mathrm{MeCN} /$ water gradient under basic conditions. The product containing fractions are freeze dried to give 5-\{4-[(dimethylamino)methyl]-3,5-dimethoxy-phenyl\}-1,3,4-trimethyl-1,2-dihydropyridin-2-one (14) (22.8 mg ; $69.0 \mu \mathrm{~mol} ; 18 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 6 \mathrm{H}), 3.46(\mathrm{~d}, \mathrm{~J}$ $=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 161.6$, 158.9 (2C), 144.7, 138.4, 135.0, 124.9, 121.6, 113.2, 106.0 (2C), 56.2 (2C), 50.0, 45.5 (2C), 37.3, 18.0, 13.5. HRMS (CI+): calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{MH}+)$ 331.20162, found $331.20101, \Delta-1.83 \mathrm{ppm} ; \mathrm{LC} / \mathrm{MS}(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=331 ; \mathrm{t}_{\mathrm{R}}=1.02 \mathrm{~min}$.

Synthesis of compound $\mathbf{1 5}^{\mathbf{1}}$

Supplementary Scheme 12: Synthesis of compound (15)
4-bromo-2-methyl-1,2-dihydroisoquinolin-1-one (54)

To a suspension of 4-bromo-1,2-dihydroisoquinolin-1-one (53) ($1.00 \mathrm{~g} ; 4.46 \mathrm{mmol}$) and potassium carbonate ($1.17 \mathrm{~g} ; 8.48 \mathrm{mmol}$) in THF (10 mL), iodomethane ($323 \mu \mathrm{~L} ; 5.09 \mathrm{mmol}$) is added and the resulting mixture is stirred at rt for 16 h . Since HPLC-MS of the reaction mixture indicates incomplete conversion, additional iodomethane ($100 \mu \mathrm{l} ; 1.57 \mathrm{mmol}$) is added and stirring is continued for 5 h . Ammonia (10% aqueous solution; 30 mL) is added followed by water (50 mL). THF is removed under reduced pressure whereupon a precipitation occurs. The solid is collected by filtration, washed with cold water and dried in vacuo to give 4-bromo-2-methyl-1,2-dihydroisoquinolin-1-one (54) ($1.00 \mathrm{~g} ; 4.20 \mathrm{mmol} ; 94 \%$) as a yellow solid which is used without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 8.28(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ $(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}) ;$ LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=238 / 240 ; \mathrm{t}_{\mathrm{R}}=1.02 \mathrm{~min}$.

4-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-2-methyl-1,2-dihydroisoquinolin-1one (15)

54 (130 $\mathrm{mg} ; 546 \mu \mathrm{~mol}$), \{[2,6-dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methyl $\}$-dimethylamine (49) (284 mg ; $884 \mu \mathrm{~mol}$) and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(44.6 \mathrm{mg}$; $54.6 \mu \mathrm{~mol}$) are suspended in DMF (2.0 mL) under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution (2 N ; $683 \mu \mathrm{~L} ; 1.37 \mathrm{mmol}$) is subsequently added and the resulting mixture is heated at $100^{\circ} \mathrm{C}$ for 1 h. After cooling to rt water is added (several drops) and the mixture is filtered and purified by preparative RP-HPLC (column: X-Bridge C-18 30x50 mm) using a MeCN/water gradient under basic conditions. The product containing fractions are freeze dried. Further purification is achieved by automated silica gel chromatography (Combiflash; column: Redisep RF, 12g) using a DCM/MeOH gradient as eluent (100:0 --> 80:20; MeOH made basic with $0.1 \% \mathrm{NH}_{3}$). The product containing fractions are evaporated, dissolved in $\mathrm{MeCN} /$ water and freeze dried to give 4-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-2-methyl-1,2-dihydroisoquinolin-1-one (15) ($84.8 \mathrm{mg} ; 240 \mu \mathrm{~mol} ; 44 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 8.34$ (d, J = 7.1 Hz , $1 \mathrm{H}), 7.72(\mathrm{dd}, \mathrm{J}=8.3,7.1,1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 6 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO) $\delta 161.3$, 159.3 (2C), 137.0, 136.3, 133.3, 132.8, 127.8, 127.1, 125.5, 124.8, 118.2, 113.4, 106.1 (2C), 56.3 (2C), 50.0, 45.4 (2C), 36.8; HRMS (CI+): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{MH}+)$ 353.18597, found 353.18568, $\Delta-0.82 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=353 ; \mathrm{t}_{\mathrm{R}}=1.05 \mathrm{~min}$.

Synthesis of compound 16

Supplementary Scheme 13: Synthesis of compound (16)

4-bromo-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (56)

To a suspension of 5-bromo-7,8-dihydro-1,7-naphthyridin-8-one (55) (900 mg ; 4.00 mmol , commercial from Princeton) and potassium carbonate ($1.11 \mathrm{~g} ; 8.03 \mathrm{mmol}$) in THF (40 mL), iodomethane ($430 \mu \mathrm{~L} ; 6.78 \mathrm{mmol}$) is carefully added and the resulting mixture is stirred at rt for 16 h . Since HPLC-MS of the reaction mixture indicates incomplete conversion additional iodomethane ($400 \mu \mathrm{l} ; 6.31 \mathrm{mmol}$) is added and stirring is continued for 24 h . Ammonia (10% aqueous solution; 30 mL) is added followed by water (50 mL). THF is removed under reduced pressure and the aqueous layer is extracted three times with DCM (30 mL each). The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give 4-bromo-2-methyl-1,2-dihydro-2,7-naphthyridin-1-one (56) ($860 \mathrm{mg} ; 3.69 \mathrm{mmol} ; 90 \%$) which is used without further purification. LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=239 / 241 ; \mathrm{t}_{\mathrm{R}}=0.87 \mathrm{~min}$.

5-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-7-methyl-7,8-dihydro-1,7-naphthyridin-8-one (16)

56 ($80.0 \quad \mathrm{mg} 418 \quad \mu \mathrm{~mol}$), \{[2,6-dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2yl)phenyl]methyl \}-dimethylamine (49) ($134 \mathrm{mg} ; 418 \mu \mathrm{~mol}$) and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($61.0 \mathrm{mg} ; 83.4$ $\mu \mathrm{mol})$ are suspended in 1,4 -dioxane $(10 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$ under N_{2}. Potassium carbonate $(173 \mathrm{mg} ; 1.25 \mathrm{mmol})$ is added and the resulting mixture is heated at $80^{\circ} \mathrm{C}$ for 1 h . After cooling to rt water is added and the mixture is extracted three times with EA. The combined organic layer is washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue is purified by preparative RP-HPLC using a MeCN/water gradient under basic conditions. The product containing fractions are freeze dried to give 5-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-7-methyl-7,8-dihydro-1,7-naphthyridin-8-one (16) ($33.0 \mathrm{mg} ; 93.4 \mu \mathrm{~mol}$; 22%). ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O-d 6\right) ~ \delta 8.83(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}), 3.59-3.65(\mathrm{~m}, 5 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO, 1 C missing) $\delta 160.2$, 159.4 (2C), 149.6, 141.3, 136.6, 134.1, 133.3, 132.6, 127.1, 116.3, 106.0 (2C), 56.4 (2C), 50.0, 45.1 (2C), 37.3; HRMS (CI+): calculated for
$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{MH}+) 354.18122$, found 354.18067, $\Delta-1.55 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=$ $354 ; \mathrm{t}_{\mathrm{R}}=0.91 \mathrm{~min}$.

Synthesis of compound 17

Supplementary Scheme 15: Synthesis of compound (17)

4-Iodo-2-methyl-1,2-dihydro-2,6-naphthyridin-1-one (58)

To a suspension of 4-iodo-1,2-dihydro-2,6-naphthyridin-1-one (57) (1.00 g; 3.68 mmol , commercial from FCHGroup) and potassium carbonate ($1.52 \mathrm{~g} ; 11.0 \mathrm{mmol}$) in DMF (50 mL), iodomethane ($1.04 \mathrm{~g} ; 7.32 \mathrm{mmol}$) is carefully added and the resulting mixture is stirred at rt for 24 h . Water and EA are added, the layers are separated and the aqueous layer is extracted three times with EA. The combined organic layer is washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give 4-iodo-2-methyl-1,2-dihydro-2,6-naphthyridin-1-one (58) (450 $\mathrm{mg} ; 1.57 \mathrm{mmol} ; 43 \%)$ which is used without further purification. $\mathrm{LC} / \mathrm{MS}(\mathbf{5 8}):(\mathrm{M}+\mathrm{H})+=287$; $\mathrm{t}_{\mathrm{R}}=0.57 \mathrm{~min}$.

4-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-2-methyl-1,2-dihydro-2,6-naphthyridin-1-one (17)

58 (100 $\mathrm{mg} ; 350 \quad \mu \mathrm{~mol}), \quad\{[2,6$-dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2yl)phenyl]methyl $\}$-dimethylamine (49) ($84.0 \mathrm{mg} ; 351 \mu \mathrm{~mol}$) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($51.0 \mathrm{mg} ; 69.8$ $\mu \mathrm{mol}$) are suspended in 1,4 -dioxane $(10 \mathrm{~mL})$ and water (1 mL) under N_{2}. Potassium carbonate $(145 \mathrm{mg} ; 1.05 \mathrm{mmol})$ is added and the resulting mixture is heated at $80^{\circ} \mathrm{C}$ for 1 h . After cooling to rt water is added and the mixture is extracted three times with EA. The combined organic layer is washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue is purified by preparative RP-HPLC using a MeCN/water gradient under basic conditions. The product containing fractions are freeze dried to give 4 -\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-2-methyl-1,2-dihydro-2,6-naphthyridin-1-one (17) ($30.0 \mathrm{mg} ; 84.9 \mu \mathrm{~mol}$; 24%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 9.02(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13}$ C NMR (125 MHz , DMSO, 1 C missing) $\delta 160.3,159.4$ (2C), 148.3, 146.5, 136.2, 135.2, $130.5,130.0,120.0,116.4,106.1$ (2C), 56.4 (2C), 50.0, 45.0 (2C), 37.1; HRMS (CI+): calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{MH}+)$ 354.18122, found 354.18061, Δ-1.71 ppm; LC/MS $(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=354 ; \mathrm{t}_{\mathrm{R}}=0.96 \mathrm{~min}$.

Synthesis of compound 18

Supplementary Scheme 16: Synthesis of compound (18)

8-Bromo-6-methyl-5,6-dihydro-1,6-naphthyridin-5-one (60)

To a suspension of 8 -bromo-5,6-dihydro-1,6-naphthyridin-5-one (59) ($2.00 \mathrm{~g} ; 8.89 \mathrm{mmol}$, commercial from TCI) and potassium carbonate ($3.68 \mathrm{~g} ; 26.6 \mathrm{mmol}$) in DMF (50 mL), iodomethane ($2.52 \mathrm{~g} ; 17.7 \mathrm{mmol}$) is carefully added and the resulting mixture is stirred at rt for 24 h . Water and EA are added, the layers are separated and the aqueous layer is extracted three times with EA. The combined organic layer is washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give 8-bromo-6-methyl-5,6-dihydro-1,6-naphthyridin-5-one (60) $(1.50 \mathrm{~g} ; 6.27 \mathrm{mmol} ; 71 \%)$ which is used without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.06(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 1 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}) ; \operatorname{LC} / \mathrm{MS}(60):(\mathrm{M}+\mathrm{H})+=239 / 241 ; \mathrm{t}_{\mathrm{R}}=0.52 \mathrm{~min}$.

8-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-6-methyl-5,6-dihydro-1,6-naphthyridin-5-one (18)

$60 \quad(100 \mathrm{mg} ; 418 \mu \mathrm{~mol})$, \{[2,6-dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2yl)phenyl]methyl $\}$-dimethylamine (49) (134 mg ; $418 \mu \mathrm{~mol}$) and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($61.0 \mathrm{mg} ; 83.4$ $\mu \mathrm{mol})$ are suspended in 1,4 -dioxane $(10 \mathrm{~mL})$ and water $(1 \mathrm{~mL})$ under N_{2}. Potassium carbonate (173 mg ; 1.25 mmol) is added and the resulting mixture is heated at $80^{\circ} \mathrm{C}$ for 1 h . After cooling to rt water is added and the mixture is extracted three times with EA. The combined organic layer is washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue is purified by preparative RP-HPLC using a MeCN/water gradient under basic conditions. The product containing fractions are freeze dried to give 8 -\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-6-methyl-5,6-dihydro-1,6-naphthyridin-5-one (18) ($35.0 \mathrm{mg} ; 99.0 \mu \mathrm{~mol}$;
24%). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 9.40(\mathrm{~s}, 1 \mathrm{H}$, prot. amine), $8.96(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.65(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{dd}, \mathrm{J}=8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H})$, $3.88(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 161.6,158.7$ (2C), $154.5,151.6,139.7,137.7,136.4,122.5,121.1,118.3,106.5$ (2C), 105.2, 56.6 (2C), 49.9, 43.0 (2C), 36.9; HRMS (CI+): calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3}(\mathrm{MH}+$) 354.18122, found $354.18067, \Delta-1.54 \mathrm{ppm} ; \mathrm{LC} / \mathrm{MS}(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=354 ; \mathrm{t}_{\mathrm{R}}=0.96 \mathrm{~min}$.

Synthesis of compound 19

Supplementary Scheme 17: Synthesis of compound (19)

8-Bromo-6-methyl-5H,6H-pyrido[4,3-d]pyrimidin-5-one (62)

To a suspension of 8-bromo-5H,6H-pyrido[4,3-d]pyrimidin-5-one (61) (1.00 g; 4.42 mmol , commercial from FCHGroup) and potassium carbonate ($1.19 \mathrm{~g} ; 8.61 \mathrm{mmol}$) in THF (40 mL), iodomethane ($430 \mu \mathrm{~L} ; 6.78 \mathrm{mmol}$) is carefully added and the resulting mixture is stirred at rt for 16 h . Since HPLC-MS of the reaction mixture indicates incomplete conversion additional iodomethane ($400 \mu \mathrm{l} ; 6.31 \mathrm{mmol}$) is added and stirring is continued for 24 h . Ammonia (10% aqueous solution; 30 mL) is added whereupon precipitation occurs. The solid is filtered, washed with water and dried in vacuo to give 8 -bromo-6-methyl-5H,6H-pyrido[4,3-d]pyrimidin-5-one ($\mathbf{6 2}$) ($890 \mathrm{mg} ; 3.71 \mathrm{mmol} ; 84 \%$) which is used without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 9.48$ ($\mathrm{s}, 1 \mathrm{H}$), 9.47 ($\mathrm{s}, 1 \mathrm{H}$), 8.54 ($\mathrm{s}, 1 \mathrm{H}$), 3.54 ($\mathrm{s}, 3 \mathrm{H}$); LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=240 / 242 ; \mathrm{t}_{\mathrm{R}}=0.29 \mathrm{~min}$.

8-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl\}-6-methyl-5H,6H-pyrido[4,3-d]pyrimidin-5-one (19)

$62(100 \mathrm{mg} ; 417 \mu \mathrm{~mol})$, \{[2,6-dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2yl)phenyl]methyl $\}$-dimethylamine (49) ($170 \mathrm{mg} ; 529 \mu \mathrm{~mol}$) and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(34.0 \mathrm{mg}$; $41.6 \mu \mathrm{~mol})$ are suspended in DMF ($800 \mu \mathrm{~L}$) under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution (2 N ; $521 \mu \mathrm{~L} ; 1.04 \mathrm{mmol}$) is subsequently added and the resulting mixture is heated at $100^{\circ} \mathrm{C}$ for 1 h. After cooling to rt, water is added (several drops) and the mixture is filtered and purified by preparative RP-HPLC (column: X-Bridge C-18 30x50 mm) using a MeCN/water gradient under basic conditions. The product containing fractions are freeze dried. Further purification is achieved by automated silica gel chromatography (Combiflash; column: Redisep RF, 12g) using a DCM/MeOH gradient as eluent (100:0 --> 80:20; MeOH made basic with $0.1 \% \mathrm{NH}_{3}$). The product containing fractions are evaporated, dissolved in $\mathrm{MeCN} /$ water and freeze dried to give $\quad 8$-\{4-[(dimethylamino)methyl]-3,5-dimethoxyphenyl $\}$-6-methyl-5H,6H-pyrido[4,3-d]pyrimidin-5-one (19) (35.4 mg ; $99.9 \mu \mathrm{~mol} ; 24 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 9.55$ (s, 1H), 9.39 ($\mathrm{s}, 1 \mathrm{H}$), $8.24(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 2.14(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 160.8,160.6,159.0,158.8$ (2C), 156.5, 142.8, 134.8, 117.9, 117.3, 113.5, 106.3 (2C), 56.2 (2C), 50.0, 45.4 (2C), 37.0; HRMS (CI+): calculated for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}(\mathrm{MH}+) 355.17647$, found 355.17598, $\Delta-1.36 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=$ $355 ; \mathrm{t}_{\mathrm{R}}=0.88 \mathrm{~min}$.

Synthesis of compound 20

Supplementary Scheme 18: Synthesis of compound (20)

1,3,4-Trimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (63)

 and (1,2,5-trimethyl-6-oxo-1,6-dihydropyridin-3-yl)boronic acid (64)

5-Bromo-1,3,6-trimethyl-1,2-dihydropyridin-2-one (48) (6.30 $\quad \mathrm{g}$; 29.2 mmol), bis(pinacolato)diboron (33) (29.6 g; 117 mmol$), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.60 \mathrm{~g} ; 0.66 \mathrm{mmol})$ and 2-dicyclohexyl-phosphino-2', $4^{\prime}, 6^{\prime}$-triisopropylbiphenyl ($0.60 \mathrm{~g} ; 1.26 \mathrm{mmol}$) ($378 \mathrm{mg} ; 46.3 \mu \mathrm{~mol}$) and potassium acetate $(9.00 \mathrm{~g} ; 91.7 \mathrm{mmol})$ are suspended in 1,4-dioxane (80 mL) under N_{2} and the resulting mixture is heated at $60^{\circ} \mathrm{C}$ for 48 h . After cooling to rt the reaction mixture is concentrated under reduced pressure, the residue is taken-up in EA, water is added and the layers are separated. The aqueous layer is extracted three times with EA. The combined organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude material is purified by silica gel chromatography and subsequently by preparative RP-HPLC using a MeCN/water gradient as eluent to give an inseparable mixture of 1,3,4-trimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (63) and (1,2,5-trimethyl-6-oxo-1,6-dihydropyridin-3-yl)boronic acid (64) ($5.40 \mathrm{~g} ; 20.5 \mathrm{mmol} ; 70 \%$), which is used for the next step. ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6, 3 H from 64 covered under DMSO signal) $\delta 7.88$ ($\mathrm{s}, 2 \mathrm{H}$, 64), $7.39(\mathrm{~s}, 1 \mathrm{H}, 63$ and 64), $3.46(\mathrm{~s}, 3 \mathrm{H}, 63$ and 64$), 2.57(\mathrm{~s}, 3 \mathrm{H}, 63), 1.96(\mathrm{~s}, 3 \mathrm{H}, 63$ and 64$)$, $1.27(\mathrm{~s}, 12 \mathrm{H}, 63) ;$ LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=264 ; \mathrm{t}_{\mathrm{R}}=1.16 \mathrm{~min}$ (Ester).

5-\{4-[(Dimethylamino)methyl]-2,5-dimethoxyphenyl\}-1,3,6-trimethyl-1,2-

 dihydropyridin-2-one (20)
[(4-bromo-2,5-dimethoxyphenyl)methyl]dimethylamine (26) (313 mg; 1.14 mmol), inseparable mixture of $\mathbf{6 3}$ and $\mathbf{6 4}(300 \mathrm{mg} ; 1.14 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(192 \mathrm{mg} ; 235$ $\mu \mathrm{mol}$) are suspended in DMF (3.0 mL) under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution ($2 \mathrm{~N} ; 1.43$ $\mathrm{mL} ; 2.86 \mathrm{mmol}$) is subsequently added and the resulting mixture is heated at $100{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt, water is added (several drops) and the mixture is filtered and purified by preparative RP-HPLC (column: X-Bridge C-18 30x50 mm) using a MeCN/water gradient under basic conditions. The product containing fractions are freeze dried. Further purification is achieved by automated silica gel chromatography (Combiflash; column: Redisep RF, 12g) using a DCM/MeOH gradient as eluent (100:0 --> 90:10; MeOH made basic with $0.1 \% \mathrm{NH}_{3}$). The product containing fractions are evaporated, dissolved in $\mathrm{MeCN} /$ water and freeze dried to give $\quad 5-\{4-[($ dimethylamino $)$-methyl]-2,5-dimethoxyphenyl $\}$-1,3,6-trimethyl-1,2-dihydro-pyridin-2-one (20) ($8.30 \mathrm{mg} ; 25.1 \mu \mathrm{~mol} ; 2.2 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 7.14$ (s, $1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.71(2,3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{LC} / \mathrm{MS}(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=331 ; \mathrm{t}_{\mathrm{R}}=1.00 \mathrm{~min}$.

Synthesis of compound 21

Supplementary Scheme 19: Synthesis of compound (21)

5-\{4-[(Dimethylamino)methyl]-2,5-dimethoxyphenyl\}-1,3,4-trimethyl-1,2-dihydro-pyridin-2-one (21)

1,3,4-trimethyl-5-(tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-dihydropyridin-2-one (52) (80.0 mg ; $304 \mu \mathrm{~mol}$), [(4-bromo-2,5-dimethoxyphenyl)methyl]dimethylamine (26) ($83.3 \mathrm{mg} ; 304$ $\mu \mathrm{mol}$) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(24.8 \mathrm{mg} ; 30.4 \mu \mathrm{~mol})$ are suspended in DMF ($800 \mu \mathrm{~L}$) under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution ($2 \mathrm{~N} ; 380 \mu \mathrm{~L} ; 760 \mu \mathrm{~mol}$) is subsequently added and the resulting mixture is heated at $100{ }^{\circ} \mathrm{C}$ for 1 h . After cooling to rt , water (several drops) is added, the reaction mixture is filtered and purified by preparative RP-HPLC chromatography (column: X-Bridge $\mathrm{C}-1830 \mathrm{x} 50 \mathrm{~mm}$) using a $\mathrm{MeCN} /$ water gradient under basic conditions. The product containing fractions are freeze dried to give 5-\{4-[(dimethylamino)methyl]-2,5-dimethoxyphenyl\}-1,3,4-trimethyl-1,2-dihydropyridin-2-one (21) ($3.50 \mathrm{mg} ; 10.6 \mu \mathrm{~mol}$; 3.5%). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (d, J = $1.5 \mathrm{~Hz}, 3 \mathrm{H}$), $3.67(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.39-3.44(\mathrm{~m}, 5 \mathrm{H}), 2.19(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 6 \mathrm{H})$, $2.03(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 161.8,151.4,151.3,146.0,134.9$, $127.5,125.3,124.1,118.2,114.9,113.0,57.1,56.4,56.1,45.7$ (2C), 37.3, 17.4, 13.4; HRMS (CI+): calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{MH}+$) 331.20162, found 331.20108, Δ-1.62 ppm; LC/MS $(\mathrm{BAS} 1):[\mathrm{M}+\mathrm{H}]^{+}=331 ; \mathrm{t}_{\mathrm{R}}=1.02 \mathrm{~min}$.

Synthesis of compound 22

Supplementary Scheme 20: Synthesis of compound (22)

4-\{4-[(Dimethylamino)methyl]-2,5-dimethoxyphenyl\}-2-methyl-1,2-dihydroisoquinolin-

1-one (22)

4-bromo-2-methyl-1,2-dihydroisoquinolin-1-one (54) (77.8 mg; $327 \mu \mathrm{~mol}$), \{[2,6-dimethoxy-4-(tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methyl\}-dimethylamine (27) ($150 \mathrm{mg} ; 467$ $\mu \mathrm{mol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}(27.5 \mathrm{mg} ; 33.7 \mu \mathrm{~mol})$ are suspended in DMF (1.0 mL) under argon. A degassed $\mathrm{Na}_{2} \mathrm{CO}_{3}$-solution ($2 \mathrm{~N} ; 409 \mu \mathrm{~L} ; 818 \mu \mathrm{~mol}$) is subsequently added and the resulting mixture is heated at $100^{\circ} \mathrm{C}$ for 1 h . After cooling to rt , water is added (several drops) and the mixture is filtered and purified by preparative RP-HPLC (column: X-Bridge C-18 $30 \times 50 \mathrm{~mm}$) using a $\mathrm{MeCN} /$ water gradient under basic conditions. The product containing fractions are freeze dried. Further purification is achieved by automated silica gel chromatography (Combiflash; column: Redisep RF, 12g) using a DCM/MeOH gradient as eluent (100:0 --> 90:10; MeOH made basic with $0.1 \% \mathrm{NH}_{3}$). The product containing fractions are evaporated, dissolved in $\mathrm{MeCN} /$ water and freeze dried to give $4-\{4-[($ dimethylamino $)-$ methyl]-2,5-dimethoxyphenyl\}-2-methyl-1,2-dihydroiso-quinolin-1-one (22) ($35.1 \mathrm{mg} ; 99.6$ $\mu \mathrm{mol} ; 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 8.29(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO) $\delta 161.5,151.6,151.6,136.9,133.5,132.3,127.9,127.3,126.8,125.5,125.2,123.7$,
115.3, 115.2, 113.4, 57.2, 56.4, 56.2, 45.8 (2C), 36.8; HRMS (CI+): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{MH}+) 353.18597$, found 353.18538, $\Delta-1.68 \mathrm{ppm}$; LC/MS (BAS1): $[\mathrm{M}+\mathrm{H}]^{+}=$ $353 ; \mathrm{t}_{\mathrm{R}}=1.11 \mathrm{~min}$.

ONLINE METHODS

BRD9 SPR-based fragment screen

The fragment screen was performed on a Biacore T200 instrument (GE Healthcare). Histagged BRD9 (X-ray crystallography construct with an additional amino-terminal hexahistidine-tag ${ }^{2}$) was immobilized onto a Biacore NTA-chip (GE Healthcare) as described in the literature. ${ }^{3}$ Briefly, the BRD9 protein was diluted to a concentration of $0.2 \mathrm{mg} / \mathrm{ml}$ in HBS-P+ buffer (10 mM HEPES, $\mathrm{pH} 7.4,150 \mathrm{mM} \mathrm{NaCl}, 0.05 \% \mathrm{P} 20$) and injected over flow cell 4 of a Biacore NTA-chip, pre-loaded with Ni^{2+} and activated with EDC/NHS according to the manufacturer's instructions $\left(\mathrm{T}=20^{\circ} \mathrm{C}\right)$. A second hexahistidine-tagged bromodomain protein, distantly related to BRD9, was immobilized on flow cell 3 as a control. Carbonic anhydrase II (SIGMA Aldrich) was used as a negative control and immobilized onto flow cell 2 (EDC/NHS activation, but no Ni^{2+}-loading). Buffer was injected over flow cell 1 to generate a blank reference surface. Approximately 8000 RU of each of the three proteins were immobilized. The buffer was then switched to screening buffer (HBS-P+; 1\% DMSO).

The chip was equilibrated with running buffer for several hours. After 10 startup cycles (buffer injections) the fragment compounds were injected at a concentration of $100 \mu \mathrm{M}$ from 384-well plates and the response was recorded for each compound. Positive (a bromodomain binder identified internally in a different bromodomain inhibitor program) and negative (buffer) controls were included at regular intervals to monitor the performance of the assay over the complete screening experiment. It turned out that the proteins on the chip were stable for the time required to analyse 384 compounds. After this a new chip was prepared as described above and the next 384 compounds were analysed. To correct for the excluded volume effect a DMSO calibration series was prepared as detailed in the instrument manufacturer's instructions and the calibration samples were measured at the beginning and end of each run.

The data were evaluated using BiaEvaluation (GE Healthcare) software. Briefly, all SPR responses were corrected for differences in bulk solvent refractive index and contributions from binding of compounds to the blank reference flow cell were subtracted. In this way the response (in response units, RUs) for each compound was determined. Fractional surface occupancy (FSO) normalized to the response for the reference compound was then calculated on a plate basis. ${ }^{4}$ Based on our measured FSO the Z' value ${ }^{5}$ of our assay over all plates was calculated to be 0.91 which is well above the 0.5 threshold which is considered to be the minimum requirement for a valid screening assay.

Any compounds showing abnormal binding behavior, were identified by visual inspection of the sensorgrams and removed from the list. Equally, any compound which showed binding to the reference protein carbonic anhydrase II was also disqualified. The MEDIAN and the standard deviation (STDEV) over all screened samples were calculated. All compounds showing a $\mathrm{FSO} \geq$ MEDIAN +3 x STDEV were classified as hits and subsequently subjected to SPR Kd measurements as described below.

BRD9 SPR K_{D} assay

His-tagged BRD9 was immobilized to a density of 2000-4000 RUs on flow cells 3 and 4 of a Biacore NTA-chip as described above. Carbonic anhydrase II was immobilized at a similar density on flow cell 2 and a blank reference surface was generated on flow cell 1 .

The buffer was then switched to assay buffer (HBS-P+ = 10 mM HEPES, $\mathrm{pH} 7.4,150 \mathrm{mM}$ $\mathrm{NaCl}, 0.05 \% \mathrm{P} 20+5 \% \mathrm{DMSO})$ and the chip equilibrated for several hours before use for K_{D} determinations. To be able to correct for differences in bulk solvent refractive index caused by small variations in the DMSO concentration solvent correction samples were included at the beginning and end of the run as detailed in the instrument manufacturer's instructions.

Compounds were injected in concentration series (1:1 dilutions, 7 different concentrations), starting with a maximum concentration that was approximately $10-20$-fold higher than the expected K_{D}. The concentration series were prepared in 96 -well plates. In the case that the dilution window chosen for a particular compound did not appropriately bracket the K_{D} of the compound the measurement was repeated with an optimized starting concentration. Positive and negative control samples were included at regular intervals to be able to monitor the performance of the assay. CBS was used as a positive control for carbonic anhydrase II to check for integrity of the reference protein at regular intervals. To correct for the excluded volume effect a DMSO calibration series was prepared as detailed in the instrument manufacturer's instructions and the calibration samples were measured at the beginning and end of each run. Kd values were determined using Biaevaluation software by either performing a global fit of the double-referenced association and dissociation data to a $1: 1$ interaction model or by fitting the steady-state responses at each concentration to a 1:1 interaction model as appropriate. K_{D} from the two flow cells were averaged.

Isothermal Titration Calorimetry (ITC) assay

Protein were cloned, expressed and purified as previously described ${ }^{6}$.

Calorimetric experiments were performed on an ITC200 or VP-ITC micro-calorimeter (MicroCalTM, LLC Northampton, MA). Protein solutions were buffer exchanged by dialysis into buffer 20 mM Hepes $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}$, and 0.5 mM TCEP. All measurements were carried out at 293.15 K while stirring at 1000 or 286 rpm . The micro syringe was loaded with protein solutions ranging from 250 to $320 \mu \mathrm{M}$, compound solutions were prepared at concentrations between 15 to $30 \mu \mathrm{M}$ and $200 \mu \mathrm{l}$ or 2 mL for the cells. All injections were performed using an initial injection of $0.5 \mu \mathrm{l}$ followed by 30 injections of $1 \mu \mathrm{l}$ with a duration
of 2 sec per injection and a spacing of 150 sec between injection for the ITC200; for the VPITC it was injected $2 \mu \mathrm{l}$ followed by 34 injections of $8 \mu \mathrm{l}$ with a duration of 16 sec per injection and a spacing of 240 sec between injections. The data were analysed with the MicroCal ORIGIN software package employing a single binding site model. The first data point was excluded from the analysis. Thermodynamic parameters were calculated $(\Delta G=\Delta H$ $-\mathrm{T} \Delta \mathrm{S}=-\mathrm{RT} \ln \mathrm{KB}$ where $\Delta \mathrm{G}, \Delta \mathrm{H}$ and $\Delta \mathrm{S}$ are the changes in free energy, enthalpy and entropy of binding, respectively).

Differential Scanning Fluorimetry (DSF)

DSF experiments were carried out in a Bio-Rad CFX384 Real-Time System (C1000Touch Thermal Cycler) in sealed Hard-Shell PCR 384 well plates (\#HSP3805; PCR Sealers; \#MSB1001; Bio-Rad) and a total volume of 10μ. The assay was optimized regarding protein consumption and SYPRO Orange dye excess (5000x concentration in DMSO, Invitrogen) to obtain a reliable fluorescence signal. Compound dilutions in assay buffer (25 mM HEPES pH 7.5, $150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ TCEP) were prepared by a Hamilton Microlab Star pipetting robot. The reaction mixtures contained $8 \mu \mathrm{l}$ compound dilution and $2 \mu \mathrm{l}$ of the BRD9 SYPRO Orange stock mix to yield final concentrations of $10 \mu \mathrm{M}$ BRD9, 25x SYPRO Orange and $400 \mu \mathrm{M}$ fragment at a DMSO concentration of 2%. Samples were heated at $1^{\circ} \mathrm{C} / \mathrm{min}$ from $25^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$ with fluorescence readings every $0.5^{\circ} \mathrm{C}$. The entire BI generic fragment library (1697 compounds) was tested in duplicates. Melting curves were analyzed with the Bio-Rad CFX Manager-Data Analysis software in which T_{m} values were determined as the minimum of the first derivative of the recorded fluorescence intensity versus temperature plot. The T_{m} of native BRD9 was determined 200 times $\left(47.2 \pm 0.5^{\circ} \mathrm{C}\right)$ and an in house positive control 60
times ($53.5 \pm 0.5^{\circ} \mathrm{C}$) from which a Z^{\prime} of 0.55 could be calculated. Thermal shifts of $\Delta T_{\mathrm{m}} \geq 1^{\circ} \mathrm{C}$ ($\Delta T_{\mathrm{m}}=T_{\mathrm{m}, \mathrm{frag}}-T_{\mathrm{m}, \mathrm{DMSO}}$) were assumed significant and defined as primary FBS hits.

Microscale Thermophoresis (MST)

MST is a fluorescence-based biophysical method which exploits the alteration of the mobility of molecules in a temperature gradient upon binding. The local temperature gradient is induced by an infrared laser and a detailed description of the technique is published elsewhere. ${ }^{7}$ Fluorescence labeling of BRD9 with the NT647 dye was performed according to the manufacturer's protocol of the Monolith NT. 115 Protein Labeling Kit RED-NHS (NanoTemper Technologies, Munich, Germany). Assay development comprised the optimization of protein concentration, buffer conditions, MST capillaries as well as the strength of the temperature gradient (IR laser power) using an in house positive control to achieve a reliably detectable change in the thermophoretic mobility ($\Delta \mathrm{F}_{\text {norm }}$) of labeled BRD9. Measurements were carried out in 25 mM HEPES $\mathrm{pH} 7.5,150 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ TCEP, 0.05% Tween- 20 with 200 nM NT647-labeled BRD9 in the presence of $500 \mu \mathrm{M}$ compound and 5% (v / v) d6-DMSO at 298K. Monolith NT. 115 hydrophilic capillaries, an IR laser power of 40% with a laser on time of 30 seconds and an LED intensity of 60% were used.

For the in house implementation of fully automated sample preparation and MST data acquisition a Monolith NT. 015 was modified in collaboration with NanoTemper Technologies and combined with a Hamilton Microlab Star pipetting system equipped with an in house developed tilting station. Individual capillaries were filled by dipping into each well of the vertically tilted 384-well plate (Greiner PP, small volume, deep well from Greiner Bio-One, Frickenhausen, Germany) and transferred in the detection device using a pneumatic gripper (Schunk, Lauffen/Neckar, Germany) attached to a pipetting channel.

Compounds were diluted in $30 \mu \mathrm{l}$ assay buffer with a Hamilton Microlab Star liquid handling system and $10 \mu \mathrm{l}$ of labeled BRD9 was added just-in-time prior to data acquisition to achieve equal incubation times. In one acquisition cycle 16 capillaries could be measured in which capillary 1 and 16 were a DMSO negative control and capillaries 2-14 contained seven fragments in duplicates.

Data was analyzed with the NanoTemper Analysis software version 1.2.205 and exported fluorescence as well as $\Delta \mathrm{F}_{\text {norm }}$ values ($\left.\Delta \mathrm{F}_{\text {norm }}=\mathrm{F}_{\text {hot }} / \mathrm{F}_{\text {cold }}\right)$ further evaluated. All MST traces were inspected manually and irregular traces (e.g. fluorescence quenching, protein aggregation) were discarded. Mean values of the duplicates were calculated and compared to either the mean value of the DMSO negative control in the individual acquisition cycle or the mean value of the DMSO control of the respective 384 -well screening plate. An in house positive control was used to monitor integrity of labeled BRD9 throughout screening. Fragments were classified as hits if $\Delta \Delta \mathrm{F}_{\text {norm }} \geq \Delta \mathrm{F}_{\text {norm }}(2$ sd DMSO$)$ with $\Delta \Delta \mathrm{F}_{\text {norm }}=$ $\mid \Delta \mathrm{F}_{\text {norm }}$ (compound) $-\Delta \mathrm{F}_{\text {norm }}(\mathrm{DMSO}) \mid$.

BRD9 NMR spectroscopy

Confirmation of primary FBS hits obtained from DSF, SPR and MST was performed using two-dimensional ${ }^{1} \mathrm{H} /{ }^{15} \mathrm{~N}$ HSQC NMR spectra ${ }^{8}$ collected on a Bruker Avance III 600 MHz spectrometer equipped with a 5 mm z-gradient TCI cryo-probe and a Bruker Sample Rail. Samples were freshly prepared just-in-time by a Tecan Freedom Evo pipetting robot in house customized for NMR sample tube filling before fully automated data acquisition ${ }^{9}$. Each sample contained $75 \mu \mathrm{M}{ }^{15} \mathrm{~N}$ labeled BRD9 in 20 mM Tris-d11 $\mathrm{pH} 7.5,200 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ TCEP and $8 \%(\mathrm{v} / \mathrm{v}) \mathrm{D}_{2} \mathrm{O}$ and was incubated with $500 \mu \mathrm{M}$ fragment in a 2.5 mm NMR tube at 298 K and a d6-DMSO concentration of 1%. Spectra were recorded with 48 transients and 96
data point in the indirect dimension. Identification of BRD9 binders was performed by manual comparison of spectra in the presence of a single fragment and the BRD9 reference spectrum in the presence of $1 \%(\mathrm{v} / \mathrm{v})$ d6-DMSO using data processed by Bruker Topspin 3.0. For a more quantitative approach chemical shift perturbation was automatically evaluated using the Autoscreen module of Felix 2004 (FelixNMR Inc., San Diego, USA) for which either the entire spectrum or the region of interest (22 cross peaks defined by an in house positive control to identify the preferred binding site) was analyzed ${ }^{10}$. All three analysis methods showed > 90% overlap between confirmed BRD9 binding fragments, which were prioritized for Xray follow-up (see method description "BRD9 X-ray follow-up of confirmed primary FBS hits").

Protein purification and crystallization

The bromodomain of human BRD9 (residues 14-134 of isoform 5, Uniprot identifier Q9H8M2-1) was obtained from the SGC (Structural Genomics Consortium) and has been expressed and purified as previously described ${ }^{2}$.

Protein crystallization was done using the hanging drop method by mixing $2.0 \mu \mathrm{~L}$ of apo BRD9 ($10 \mathrm{mg} / \mathrm{mL}$ in 25 mM HEPES $\mathrm{pH} 7.5,300 \mathrm{mM} \mathrm{NaCl}, 0.5 \mathrm{mM}$ TCEP) with $2 \mu \mathrm{~L}$ of reservoir solution (30% glycerol ethoxylate, 100 mM Tris pH 8.3) at $4^{\circ} \mathrm{C}$. Crystals grew within a few days to a final size of 150-200 $\mu \mathrm{m}$). Apo crystals were transferred to a soaking buffer containing 33% glycerol ethoxylate and soaked overnight by adding $0.1 \mu \mathrm{~L}$ of a 100 mM DMSO stock solution of $\mathbf{1}$. Crystals were frozen in liquid nitrogen and data were collected at the SLS beam line X06SA (Swiss Light Source, Paul Scherrer Institute) at a wavelength of $1 \AA$ using the PILATUS 6 M detector. The crystals belonged to space group P21212 and contained 2 monomers per asymmetric unit. Images were processed with
autoPROC. ${ }^{11}$ The resolution limits were set using default autoPROC settings. The structures were solved by molecular replacement using the BRD9 structure 3HME as a search model. Subsequent model building and refinement was done using standard protocols using CCP4, ${ }^{12}$ COOT ${ }^{13}$ and autoBUSTER (Bricogne, G. et al. (2011) BUSTER v.2.11.2. http://www.globalphasing.com).

For compound 1^{1} the unit cell parameters were $a=70.80 \AA, b=125.34 \AA, c=29.92 \AA$ and α, $\beta, \gamma=90^{\circ}$ data and the structure was refined to Rwork and Rfree values of 17.8% and 19.2%, respectively, with 100% of the residues in Ramachandran favoured regions as validated with Molprobity. ${ }^{14}$

Compound 3 (unit cell: $\mathrm{a}=70.92 \AA, \mathrm{~b}=125.41 \AA, \mathrm{c}=29.53 \AA, \alpha, \beta, \gamma=90^{\circ}$, resolution $=$ $1.80 \AA$) was refined to $\mathrm{R} / \mathrm{Rfree}=20.3 / 22.0 \%$ with 100% of the residues in Ramachandran favoured regions.

Compound 4 (unit cell: $\mathrm{a}=71.04 \AA, \mathrm{~b}=125.02 \AA, \mathrm{c}=29.94 \AA, \alpha, \beta, \gamma=90^{\circ}$, resolution $=$ $1.68 \AA$) was refined to $\mathrm{R} /$ Rfree $=18.9 / 20.5 \%$) with 100% of the residues in Ramachandran favoured regions.

Compound 11 (unit cell: $\mathrm{a}=70.31 \AA, \mathrm{~b}=125.17 \AA, \mathrm{c}=30.02 \AA$, resolution: $2.3 \AA$) was refined to $\mathrm{R} /$ Rfree $=19.2 / 20.9$ \% with 99.55% of the residues in Ramachandran favoured and 0.45 \% in Ramachandran allowed regions.

Compound 2 (unit cell: $\mathrm{a}=70.03 \AA, \mathrm{~b}=125.36 \AA, \mathrm{c}=29.68 \AA, \alpha, \beta, \gamma=90^{\circ}$, resolution $=$ $1.82 \AA$) was refined to R/Rfree of $19.1 / 20.2 \%$ with 100 \% of the residues in Ramachandran favoured regions.

Statistics for data collection and refinement can be found in Supplementary Table 2.

Stereo images (wall-eye stereo and cross-exe stereo) can be found in Supplementary Fig. 5-

14.

BRD9 X-ray follow-up of confirmed primary FBS hits

Protein crystallisation in the FBS setting has been done by the hanging drop method at $20^{\circ} \mathrm{C}$. $1.2 \mu \mathrm{l}$ of a $14 \mathrm{mg} / \mathrm{ml}$ apo protein solution (in 25 mM HEPES $\mathrm{pH} 7.5,300 \mathrm{mM} \mathrm{NaCl}, 0.5 \mathrm{mM}$ TCEP) have been mixed with $1 \mu 1$ of the reservoir solution (28-33\% Glycerol Ethoxylate, 100 mM Tris pH 8.1-8.7). The resulting crystals were transferred into soaking and cryoprotectant solution (30% Glycerol Ethoxylate, 100 mM Tris pH 8.5) in which compound was dissolved at 100 mM . After overnight incubation crystals were flash frozen in liquid nitrogen. Diffraction data was collected at X06SA and X06DA beamlines of the Swiss Light Source (Paul Scherrer Institute, Switzerland). All following steps have been performed as described in the above section "Protein purification and crystallization".

BRD9 Bromodomain Virtual Screening

Ligand preparation of HiCOS was carried out using Schrodinger's ligprep module. The initial docking was done in Schrodinger's Glide Suite 2012. The standard precision docking mode was employed. The docking protein grid was derived from the in-house X-ray crystal structure of BRD9, including two constraints: one with hydrogen bond donor from the terminal amido_ $\mathrm{N}^{\delta 2} \mathrm{H}$ of Asparigine-100 and the other with the OH of conserved water-106. Follow-up pharmacophore mapping was performed in OpenEye's vROCS 2012. The BRD9 specific pharmacophore model was derived from the binding modes of ligands selected from three in-house X-ray co-crystal structures. ShapeTan and Combifit scoring methods in vROCS were used in combination to select the compounds for further consideration.

BRD9-H3 AlphaScreen assay

This assay is used to identify compounds which inhibit the interaction of the bromodomain of BRD9 with a tetra-acetylated peptide based on the sequence of histone H3 (H3 K9/14/18/23Ac (1-28)). GST-BRD9 protein corresponding to amino acids 130-259 that contains the bromodomain of BRD9 (accession number NM_023924.4) was expressed in E. coli with an amino-terminal GST tag. The sequence of the H3 K9/14/18/23Ac(1-28) peptide is Biotin- ARTKQTARK(Ac)STGGK(Ac)APRK(Ac)QLATK(Ac)AARKS, MW: 3392

Assay concentrations: 4 nM GST-BRD9 protein (aa 130-259) and 12 nM biotinylated H3 K9/14/18/23Ac(1-28) peptide are used in the BRD9 H3 AlphaScreen assay.

BRD7 H3 AlphaScreen assay

This assay is used to identify compounds which inhibit the interaction of the bromodomain of BRD7 with a tetra-acetylated peptide based on the sequence of histone H3 (H3 K9/14/18/23Ac (1-28)). GST-BRD7 protein corresponding to amino acids 129-236 that contains the bromodomain of BRD7 (accession number NM_013263.4) was expressed in E. coli with an amino-terminal GST tag. The sequence of the H3 K9/14/18/23Ac(1-28) peptide is Biotin- ARTKQTARK(Ac)STGGK(Ac)APRK(Ac)QLATK(Ac)AARKS, MW: 3392.

Assay concentrations: 8 nM GST-BRD7 protein (aa 129-236) and 12 nM biotinylated H3 K9/14/18/23Ac(1-28) peptide are used in the BRD7 H3 AlphaScreen assay.

BRD4-BD1 H4 AlphaScreen assay

This assay is used to identify compounds which inhibit the interaction of the bromodomain 1 of BRD4 with a tetra-acetylated peptide based on the sequence of histone H 4 (K5/8/12/16(1-
18)). GST-BRD4-1 protein corresponding to amino acids $44-168$ that contains the bromodomain 1 of BRD4 (accession number NP_490597.1) was expressed in E. coli with an amino-terminal GST tag. Tetra-acetylated histone H 4 is a synthetic peptide, containing amino acids 1-18 of Histone H4 followed by a GSGS linker and biotinylated lysine (SGRGK(Ac)GGK(Ac)GLGK(Ac)GGAK(Ac)RH-GSGSK-biotin) MW = 2518.7Da.

Assay concentrations: 10 nM GST-BRD4-1 protein (aa $44-168$) and 5 nM biotinylated H 4 (K5/8/12/16(1-18) peptide are used in the BRD4-BD1 H4 AlphaScreen assay.

BRD4-BD2 AlphaScreen assay

This assay is used to identify compounds which inhibit the interaction of the bromodomain 2 of BRD4 with a tetra-acetylated peptide based on the sequence of histone H 4 (K5/8/12/16(118)). GST-BRD4-2 protein corresponding to amino acids $333-460$ that contains the bromodomain 2 of BRD4 (accession number NP_490597.1) was expressed in E. coli with an amino-terminal GST tag. Tetra-acetylated histone H 4 is a synthetic peptide, containing amino acids 1-18 of Histone H 4 followed by a GSGS linker and biotinylated lysine (SGRGK(Ac)GGK(Ac)GLGK(Ac)GGAK(Ac)RH-GSGSK-biotin) MW = 2518.7 Da.

Assay concentrations: 50 nM GST-BRD4-2 protein (aa 333-460) and 25 nM biotinylated H4 (K5/8/12/16(1-18) peptide are used in the BRD4-BD2 H4 AlphaScreen assay.

BRD2-BD1 AlphaScreen assay

This assay is used to identify compounds which inhibit the interaction of the bromodomain 1 of BRD2 with a tetra-acetylated peptide based on the sequence of histone H 4 (K5/8/12/16(118)). GST-BRD2-1 protein corresponding to amino acids 71-194 that contains the
bromodomain 1 of BRD2 (accession number NP_005095.1) was expressed in E. coli with an amino-terminal GST tag. Tetra-acetylated histone H 4 is a synthetic peptide, containing amino acids 1-18 of Histone H 4 followed by a GSGS linker and biotinylated lysine (SGRGK(Ac)GGK(Ac)GLGK(Ac)GGAK(Ac)RH-GSGSK-biotin) MW = 2518.7Da.

Assay concentrations: 20 nM GST-BRD2-1 protein (aa 333-460) and 10 nM biotinylated H 4 (K5/8/12/16(1-18) peptide are used in the BRD4-BD2 H4 AlphaScreen assay.

All AlphaScreen assays are done in a darkened room below 100 Lux. Compounds are dispensed onto assay plates (Proxiplate-384 PLUS, white, PerkinElmer) using an Access Labcyte Workstation with the Labcyte Echo 550 from a DMSO solution. For the chosen highest assay concentration of $100 \mu \mathrm{M}, 150 \mathrm{~nL}$ of compound solution are transferred from a 10 mM DMSO compound stock solution. A series of 11 concentrations is transferred for each compound at which each concentration is fivefold lower than the previous one. DMSO is added such that every well has a total of 150 nL compound solution. $10 \mu \mathrm{~L}$ of a mix containing protein and peptide with the assay specific concentrations are prepared in assay buffer (50 mM HEPES $\mathrm{pH}=7.3 ; 25 \mathrm{mM} \mathrm{NaCl} ; 0,1 \%$ Tween $20 ; 0.1 \%$ bovine serum albumin (BSA); 2 mM dithiothreitol (DTT)) and $5 \mu \mathrm{~L}$ of bead mix (AlphaLISA Glutathione Acceptor Beads and AlphaScreen Streptavidin Donor Beads mixed in assay buffer at a concentration of $10 \mu \mathrm{~g} / \mathrm{ml}$ each) are added to the assay plate that contain 150 nL of the compound solution. After 60 minutes at room temperature the signal is measured in a PerkinElmer Envision HTS Multilabel Reader using the AlphaScreen specifications from PerkinElmer. Each plate contains negative controls where assay specific peptide and protein are left out and replaced by assay buffer. Negative control values are entered as low basis for normalization. IC50 values are calculated using a four parameter non-linear regression model.

BROMOscan

Bromodomain profiling was provided by DiscoveRx Corp. using their BROMOScan platform (http://www.discoverx.com/services/drug-discovery-developmentservices/epigeneticprofiling/Bromoscan). The BROMOscan screen accounted for the determination of the single concentration binding interaction (percent of control - \% ctrl) for compound $\mathbf{1}$, or $\mathbf{2}$, and each of the 32 DNA tagged bromodomains included in the assay by binding competition against a reference immobilized ligand. BromoKdELECT accounted for the determination of the K_{D} between compound $\mathbf{1}$, or 2, and selected DNA tagged bromodomains by binding competition against a reference immobilized ligand.

Fluorescence Recovery After Photobleaching (FRAP)

FRAP studies were performed essentially as described ${ }^{15}$ (1). In brief, U2OS cells were transfected (Fugene HD; Roche) with mammalian over-expression constructs encoding GFP fused to the N-terminus of full length BRD9, Brd7 or CECR2, respectively. Mutant proteins mutating the conserved Asn to Phe or Ala were generated as described in (1). The following mutations were introduced: N140A for human CECR2, N211F for mouse Brd7 and N163F for human BRD9. The imaging system consisted of a Zeiss LSM 710 laser-scanning and control system (Zeiss) coupled to an inverted Zeiss Axio Observer.Z1 microscope equipped with a high-numerical-aperture (N. A. 1.3) 40 x oil immersion objective (Zeiss). Samples were placed in an incubator chamber in order to maintaining temperature and humidity. FRAP and GFP fluorescence imaging were both carried out with an argon-ion laser (488 nm) and with a PMT detector set to detect fluorescence between $500-550 \mathrm{~nm}$. Once an initial scan had been taken, a region of interest corresponding to approximately 50% of the entire GFP positive nucleus was empirically selected for bleaching. A time lapse series was then taken to
record GFP recovery using 1% of the power used for bleaching. The image datasets and fluorescence recovery data were exported from ZEN 2009, the microscope control software, into Origin to determine the average half-time for full recovery for 10-20 cells per treatment point. Data were analysed using one-way ANOVA with Tukey's multiple comparisons test.

Cell lines and proliferation assays

Cells were grown in $50 \mu \mathrm{l}$ medium as specified by the supplier for 7 days starting with 500 and with 1000 cells per well of a 384 well plate in the presence of varying concentrations of compound before measuring viability via cellular ATP levels using the cell titer glow assay (Promega).

MYC assay

To 750,000 MV-4-11 cells in $250 \mu \mathrm{l}$ growth medium (in IMDM, 10% FBS, GlutaMAX, 25 mM HEPES and 0,1\% 2-Mercaptoethanol) per well compound was added at the desired concentration from a 10 mM stock solution using the HP D300 Digital Dispenser (Hewlett Packard). After 2 hours of incubation with the compound, cells were collected by centrifugation, washed in ice cold PBS and lysed in $15 \mu \mathrm{l}$ of cell extraction buffer (Life Technologies \#FNN0011 containing 1 mM PMSF and 1x Halt protease inhibitor cocktail (Thermo)). After 30 minutes on ice, nucleic acids were disrupted by sonication. cMYC levels were measured using the human c-Myc (Total) ELISA Kit (Life Technologies \#KHO2041)

Animal handling

Mice were housed under pathogen-free conditions (AAALAC accredited facility) and treated according to the institutional, governmental and European Union guidelines (GV-SOLAS, Felasa, Austrian Animal Protection Laws). All animal studies were reviewed and approved by the internal ethics committee of Boehringer Ingelheim and the local governmental committee (Amt der Wiener Landesregierung, Magistratsabteilung 58, Vienna, Austria).

Pharmacokinetic and efficacy studies in mice

For evaluation of PK properties non-tumor bearing BomTac:NMRI-Foxn1nu mice (Taconic, Ry, Denmark) were treated once with an intravenous bolus dose formulated with 25% HP- $\beta-$ CD (dosing volume $5 \mathrm{~mL} / \mathrm{kg}$), or orally as a suspension formulated with 0.5% Natrosol $^{\mathrm{TM}}$ Hydroxyethylcellulose (dosing volume $10 \mathrm{~mL} / \mathrm{kg}$). EDTA-blood was sampled from the Vena saphena and plasma was obtained by centrifugation.

Female CIEA-NOG mice (NOD.Cg-Prkdc $\left.c^{s c i d} I L 2 r g^{t m I S u g} / J i c T a c ; ~ T a c o n i c, ~ R y, ~ D e n m a r k\right) ~ w e r e ~$ engrafted intravenously with 1×10^{7} EOL-1 AML cells stably expressing luciferase and GFP. Following injection of the cells animals were randomized based on body weight ($\mathrm{n}=10 /$ group). Treatment started on day 5 with either 0.5% Natrosol or 2 formulated with 0.5\% Natrosol. All doses were calculated relative to the mouse body weight on the treatment day. 2 and the vehicle control were administered orally with a dosing volume of $10 \mathrm{~mL} / \mathrm{kg}$ body weight. 2 was administered daily from day 5 until 17 and from day 20 until 22. Dosing was interrupted on day 18 for two days as one mouse in the treatment group reached -15\% body weight loss. Tumour load was measured 2-3 times weekly based on bioluminescence imaging as described previously. ${ }^{16}$ The following scoring system was used: score 0 , no clinical signs; score 1, tail or hind limb weakness. Animals were sacrificed based on severity criteria including appearance of paralysis score 1 and/or body weight loss exceeding -18\%. In
this tumor mouse model body weight changes can occur due to increased tumor load or due to intolerability.

Determination of physicochemical and in vitro DMPK parameters

Aqueous solubility was determined from 10 mM stock solutions of the compounds in DMSO diluted with aqueous McIlvaine buffer at pH 6.8 , or with acetonitrile/water (1:1) as a reference. Samples were shaken for 24 h at room temperature in 96 -well plates (Whatman Uniplate ${ }^{\circledR} 96$ wells, $750 \mu \mathrm{~L}$, polypropylene, round bottom). The plate was then centrifuged at 3,000 rpm for 2 min . $250 \mu \mathrm{~L}$ of each sample were transferred to a Millipore MultiScreenHTS filter plate with a polycarbonate membrane, pore size $0.45 \mu \mathrm{~m}$. Filtrates were collected by centrifugation at $3,000 \mathrm{rpm}$ for 2 min . The dissolved concentrations were determined by UPLC/UV on a Waters ACQUITY UPLC ${ }^{\circledR}$ SQD system equipped with a Waters ACQUITY UPLC ${ }^{\circledR}$ BEH 2.1x50 mm C18 column, particle size $1.7 \mu \mathrm{~m}$, using a short gradient with water/0.1\% formic acid as solvent A and acetonitrile/0.1 \% formic acid as solvent B (5 to 95% B with 1.7 min total cycle time). Compound signals were measured with a photodiode array UV detector operated at 254 nm . Solubility was determined with a one point calibration by comparing peak areas relative to the reference standard using Waters Empower software.

In vitro predictions of hepatic metabolic (CL) based on incubations with cryopreserved hepatocytes were carried out with an automated assay in a 24 -well plate format on a Tecan robotic system at a test compound concentration of $1 \mu \mathrm{M}$. Cryopreserved hepatocytes (donor pools) were supplied by Celsis IVT. Cryopreserved cells were thawed according to protocols provided by the vendor and suspended in DMEM supplemented with insulin ($5 \mu \mathrm{~g} / \mathrm{mL}$), glucagon ($7 \mathrm{ng} / \mathrm{mL}$), hydrocortisone ($7.5 \mu \mathrm{~g} / \mathrm{mL}$) and serum of the respective species (50% of total volume). Test compounds were added after a 30 min pre-incubation. Suspensions of
1×10^{6} cells $/ \mathrm{mL}$ were incubated and continuously shaken in a Thermo Scientific Cytomat ${ }^{\text {TM }}$ for 4 h at $85-95 \%$ relative humidity and $5-10 \% \mathrm{CO}_{2}$ at $37{ }^{\circ} \mathrm{C}$. Aliquots were taken from the medium at $0,0.5,1,1.5,2.5$ und 4 h and concentrations of the test compounds quantified by HPLC/MS/MS on a BIOCIUS Life Sciences RapidFire® system coupled to a Thermo Scientific ${ }^{T M}$ TSQ Vantage ${ }^{\text {TM }}$ triple-quadrupole mass spectrometer. Predicted clearances were calculated using the well-stirred model.

In vitro plasma protein binding (PPB) was determined by a semi-automated equilibrium dialysis assay on a Tecan robotic system at a test compound concentration of $3 \mu \mathrm{M}$. Dialysis chambers in custom-made Teflon devices for multiple parallel incubations were separated by a $18 \times 18 \mathrm{~cm}$ dialysis membrane with molecular weight cut-off of $5,000 \mathrm{Da}$ (Dianorm No. 5214). Plasma of the respective species spiked with test compound was dialyzed against Soerensen buffer (pH 7.4) for 3 h at $37^{\circ} \mathrm{C}$ at 12 rpm on an overhead rotator. PPB was calculated based on test compound concentrations in the plasma and buffer compartments quantified by HPLC/MS/MS.

Caco-2 and in vitro cytochrome P450 inhibition assays have been carried out as described elsewhere. ${ }^{17}$

Determination of pharmacokinetic properties

Compound concentrations from aliquots of $10 \mu \mathrm{~L}$ plasma were quantified by HPLC-MS/MS at unit mass resolution with ESI+ ionization. The BI proprietary compound BIBI1355BS was added to all samples as internal standard. Calibration and quality control samples were prepared using blank plasma from untreated animals as matrix. Calibration standards were prepared by serial dilutions in twelve steps by manual dilutions or using a Perkin-Elmer Janus automated liquid handling system. Pre-analytical sample preparation was carried out by
liquid/liquid extraction in a 96-well plate format with t-butyl methyl ether (TBME) or ethyl acetate under basic conditions, or by acetonitrile precipitation and centrifugation. Extracted plasma samples or supernatants of precipitated samples were evaporated to dryness under N_{2}, redissolved in 25% methanol $/ 75 \%$ water/ 0.01% formic acid and injected to the HPLC/MS/MS system with a CTC PAL HTS-xt autosampler (injection volume $5 \mu \mathrm{~L}$ for i.v. and $1 \mu \mathrm{~L}$ for p.o. studies).

Quantitative analyses were performed with Agilent HP1200 analytical HPLC systems equipped with a Waters XBridge BEH C18 reversed phase HPLC column at room temperature (particle size $2.5 \mu \mathrm{~m}$, column dimension $2.1 \times 50 \mathrm{~mm}$), applying a HPLC gradient with 5 mM ammonium acetate $(\mathrm{pH} 4.0)$ as solvent A and acetonitrile with 0.1% formic acid as solvent B with a cycle time of 2.0 min per sample. Solvent B was increased from 5 to 95% over 1 min , and then kept constant at 95% B from $1.0-1.3 \mathrm{~min}$, before returning to $5 \% \mathrm{~B}$ and column re-equilibration from 1.4 to 2.0 min . The HPLC systems were coupled to SCIEX API5000 triple quadrupole or 4000 QTRAP® hybrid triple quadrupole/linear ion trap mass spectrometers operated in MRM mode with ion transitions of 354.2 to 309.0 for $\mathbf{1}$ and 2, and 467.3 to 98.1 for BIBI1355BS (dwell times: 70 ms). Declustering potential (DP) and collision energy (CE) settings were automatically optimized using the SCIEX DiscoveryQuantTM 2.1 software. The source temperature of the Turbo Ion Spray source was set to $600^{\circ} \mathrm{C}$. Chromatograms were integrated and peak areas were determined with Analyst ${ }^{\circledR}$ 1.5.1 (SCIEX). Pharmacokinetic parameters were calculated by non-compartmental analysis using the Boehringer Ingelheim proprietary software ATLAS. AUC values were determined by the linear trapezoidal rule and with $\mathrm{C}(0)=\mathrm{C}(\mathrm{t} 1)$ for intravascular application and with $\mathrm{C}(0)=0$ for extravascular application.

Supplementary Figure 1. Screening cascades leading to the identification of compounds 3 and $\mathbf{4}$ as validated hits

Triage Assay	Prospective Criteria	Generic FBS Library*			Virtual Screening of HiCos compounds**	
Total compounds screened		1697 Screening Assay (fixed conc.)				DSF dTm $\geq 1^{\circ} \mathrm{C}$ $(400$ $\mu \mathrm{M})$

3

4
$K_{D}(S P R)=37.5 \mu \mathrm{M}$
$K_{D}(S P R)=9.1 \mu \mathrm{M}$

* Generic FBS library consists of a diverse set of compounds fulfilling the following constraints: MW 90-270 Da, clogP 0-3, TPSA 20-120, H-bond donors ≤ 3, H-bond acceptors ≤ 6, rotatable bonds ≤ 4, unwanted fragment excluded, DMSO solubility $>50 \mathrm{mM}$, solubility buffer $\mathrm{pH} 7.4>100 \mu \mathrm{M}$, LC/MS purity $>80 \%$, NMR purity $>80 \%$
** HiCos library consists of a diverse set of compounds fulfilling the following constraints: MW <300 Da, clogP <6, TPSA <150, H-bond donors + H-bond acceptors >0, rotatable bonds <12, unwanted fragment excluded, stock solution $50 \mathrm{mg} / \mathrm{mL}$

Supplementary Figure 2. Overlap analysis of the primary fragment screening as well as follow up results (primary hits / $2 \mathrm{D}{ }^{1} \mathrm{H} /{ }^{15} \mathrm{~N}$ NMR confirmed / X-ray co-crystal structure) for the "generic FBS library"

Supplementary Figure 3. Experimental screening data for compound 3.
a) DSF melting curves (SYPRO Orange fluorescence emission as a function of temperature) of the DMSO negative control (black, $T_{\mathrm{m}}=47^{\circ} \mathrm{C}$) and compound $\mathbf{3}$ (red) in duplicates reveals a stabilisation of BRD9 of $2.9^{\circ} \mathrm{C}$ by compound 3. $10 \mu \mathrm{M}$ BRD9 was incubated with $400 \mu \mathrm{M}$ compound 3 and 25x SYPRO Orange at a DMSO concentration of 2%; b) SPR primary screen data ([3]=100 $\mu \mathrm{M}$). Compound $\mathbf{3}$ shows a robust fast on/off response; c) MST screening traces of the DMSO negative control (black) and compound $\mathbf{3}$ (red). A $\Delta \Delta \mathrm{F}_{\text {norm }}$ of 22.1% with a laser power of 40% and a laser on-time of 30 s depicts a clear binding signal for compound 3. 200nM NT647-labeled BRD9 was incubated with $500 \mu \mathrm{M}$ compound $\mathbf{3}$ at a final DMSO concentration of 5%; d) Confirmation of primary FBS hits bei $2 \mathrm{D}{ }^{1} \mathrm{H} /{ }^{15} \mathrm{~N}$ HSQC NMR. Significant chemical shift perturbation observed which is indicative for site specific binding of compound 3 to the bromodomain of BRD $9\left(75 \mu \mathrm{M}{ }^{15} \mathrm{~N}\right.$ labeled protein in the presence of $500 \mu \mathrm{M}$ compound $\mathbf{3}$ and $1 \% \mathrm{~d} 6 \mathrm{DMSO}$). Alterations in the complex spectrum are very similar to those obtained for an in-house positive control suggesting that compound $\mathbf{3}$ binds to the acetyl-lysine binding site; e) SPR Kd data for $\mathbf{3}$. The equilibrium binding data can be fitted to a $1: 1$ binding model, yielding a Kd of $39 \mu \mathrm{M}$.

Report Pa	Parameters		
KD (M)	Rmax (RU)	offset (RU)	Chi' ${ }^{\left(R U^{2}\right.}{ }^{\text {) }}$
$3.959 \mathrm{E}-5$			0.0806
	38.57	-0.6238	

Supplementary Figure 4. Virtual Screening of HiCoS compounds cascade leading to the selection of 208 molecules: docking in BRD9 BD, followed by pharmacophore shape-based mapping.

HiCoS Library (73,474 molecules)

Supplementary Figure 5. Stereo image of compound 3 (PDB code 5F2P) bound to BRD9 (wall-eye stereo). The refined $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 6. Stereo image of compound 3 (PDB code 5F2P)bound to BRD9 (cross-eye stereo). The refined $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 7. Stereo image of compound 4 (PDB code 5F25) bound to BRD9 (wall-eye stereo). The refined $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 8. Stereo image of compound 4 (PDB code 5F25) bound to BRD9 (cross-eye stereo). The refined $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 9. Stereo image of Compound 11 (PDB code 5F1L) bound to BRD9 (wall-eye stereo). The refined $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 10. Stereo image of Compound 11 (PDB code 5F1L) bound to BRD9 (cross-eye stereo). The refined $2 \mathrm{~F}_{\mathrm{o}}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ

Supplementary Figure 11. ${ }^{1}$ Stereo image of 1 (PDB code 5EU1) bound to BRD9 (wall-eye stereo). The refined $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 12. ${ }^{1}$ Stereo image of $\mathbf{1}$ (PDB code 5EU1) bound to BRD9 (cross-eye stereo). The refined $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 13. Stereo image of 2 (PDB code 5F1H) bound to BRD9 (wall-eye stereo). The refined $2 \mathrm{~F}_{\mathrm{o}}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 14. Stereo image of 2 (PDB code 5F1H) bound to BRD9 (cross-eye stereo). The refined $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electon density is countoured at 1σ.

Supplementary Figure 15. Bromodomain selectivity profile for $\mathbf{1}$ using differential scanning fluorimetry against 48 bromodomains a) thermal shift difference upon treatment with $\mathbf{1}$ $\left(\Delta \mathrm{Tm}{ }^{\circ} \mathrm{C}\right) \mathbf{b}$) histogram representation of the selectivity pattern using DSF.
$\mathbf{1}$ showed binding to BRD9, BRD7 and CECR2 bromodomains. $\mathbf{1}$ is highly selective towards the BET family members.
a

target	
ASH1L	0.19
ATAD2	-0.04
BAZ1A	-0.3
BAZ1B	-0.57
BAZ2A	-0.14
BAZ2B	-0.38
BRD1	-0.17
BRD2(1)	-0.26
BRD2(2)	-0.6
BRD3(1)	-0.41
BRD3(2)	-0.51
BRD4(1)	-0.4
BRD4(2)	0.23
BRD7	9.74
BRD9	11.38
BRDT(1)	-1.03
BRDT(2)	-0.55
BRPF1A	-0.34
BRPF1B	2.2
BRPF3	-0.26
BRWD3(2)	-1.71
CECR2	8.22
CREBBP	-0.15
EP300	0.95
FALZ	0.33
GCN5L2	-0.48
ATAD2B	0
SP140L	0
MLL	-0.05
PB1(1)	0
PB1(2)	0.23
PB1(3)	0.31
PB1(4)	-0.18
PB1(5)	0.22
PB1(6)	-0.31
PCAF	-0.46
PHIP(2)	-2.05
SMARCAZ	0.42
Smarca4	0.32
SP140	-0.17
TAF1(1)	0.4
TAF1(2)	0.21
TAF1L(1)	0.43
TAF1L(2)	-0.56
TIF1-bromo	0.76
TIF1-phd-bromo	-0.08
TRIM28	0.06
WDR9(2)	-0.1

Supplementary Figure 16. Bromodomain selectivity profile for 2 using differential scanning fluorimetry against 48 bromodomains a) thermal shift difference upon treatment with 2 $\left.\left(\Delta \mathrm{Tm}{ }^{\circ} \mathrm{C}\right) \mathbf{b}\right)$ histogram representation of the selectivity pattern using DSF.
$\mathbf{2}$ showed binding to BRD9, BRD7 and CECR2 bromodomains. $\mathbf{2}$ is highly selective towards the BET family members.
a

Protein	
ASH1LA-p017	-0.23
ATAD2A-p023	0.01
BAZ1AA-p007	-0.34
BAZ1BA-p010	-0.17
BAZ2AA-p006	0.62
BAZ2BA-p028	-0.09
BRD1A-p020	0.43
BRD2A-p052	0.3
BRD2A-p058	0.54
BRD3A-p070	0.47
BRD3A-p071	0.87
BRD4A-p088	0.51
BRD4A-p093	0.23
BRD7A-p009	6.47
BRD9A-p022	9.21
BRDTA-p056	0.07
BRDTA-p057	0.09
BRPF1A-p020	-0.03
BRPF18-p006	0.89
BRPF3A-p010	-1
BRWD3A-p010	1.4
CECR2A-p021	5.61
CREBBPA-p068	1.82
EP300A-p028	2.07
FALZA-p019	0.1
GCN5L2A-p013	0.45
KIAA1240A-p016	-0.1
LOC93349A-p026	0.28
MLLA-p016	0.07
PB1A-p096	-0.11
PB1A-p101	-0.28
PB1A-p102	-0.08
PB1A-p103	-0.23
PB1A-p104	0.01
PB1A-p106	0.06
PCAFA-p029	-0.06
PHIPA-p020	-1.01
SMARCA2A-p025	0.11
SMARCA4A-p020	-0.25
SP140A-p013	0.02
TAF1A-p023	0.05
TAF1A-p027	-0.03
TAF1LA-p036	-0.48
TAF1LA-p041	-0.11
TIF1A-p039	-0.66
TIF1A-p041	0.36
TRIM28A-p008	-0.24
WDR9A-p015	-0.02

b

Supplementary Figure 17. DiscoveRx selectivity data for 1. ${ }^{1}$
a) $\%$ ctrl bromoscan selectivity data at $10 \mu \mathrm{M}$ (table and phylogenetic tree); b) BromoMax Kd for selected bromodomains
a

		${ }_{<.1 \%} \square_{<1 \%} \square_{<10 \%} \square_{<35 \%} \square_{\geq 35 \%}$
Gene Symbol	\% ${ }^{\text {ard }} 10000 \mathrm{~m}$	
ATAD2A	62	
ATAD2B	65	Percent Control
BAZ2A	0	Persent Control
bAZ2B	37	0\%
BRD1	1.4	
BRD2(1)	54	0.1\%
BRD2(2)	55	0.1-1\%
BRD3(1)	42	0.1-1\%
BRD3(2)	57	- 1-5\%
BRD4(1)	59	- 5-10\%
BRD4(2)	73	- 10-35\%
BRD7	0.45	
BRD9	0	
BRDT(1)	62	
BRDT(2)	85	III
BRPF1	3	
BRPF3	36	
CECR2	0	
CRebbp	26	
EP300	31	y
FALz	0.2	
GCN5L2	18	1
PERM1(2)	62	
PERM1(5)	90	P
PCAF	39	1 - vin
SMARCA2	29	
SMARCA4	60	1
TAF1(2)	1.7	
TRIM24(PHD, Bromo.)	67	Vı V
TRIM33(PHD,Bromo.)	52	
WDR9(2)	80	

b

Targets	Kd (nM)
BAZ2A	$>3,000$
BRD1	2,600
BRD4-BD1	$>10,000$
BRD7	0.3
BRD9	$\mathbf{0 . 7 5}$
BRPF1	210

Targets	Kd (nM)
CECR2	8.8
CREBBP	8,600
EP300	10,000
FALZ	850
TAF1(2)	1,000
TAF1L(2)	1,200

Supplementary Figure 18. DiscoveRx selectivity data for 2.
a) $\%$ ctrl bromoscan selectivity data at $10 \mu \mathrm{M}$ (table and phylogenetic tree); b) BromoMax Kd for selected bromodomains
a

b

Targets	Kd (nM)
BRD4-BD1	$>10,000$
BRD7	73
BRD9	$\mathbf{5 . 9}$
BRPF1	790
CECR2	77

Targets	Kd (nM)
CREBBP	2,700
FALZ	$>10,000$
GCN5L2	$>10,000$
TAF1(2)	3,800
TAF1L(2)	4,100

Supplementary Figure 19. ITC analysis of 1 in CECR2 (T=293.15K)
Compound 1 binds CECR2 with a K_{D} value of $187 \mathrm{nM}(\Delta \mathrm{H}=-12.4 \mathrm{kcal} / \mathrm{mol})$

ITC type	Protein	$\boldsymbol{K}_{\mathrm{A}}\left(\mathbf{1 0 ^ { 6 }} \mathbf{M}^{-1}\right)$	$\boldsymbol{K}_{\mathrm{D}}(\mathbf{n M})$	\mathbf{N}	$\boldsymbol{\Delta H}(\mathbf{k c a l} / \mathbf{m o l})$	$\mathbf{T} \boldsymbol{\Delta S}$ $(\mathbf{k c a l} / \mathbf{m o l})$	$\boldsymbol{\Delta} \mathbf{G}$ $(\mathbf{k c a l} / \mathbf{m o l})$
VP-ITC	CECR2	5.36 ± 0.46	186.57	1.090 ± 0.005	-12.38 ± 0.089	-3.576	-8.804

Supplementary Figure 20. ITC analysis of 2 in BRD7 and CECR2 (T=293.15 K)
a) Compound 2 binds BRD7 with a K_{D} value of $239 \mathrm{nM}(\Delta \mathrm{H}=-6.9 \mathrm{kcal} / \mathrm{mol})$; b) Compound 2 binds CECR2 with a K_{D} value of $200 \mathrm{nM}(\Delta \mathrm{H}=-11.9 \mathrm{kcal} / \mathrm{mol})$
a

ITC type	Protein	$\boldsymbol{K}_{\boldsymbol{A}}\left(\mathbf{1 0}^{\mathbf{6}} \mathbf{M}^{-1}\right)$	$\boldsymbol{K}_{\mathrm{D}}(\mathbf{n M})$	\mathbf{N}	$\boldsymbol{\Delta H}(\mathbf{k c a l} / \mathbf{m o l})$	$\mathbf{T} \mathbf{\Delta S}$ $(\mathbf{k c a l} / \mathbf{m o l})$	$\boldsymbol{\Delta G}$ $(\mathbf{k c a l} / \mathbf{m o l})$
VP-ITC	BRD7	4.18 ± 0.39	239.23	0.951 ± 0.011	-6.88 ± 0.103	1.879	-8.761

b

ITC type	Protein	$\boldsymbol{K}_{\mathbf{A}}\left(\mathbf{1 0}^{\mathbf{6}} \mathbf{M}^{-\mathbf{1}}\right)$	$\boldsymbol{K}_{\mathrm{D}}(\mathbf{n M})$	\mathbf{N}	$\boldsymbol{\Delta H}(\mathbf{k c a l} / \mathbf{m o l})$	$\mathbf{T} \Delta \mathbf{S}$ $\mathbf{(k c a l} / \mathbf{m o l})$	$\boldsymbol{\Delta G}$ $\mathbf{(k c a l} / \mathbf{m o l})$
VP-ITC	CECR2	4.99 ± 0.17	200.40	1.040 ± 0.002	-11.89 ± 0.032	-3.107	-8.783

Supplementary Figure 21. Recovery After Photobleaching (FRAP) assay U2OS cells transfected with GFP-BRD7 for 1
(a) Influence of $\mathbf{1}$ on half recovery times of U2OS cells transfected with wild-type full-length GFP-BRD7 or the N211F mutant construct. Cells were treated with $2.5 \mu \mathrm{M}$ SAHA (shown by "\#") to increase the assay window. Bars indicate by * indicates $\mathrm{p}<0.05$ significant difference from wt treated with SAHA. (b) Time dependence of fluorescence recovery in the bleached area of cells expressing wt or mutant GFP-BRD7 with the corresponding treatment as in (a).

Curves represent averaged data of at least 20 replicates.

a
\# $2.5 \mu \mathrm{M}$ SAHA
b

Supplementary Figure 22. Recovery After Photobleaching (FRAP) assay U2OS cells transfected with GFP-BRD7 for 2
(a) Influence of $\mathbf{2}$ on half recovery times of U2OS cells transfected with wild-type full-length GFP-BRD7 or the N211F mutant construct. Cells were treated with $2.5 \mu \mathrm{M}$ SAHA (shown by "\#") to increase the assay window. Bars indicate by * indicates $\mathrm{p}<0.05$ significant difference from wt treated with SAHA. (b) Time dependence of fluorescence recovery in the bleached area of cells expressing wt or mutant GFP-BRD7 with the corresponding treatment as in (a).

Curves represent averaged data of at least 20 replicates.

Supplementary Figure 23. Recovery After Photobleaching (FRAP) assay U2OS cells transfected with GFP-CECR2 for 2
(a) Influence of $\mathbf{2}$ on half recovery times of U2OS cells transfected with wild-type full-length GFP-CECR2 or the N140F mutant construct. Cells were treated with $2.5 \mu \mathrm{M} \mathrm{SAHA}$ (shown by "\#") to increase the assay window. Bars indicate by * indicates $\mathrm{p}<0.05$ significant difference from wt treated with SAHA. No cellular inhibition of CECR2 bromodomain was observed with $1 \mu \mathrm{M} 2$ (b) Time dependence of fluorescence recovery in the bleached area of cells expressing wt or mutant GFP-CECR2 with the corresponding treatment as in (a).

Curves represent averaged data of at least 20 replicates.

Supplementary Figure 24. Selectivity profile of 2 towards kinase and GPCR
a) kinase selectivity profile ($\%$ inhibition at $10 \mu \mathrm{M}$ on 324 kinases). 282 kinases showed < 10% inhibition at $10 \mu \mathrm{M}, 3$ kinases showed $>40 \%$ inhibition at $10 \mu \mathrm{M}\left[\mathrm{IC}_{50}(\mathbf{2}\right.$, ACVR1) $=5090$ $\mathrm{nM}, \mathrm{IC}_{50}(\mathbf{2}$, TGFBR1 $)=5140 \mathrm{nM}, \mathrm{IC}_{50}(\mathbf{2}$, ACVR2B $\left.)=7680 \mathrm{nM}\right]$; b) GPCR selectivity profile (\% inhibition at $10 \mu \mathrm{M}$ on 55 GPCR). 2 GPCR showed $>40 \%$ Inhibition at $10 \mu \mathrm{M}$

a

\%Inhibition at $10 \mu \mathrm{M}$

b

$\mathrm{n}=55$

Supplementary Figure 25. PK profile of 1 in mice upon i.v. administration ($5 \mathrm{mg} / \mathrm{kg}$)

Supplementary Figure 26. PK profile of $\mathbf{1}$ in mice upon p.o. administration ($20 \mathrm{mg} / \mathrm{kg}$)

Blood Plasma profile of BI-7273 in mouse BomTac:NMRI-Foxn1nu following per os, fed animal administration of $\mathbf{5 6 . 5 9 0 6 8 7 2 6 ~} \mu \mathrm{Mol} / \mathrm{kg} \mathrm{BI}-7273$

Supplementary Figure 27. PK profile of 1 in mice upon p.o. administration ($180 \mathrm{mg} / \mathrm{kg}$)

Supplementary Figure 28. PK profile of 2 in mice upon i.v. administration ($5 \mathrm{mg} / \mathrm{kg}$)

Supplementary Figure 29. PK profile of $\mathbf{2}$ in mice upon p.o. administration ($20 \mathrm{mg} / \mathrm{kg}$)

Supplementary Figure 30. PK profile of 2 in mice upon p.o. administration ($180 \mathrm{mg} / \mathrm{kg}$)

Supplementary Figure 31. Representation of the EC50s of 2 over various cell lines. (Red bars: AML cell lines).

Supplementary Figure 32. Dose dependent partial reduction in MYC levels by BRD9 inhibitors. MV-4-11 cells were treated for 2 hour with BRD9 inhibitors before analysis of MYC protein levels by ELISA
a) MYC reduction levels upon treatment with 13, b) MYC reduction levels upon treatment with 15, c) MYC reduction levels upon treatment with 1, d) MYC reduction levels upon treatment with 2

Supplementary Table 1. Small molecules screening data

Category	Parameter	Description	Description	Description
Assay	Type of assay	Thermal Shift	Surface Plasmon	Microscale
Assay (DSF)	Resonance	Thermophoresis		
	Target	BRD9	BRD9	BRD9
	Primary measurement	Protein Stability	Mass increase	Protein mobility in temperature gradient
	Key reagents	Fluorescent Dye	His-tagged protein	Fluorescent Dye
	Assay protocol	Anal Biochem.	J.Biomol.	ChemMedChem.
		1;332(1):153-9.	Screening 2009	14:337-49

$\left.\left.\begin{array}{lllll} & \begin{array}{l}\text { Assay } \\ \text { validation/QC }\end{array} & Z^{\prime}=0.55 & Z^{\prime}=0.93 \\ & \text { Correction factors }\end{array} \quad \begin{array}{l}\text { DMSO solvent } \\ \text { correction }\end{array}\right] \begin{array}{l}\text { Normalization to } \\ \text { positive control }\end{array}\right]$

Supplementary Table 2. Crystallographic data collection and refinement statistics (molecular replacement)

Compound 3 Compound $4 \quad$ Compound 11

Data collection

Space group
P 22_{1} 2
P 21212
P $22_{1} 2$
Cell dimensions

$\quad a, b, c(\AA)$	$70.92,125.41,29.53$	$71.04,125.02,29.94$	$70.31,125.17,30.02$
$\quad \alpha, \beta, \gamma\left({ }^{\circ}\right)$	$90.00,90.00,90.00$	$90.00,90.00,90.00$	$90.00,90.00,90.00$
Resolution (A)	$1.80(1.97-1.80)^{*}$	$1.68(1.81-1.68) *$	$2.27(2.54-2.27) *$
$C C 1 / 2$	$0.999(0.973)$	$1.000(0.950)$	$0.999(0.955)$
Rmerge	$4.4(54.9)$	$3.0(59.1)$	$4.6(123.6)$
$I / \sigma I$	$20.3(3.3)$	$30.9(3.6)$	$24.7(3.2)$
Completeness (\%)	$99.7(99.5)$	$99.9(100.0)$	$98.9(98.3)$
Redundancy	$6.0(5.7)$	$6.3(6.3)$	$6.3(6.4)$

Refinement

Resolution (\AA)	1.80	1.68	2.30
No. reflections	25074	31312	12218
$R_{\text {work }} / R_{\text {free }}(\%)$	$20.3 / 22.0$	$18.9 / 20.5$	$19.2 / 20.9$

No. Atoms
Protein
Ligand/ion
Water
-factors $\left(\AA^{2)}\right.$

Protein	42.56	36.53	70.54
\quad Ligand/ion	35.66	34.64	69.30
\quad Water	48.12	46.45	62.57
Estimated Coordinate Error (\AA)	0.301	0.253	0.400

R.m.s. deviations

Bond length $\left(\begin{array}{l}\text { Å) }\end{array}\right.$	0.008	0.008	0.009
Bond angles $\left({ }^{\circ}\right)$	0.80	0.81	0.92

[^0]
Compound $1^{1} \quad$ Compound 2

Data collection

Space group
P $2{ }_{1} 2_{1} 2$
P $22_{1} 2$
Cell dimensions

$a, b, c(\AA)$	$70.80,125.34,29.92$	$70.03,125.36$, 29.68
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$90.00,90.00,90.00$	$90.00,90.00$, 90.00
Resolution (\AA)	$1.60(1.79-1.605) *$	$1.82(2.10-1.82)$
$C C 1 / 2$	$1.000(0.924)$	$0.999(0.961)$
Rmerge	$3.2(101)$	$4.4(88.6)$
$I / \sigma I$	$26.2(3.1)$	$19.9(3.4)$
Completeness $(\%)$	$99.9(98.7)$	$99.7(99.7)$
Redundancy	$6.3(6.3)$	$6.4(6.4)$

Refinement

Resolution (\AA)	1.60	1.82
No. reflections	35816	24186
$R_{\text {work }} / R_{\text {free }}(\%)$	$17.8 / 19.2$	$19.1 / 20.2$

No. Atoms

Protein	1851	1841
Ligand/ion	52	52
Water	352	208

B-factors $\left(\AA^{2}\right)$		
Protein	35.75	49.63
Ligand/ion	32.13	43.47
Water	47.24	53.11
Estimated Coordinate Error (\AA)	0.226	0.285

R.m.s. deviations

Bond lengths (\AA)	0.009	0.009
Bond angles $\left({ }^{\circ}\right)$	0.81	0.83

[^1]Supplementary Table 3. Literature BRD9 inhibitors: LP99 binds BRD9 anchor region Asn100 via its methyl quinolinone, I-BRD9 binds BRD9 anchor region Asn100 via its ethylthienopyridone, Compound 28 binds BRD9 anchor region Asn100 via the ketone.

${ }^{1}$ Hohmann, A. F.; Martin, L. J.; Minder, J.; Roe, J-S.; Shi, J.; Steurer, S.; Bader; G., McConnell, D.; Pearson, M.; Gerstberger, T.; Gottschamel, T.; Thompson, D.; Suzuki, Y.; Koegl, M.; Vakoc, C. R A bromodomain-swap allele demonstrates that on-target chemical inhibition of BRD9 limits the proliferation of acute myeloid leukemia cells, manuscript submitted for publication.
${ }^{2}$ Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J. P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; Gingras, A. C.; Arrowsmith, C. H.; Knapp, S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 2012, 149, 214-231.
${ }^{3}$ Kimple, A. J., Muller, R. E.; Siderovski, D. P.; Willard, F. S. A capture coupling method for the covalent immobilization of hexahistidine tagged proteins for surface plasmon resonance Methods Mol. Biol. 2010, 627, 91-100.
${ }^{4}$ Giannetti, A. M. From experimental design to validated hits: a comprehensive walk-through of fragment lead identification using surface plasmon resonance Methods in Enzymology 2011, 493, 169-218.
${ }^{5}$ Zhang, J. H., Chung, T. D. Y.; Oldenberg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays Journal of Biomolecular Screening 1999, 4, 67-73.
${ }^{6}$ Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.; Fedorov, O.; Morse, E. M.; Keates, T.; Hickman, T. T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M. R.; Wang, Y.; Christie, A. L.; West, N.; Cameron, M. J.; Schwartz, B., Heightman, T. D.; La Thangue, N.; French, C. A.; Wiest, O.; Kung, A. L.; Knapp, S.; Bradner, J. E. Selective inhibition of BET bromodomains. Nature 2010, 468, 1067-1073.
${ }^{7}$ Jerabek-Willemsen, M., Wienken, C. J., Braun, D. Baaske, P.; Duhr, S. Molecular interaction studies using microscale thermophoresis Assay Drug Dev Technol. 2011, 9, 342-353.
${ }^{8}$ Mori, S., Abeygunawardana, C., Johnson, M. O.; Vanzijl, P. C. M. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation J. Magn. Reson. B 1995, 108, 94-98.
${ }^{9}$ Ross, A.; Senn, H. Automation of biomolecular NMR screening Curr Top Med Chem. 2003, 3, 55-67.
${ }^{10}$ Peng, C.; Unger, S. W.; Filipp, F.V.; Sattler, M. ;Szalma, S. Automated evaluation of chemical shift perturbation spectra: New approaches to quantitative analysis of receptor-ligand interaction NMR spectra J.

Biomol. NMR 2004, 29, 491-504.
${ }^{11}$ Vonrhein, C.; Flensburg, C.; Keller, P.; Sharff, A.; Smart, O.; Paciorek, W.; Womack, T.; Bricogne, G. Data processing and analysis with the autoPROC toolbox. Acta Cryst. 2011, D67, 293-302
${ }^{12}$ Collaborative Computational Project, Number 4 The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst. 1994, D50, 760-763.
${ }^{13}$ Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan K. Features and development of Coot. Acta Cryst. 2010, D66,486-501.
${ }^{14}$ Chen, V. B.; Arendall, W. B. $3^{\text {rd }}$; Headd , J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 12-21.
${ }^{15}$ Philpott, M.; Rogers, C. M.; Yapp, C.; Wells, C.; Lambert, J. P.; Strain-Damerell, C.; Burgess-Brown, N. A.; Gingras, A. C.; Knapp, S.; Müller, S. Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching Epigenetics Chromatin 2014, 7, 1-12.
${ }^{16}$ Rudolph, D.;, Impagnatiello, M. A.; Blaukopf , C.; Sommer, C.;, Gerlich, D. W.;, Roth, M.; Tontsch-Grunt, U.; Wernitznig, A.; Savarese, F.; Hofmann, M. H.; Albrecht, C.; Geiselmann, L.; Reschke, M.; Garin-Chesa, P.; Zuber, J.;, Moll, J.;, Adolf, G. R.; Kraut, N. Efficacy and mechanism of action of volasertib, a potent and selective inhibitor of Polo-like kinases, in preclinical models of acute myeloid leukemia J. Pharmacol. Exp.Ther. 2015, 352, 579-589.
${ }^{17}$ Luippold, A. H.; Arnhold, T.; Jörg, W.; Krüger, B.; Süssmuth, R. D. Application of a Rapid and Integrated Analysis System (RIAS) as a High-Throughput Processing Tool for In Vitro ADME Samples by Liquid Chromatography/Tandem Mass Spectrometry. J. Biomol. Screening 2011, 16, 370-377.
${ }^{18}$ Clark, P. G. K.; Vieira, L. C. C.; Tallant, C.; Fedorov, O.; Singleton, D. C.; Rogers, C. M.; Monteiro, O. P.; Bennett, J. M.; Baronio, R.; Müller, S.; Daniels, D. L.; Mendez, J.; Knapp, S.; Brennan, P.; Dixon, D. J. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor Angew. Chem. Int. Ed. 2015, 54, 6217-6221.
${ }^{19}$ Theodoulou, N. H.; Bamborough, P.; Bannister, A. J.; Becher, I.; Bit, R. A.; Che, K. H.; Chung, C.-W.; Dittmann, A.; Drewes, G.; Drewry, D. H.; Gordon, L.; Grandi, P.; Leveridge, M.; Lindon, M.; Michon, A.-M.; Molnar, J.; Robson, S. C.; Tomkinson, N. C. O.; Kouzarides, T.; Prinjha, R. K.; Humphreys, P. G. Discovery of I-BRD9, a Selective Cell Active Chemical Probe for Bromodomain Containing Protein 9 Inhibition J. Med. Chem. [Online early access]. DOI: 10.1021/acs.jmedchem.5b00256. Published Online: April 9, 2015.
${ }^{20}$ Hay, D. A.; Rogers, C. M.; Fedorov, O.; Tallant, C.; Martin, S.; Monteiro, O. P.; Muller, S.; Knapp, S.; Schofield, C. J.; Brennan, P. E. Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains Med. Chem. Commun. 2015, 6, 1381-1386.

[^0]: *Values in parentheses are for highest-resolution shell.

[^1]: *Values in parentheses are for highest-resolution shell.

