SUPPORTING INFORMATION: Distinguishing Bonds

Martin Rahm* and Roald Hoffmann

Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853, USA.

Table of Contents

Test of Reliability with Respect to the Level of Theory1
Analysis of Some Homonuclear Diatomics
Q and Select Bond Characteristics For All Investigated Diatomics, Including Correlation Energy
Tentative Relationship Between Q and Overlap of Atomic Orbitals
Comments on the Possibility of Scaled Measures of Covalency (0-100%)

Test of Reliability with Respect to the Level of Theory

TABLE S0. Reliability of ΔE , $\Delta \overline{\chi}$, $\Delta \omega$ and Q with respect to level of theory, tested on nitrogen oxide. The experimental bond length and the 6-31+G(d) basis set was used. All levels of theory agree on $\Delta \overline{\chi}$, but the missing correlation energy in Hartree-Fock (UHF) results in a too small bond energy, and a greatly overestimated Q.

² NO	ΔE	$\Delta E/n$	$\Delta \overline{\chi}$	$\Delta \omega / n$	$\Delta(\mathrm{V_{NN}}{+}\omega)/n$	Q	
Best Est. ^a	-6.66	-0.44	-2.08	-45.08	+1.64	8.4	-
ULC-BLYP	-6.81	-0.45	-2.11	-45.06	+1.65	8.3	
UB3LYP	-6.53	-0.44	-2.12	-45.03	+1.68	8.7	
UPBE	-7.28	-0.49	-2.07	-45.13	+1.58	7.5	
UwB97X-D	-6.48	-0.43	-2.16	-44.99	+1.73	9.0	
UHF	-2.10	-0.14	-2.12	-44.74	+1.98	29.3	

^a ΔE is experimental, $\Delta \overline{\chi}$ evaluated using ULC-BLYP/aug-cc-pVQZ

Analysis of Some Homonuclear Diatomics

	$\Delta E^{\rm b}$	$\Delta E/n$	$\Delta \overline{\chi}^{c}$	$\Delta(V_{\rm NN}+\omega)/n$	Q
Reaction ^a :	[eV]	$[eV e^{-1}]$	$[eV e^{-1}]$	[eV e ⁻¹]	
$2^{2}H \rightarrow H_{2}$	-4.792	-2.396	-1.828 ^a	-0.568	0.53
$2 \ ^2\text{Li} \rightarrow \text{Li}_2$	-1.09	-0.181	+0.54	-0.72	-6.9
$2 \text{ Be} \rightarrow \text{Be}_2$	-0.11 ^d	-0.014	-0.10	+0.09	13.2
$2 \ ^2B \rightarrow \ ^3B_2$	-3.07	-0.307	-0.59	+0.29	2.9
$2 {}^{3}C \rightarrow C_{2}$	-6.29	-0.524	-1.08	+0.56	3.1
$2 \ ^4N \rightarrow N_2$	-9.94	-0.710	-2.35	+1.64	5.6
$2 {}^{3}O \rightarrow {}^{3}O_{2}$	-5.26	-0.329	-1.70	+1.37	9.3
$2 \ ^2F \to F_2$	-1.70	-0.095	-0.80	+0.71	16.0
2^{2} Na \rightarrow Na ₂	-1.81	-0.035	+0.60	-0.63	-35.2
$2 {}^{2}Al \rightarrow {}^{3}Al_{2}$	-1.81	-0.070	-0.09	+0.02	1.5
$2 \ ^2 Cl \rightarrow Cl_2$	-2.55	-0.075	-0.43	+0.35	10.4

TABLE S1. Bond character of homonuclear diatomics determined via an intermixed use of experimental and theoretical data.

^aThe spin multiplicity is singlet, unless otherwise specified. ^bExperimental data from NIST Chemistry WebBook. $\Delta E \approx \Delta H^0 - E_{ZPE}$, where $E_{ZPE} = \frac{1}{2}h\sum v_i$ ^c From LC-BLYP/aug-cc-pVQZ calculations, except for H and H₂, where the experimental values of $\overline{\chi}_{H} = -13.598$ eV and $\overline{\chi}_{H2} = -15.426$ eV were used. ^d $\Delta E \approx \Delta H^0$ as E_{ZPE} can be presumed small, and no vibrational data is available for Be₂.

Q and Select Bond Characteristics For All Investigated Diatomics, Including Correlation Energy.

Species ^a	Q	ΔE^{b}	$\Delta \overline{\chi}^{c}$	$\Delta(V_{\rm NN}+\omega)/n$	ΔE	Correlation energy
		Exp. (eV)	[eV e ⁻¹]	[eV e ⁻¹]	HF/aug-cc-pVQZ (eV)	(%)
Ne ₂	~79	-364x10 ⁻⁵	-727x10 ⁻⁵	$+708 \text{x} 10^{-5}$	+159x10 ^{-5f}	144
Kr ₂	~57	-173x10 ⁻⁴	-693x10 ⁻⁵	$+669 \times 10^{-5}$	$+167 x 10^{-4 f}$	197
Xe ₂	~57	-243x10 ⁻⁴	-658x10 ⁻⁵	$+635 \times 10^{-5}$	+233x10 ^{-4f}	196
Ar ₂	~37	-123x10 ⁻⁴	-646x10 ⁻⁵	$+611 \times 10^{-5}$	$+110 \times 10^{-4 f}$	189
He ₂	~29	-944x10 ⁻⁶	-354x10 ⁻⁵	$+330 \times 10^{-5}$	-720x10 ^{-6f}	177
I_2	24.8	-1.58	-0.19	+0.18	-0.65 ^f	59
F_2	16.0	-1.70	-0.80	+0.71	+1.6	195
OF	14.2	-2.31	-1.03	+0.90	+0.7	129
Be ₂	13.2	-0.11 ^e	-0.10	+0.09	+0.3	384
ClF	13.0	-2.65	-0.71	+0.61	-0.3	87
NF	11.3	-3.21	-1.24	+1.04	-0.9	73
${\rm H_2}^+$	11.3	-2.65	-16.34	+13.688	-2.8	5
Cl_2	10.4	-2.55	-0.43	+0.35	-0.8	69
O ₂	9.3	-5.26	-1.70	+1.37	-1.4	73
NO	8.4	-6.66	-2.08	+1.64	-2.3	65
CF	7.8	-5.69	-1.68	+1.30	-3.5	38
N_2	5.6	-9.94	-2.35	+1.64	-5.0	50
BF	4.7	-7.91	-1.62	+1.05	-6.0	25
СО	4.0	-11.29	-2.02	+1.22	-7.6	33
CN	3.4	-7.95	-1.33	+0.72	-3.9	51
C_2	3.1	-6.29	-1.08	+0.56	-0.5	92
B_2	2.9	-3.07	-0.59	+0.29	-0.8	75
Al_2	1.5	-1.81	-0.09	+0.02	-0.4	77
СН	1.3	-3.71	-0.61	+0.08	-2.47	33
BH	1.1	-3.62	-0.64	+0.03	-2.7	26
BN	0.7	-5.85	-0.43	-0.06	-2.3	60
H_2	0.5	-4.79	-1.83	-0.568	-3.6	24
BO	-0.8	-8.27	-0.08	-0.56	-5.8	30
AlH	-1.9	-3.10	+0.10	-0.324	-2.3	27
HF	-2.4	-6.17	+0.42	-1.04	-4.2	32
LiH	-3.9	-2.58	+0.93	-1.57	-1.5	43
SiS	-3.1	-6.48	+0.22	-0.44	-3.9	40
HC1	-3.2	-4.66	+0.28	-0.54	-3.3	29
BeF	-3.4	-6.02	+0.55	-1.01	-5.0	17
Li ₂	-6.9	-1.09	+0.53	-0.72	-0.2	85

TABLE S2. A Q value deviating from unity implies the presence of multielectron effects. One part of such multielectron effects includes the missing post-Hartree-Fock correlation energy.

NaH	-7.0	-2.16	+0.54	-0.72	-0.9	58
AlO	-8.8	-5.37	+1.00	-1.25	-2.4	55
Cu ₂	-9.0	-2.08	+0.14	-0.18	-0.7	65
AlS	-10.3	-3.86	+0.62	-0.75	-2.5	35
BeO	-14.9	-4.62	+2.68	-3.06	-1.7	64
LiF	-17.0	-6.06	+4.03	-4.54	-3.9	35
NaF	-25.2	-4.98	+3.01	-3.26	-2.9	42
NaCl	-29.9	-4.27	+2.21	-2.36	-3.0	29
H	-33.1	-0.75	+6.05	-6.42	+0.33	144
Na ₂	-35.2	-0.77	+0.60	-0.63	+0.03	104
CsCl	-39.8	-4.55	+1.23	-1.29	-3.36 ^f	26
KBr	-70.9	-3.96	+2.56	-2.64	-2.97 ^f	25
CsI	-103.0	-3.50	+1.65	-1.68	-2.79 ^f	20
Cs_2	-131.3	-0.48	+0.28	-0.29	$+0.23^{f}$	149

^a The spin multiplicity is that of the ground state. ^b Experimental data from NIST Chemistry WebBook. $\Delta E \approx \Delta H^0 - E_{ZPE}$, where $E_{ZPE} = \frac{1}{2}h\sum v_i$ ^cFrom LC-BLYP/aug-cc-pVQZ calculations. Exceptions are H and H₂, where the experimental values of $\overline{\chi}_{H} = -13.598$ eV and $\overline{\chi}_{H2} = -15.426$ eV were used. CsCl, KBr, CsI, Cs₂ and I₂ were calculated using a Douglas-Kroll-Hess 2nd order scalar relativistic Hamiltonian and the ANO-RCC basis set. All noble gas-dimers where calculated using a Douglas-Kroll-Hess 2nd order scalar relativistic Hamiltonian and the QZP-DKH basis set. ^dCorrelation energy defined as the difference between the Hartree-Fock and experimental bond dissociation energies. ^e $\Delta E \approx \Delta H^0$ as E_{ZPE} can be presumed small, and no vibrational data is available for Be₂. ^fCalculated using a Douglas-Kroll-Hess 2nd order scalar relativistic Hamiltonian and the basis set specified in footnote c.

Tentative Relationship Between Q and Overlap of Atomic Orbitals

TABLE S3. Molecules with predicted high covalency (Q near 1) hints at a relation with the spatial overlap of atomic orbitals.

Bond	d_{\exp} [Å]	Q	Bond orbital type
BH	1.232	1.1	$2p-1s$, σ_u
³ BN	1.281	0.7	2 <i>p</i> -2 <i>p</i> , σ _g
H_2	0.741	0.5	1 <i>s</i> -1 <i>s</i> , σ _g
Al_2	2.466	1.5	3 <i>p</i> -3 <i>p</i> , σ _g

Comments on the Possibility of Scaled Measures of Covalency (0-100%)

The concept of "covalency" might be thought of as a percentage, or fraction of a whole. Because the Q scale (Eq. S0) is unbound and because it has a *sign* which allows for two ways of diverging from the "perfectly covalent" case at Q = 1, the Q scale inherently conveys more information than any arbitrarily bound percentage value for covalency could.

$$Q = \frac{\Delta \overline{\chi}}{\Delta E / n} - \frac{\Delta \overline{\chi}}{\Delta E / n} = \frac{\Delta \overline{\chi} - \Delta (V_{NN} + \omega) / n}{\Delta E / n} = \frac{\Delta \overline{\chi} - \Delta (V_{NN} + \omega) / n}{\Delta \overline{\chi} + \Delta (V_{NN} + \omega) / n} = \frac{K - 1}{K + 1} = \frac{2n\Delta \overline{\chi}}{\Delta E} - 1$$

$$K = \frac{\Delta \overline{\chi}}{\Delta (V_{NN} + \omega) / n}$$
(S0)

If one is willing to live without this extra information, one can introduce different arbitrary scaling formulations for Q that, for instance, constrain the scale between zero and one hundred percent. We do not advise this, we merely comment on the possibility. Different approaches to the arbitrary scaling of Q can be conceived by basing a measure of covalency on the two units of Q within the range -1.0 < Q < 1.0,

$$Q$$
 - Covalence (0-100%) = $100 \times \left(1 - \frac{|Q-1|}{2 + |Q-1|}\right)$ (S1)

Equation S1 could serve the purpose of connecting the intuitively engrained concept of bond covalency as a fraction or percentage to the measure of bond character that is Q. The quite significant downside is, again, that the sign of Q (which is informative) is lost. A further downside with the scaling described by equation S1 handles the singularity at Q = -1 by forcing a value of 50% at this point. As have been argued in the main text the covalency at Q = -1 should equal 0%, because at this point $\Delta E = \Delta (V_{NN} + \omega)/n$ and $\Delta \chi = 0$.

Expressing Covalency (0-100 %) as a function of $\Delta(V_{NN} + \omega)/n$ and $\Delta \overline{\chi}$

Another formulation (not based on Q) that makes away with the singularity is given by equation S2.

$$Covalency \ (\%) = \underbrace{\frac{100 \times (\left|\Delta \overline{\chi}\right| - \Delta \overline{\chi})}{2} \times \left(\frac{1}{\left|(\Delta V_{NN} + \Delta \omega) / n\right| - \Delta \overline{\chi}}\right)}_{\text{active for nuclear-resisted bonds}} + \underbrace{\frac{100 \times (\left|\Delta \overline{\chi}\right| + \Delta \overline{\chi})}{2} \times \left(\frac{1}{\left(\Delta V_{NN} + \Delta \omega\right) / n\right)} + \frac{1}{\Delta \overline{\chi}}\right)}_{\text{active for multielectron-favored bonds}}$$
(S2)

In this formulation, covalence is expressed differently depending whether the bond in question is nuclear-resisted $(\Delta \overline{\chi} < 0)$ or multielectron-favored $(\Delta \overline{\chi} > 0)$. Nuclear favored bonds are here constrained from 50-100%, and multielectron-favored bond range from 0-50%. Quite chemically reasonably values are obtained, as shown by Table S4. H₂, HF and NaCl, are for instance classified as 76, 59 and 6% covalent, respectively.

TABLE S4. Example "covalency" percentages calculated using equation S2.

Species ^a	Q	Covalency (%)
BH	1.1	95.2
СН	1.3	88.6
BN	0.7	87.4
Al_2	1.5	83.4
H ₂	0.5	76.3

AlH	-1.9	68.3
B_2	2.9	67.4
C ₂	3.1	66.0
CN	3.4	64.9
СО	4.0	62.4
BF	4.7	60.6
HF	-2.4	59.3
N_2	5.6	58.9
CF	7.8	56.4
NO	8.4	56.0
O ₂	9.3	55.4
Cl ₂	10.4	54.8
NF	11.3	54.4
${\rm H_2}^+$	11.3	54.4
Be ₂	13.2	53.8
ClF	13.0	53.8
OF	14.2	53.5
F_2	16.0	53.1
I_2	24.8	52.0
He ₂	~29	51.7
Ar ₂	~37	51.4
Kr ₂	~57	50.9
Xe ₂	~57	50.9
Ne ₂	~79	50.6
SiS	-3.1	49.3
HCl	-3.2	47.6
BeF	-3.4	45.8
LiH	-3.9	41.0
Li ₂	-6.9	25.3
NaH	-7.0	24.9
AlO	-8.8	20.4
Cu ₂	-9.0	20.0
AlS	-10.3	17.8
BeO	-14.9	12.6
BO	-0.8	11.8
LiF	-17.0	11.1
NaF	-25.2	7.6
NaCl	-29.9	6.5
H	-33.1	5.9
Na ₂	-35.2	5.5
CsCl	-39.8	4.9
KBr	-70.9	2.8

CsI	-103.0	1.9
Cs ₂	-131.3	1.5