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I. Thermal stability of QH states 

Figure S1 shows thermal dependences of QHE
1, 2

 at a fixed magnetic field B = 9T. We transform 

the x axis Vg into filling fraction v by v = n/n’, where n = (C*∆Vg)
0.5

/e is the carrier density and 

n’=Be/h is the number of quantum flux per unit area at a given magnetic field B, while C is 

capacitance per unit area and e is the elementary charge. By doing so it is easy to identify two-fold 

lifted QH states v = 2N with N = 1, 2, 3…the landau level index from the x axis, indicated by 

resistance minima in Fig. S1a, while it is a little bit more complicated at the hole side (N = -1, -2, 

-3…) due to the strong influence of SDP. Note that we can identify v=0 state by transforming the 

resistance into conductance σxx = Rxx/(Rxx
2
+Rxy

2
), with Hall resistance into account. 

Correspondingly, the QH gaps are instead indicated by conductance minima in Fig. S1b, and it is 

clear that there is a minimum at around v = 0, suggesting v = 0 QH state developed
3
 there, and it 



disappears once T>20K as shown in Fig. S1c. We also included Hall conductance σxy = 

Rxy/(Rxx
2
+Rxy

2
) in Fig. S1d, and what is odd is that the σxy around v=0 is equal to ~0.4e

2
/h instead 

of 0, which may suggest an onset of 1/3 fractional quantum Hall state. 

 

Figure S1. a-b are thermal dependence of longitudinal resistance Rxx (a) and longitudinal conductance σxx (b), with 

the x axis converted to filling factor for convenience in identifying quantized gaps. c is the zoomed-in plot of b 

around DP, and d is the corresponding hall conductance. 

A clearer and more comprehensive way to investigate the thermal stability of the QH states, 

including QH gaps from SDP and Hofstadter butterfly fractal states
4
, which are shown in Figure 

S2. It is clear that the LLs from DP and the LLs from SDPs, as well as the fractal Hofstadter 

butterfly states are well preserved at T = 20K as shown in Fig. S1a and S1d, compared to Fig. 2b 

at T =1.8K in the main text. However, when the temperature is increased further, symmetry broken 

states like v = 0, ±1, 4n from DP, as well as vs=0, ±6, ±10 from hSDP (superlattice Dirac point at 

hole side) and the fractal Hofstadter gaps
4-8

 at Ф/Ф0=1/3 are greatly suppressed and they become 

barely visible at T > 30K. 



 

Figure S2. a-c are colored mapping of Rxx for a temperature of T = 20K, 30K, and 40K respectively. d-f are the 

corresponding colored mapping of σxx.  

 

II. Onset of v = 0, 1 at low magnetic field 

Figure S3a is the zoomed-in image of Fig. 3a in the main text. The carrier density is chosen close 

to DP from -1.5*10
12

/cm
2
 to 1.5*10

12
/cm

2
, and the color of σxx mapping is chosen in log scale to 

identify LLs at small filling fraction. We can see that symmetry broken QH states v = 0, 1 are 

developed at a low magnetic field. To be specific, a line cut of σxx mapping at around 3T is shown 

in Fig. S3b, and the emergence of conductance minima at v = 0, 1 is a good indication of an onset 

of the symmetry broken states. 

 

Figure S3. a is the zoomed in image of Fig.3a in the main text, and the dashed lines indicate gaped states at small 

filling fractions. b is a line cut of a at B = 3T. 



III. Conductance at around Ф=Ф1/3 

Figure S4 shows longitudinal conductance σxx and Hall conductance σxy in the vicinity of Ф=Ф1/3. 

Fig. S4a-c are corresponded to conductance at hole side with B = 7.2T, B = B1/3=6.4T, and B= 5.6T 

respectively, while Fig. S4d-f are the conductance at electron side. The change of Hall 

conductance from low carrier density to high carrier density is distinctively different from normal 

one, and it show peaks and valleys instead of plateaus. For example at B=B1/3=6.4T, we could see 

that there is a σxx minimum with carrier density corresponding to a filling factor of -10 (as 

indicated by x axis in Fig. 4b), while the corresponding σxy is around -2e
2
/h instead of -10e

2
/h. 

Compared to the strong reconstruction of Hall conductance at hole side, σxy at electron side in Fig. 

S4d-f only shows a small deviation from normal one thanks to the strong e-h asymmetry. 

 
Figure S4. Conductance around magnetic flux of Ф=Ф1/3. a-c are longitudinal conductance (yellow) as well as hall 

conductance (blue) at hole side with a magnetic field of 7.2T, 6.4T, and 5.6T respectively. d-f are corresponding 

conductance at electron side. 

 

IV. Influence of quantum capacitance 

The geometry capacitance of our device CG is ~8.2nF/cm
2
,while the quantum capacitance per unit 

area CQ is defined as CQ=e
2
dn/dµ, where dn/dµ is density of state of graphene. In the case of zero 



magnetic field, dn/dµ=8π|E|/h�v	
�, and it yields CQ= 23*|E|	µF/cm

2
 with E in the unit of eV, 

which implies that CQ is small at DP and sDP. Electron-hole puddles would give a residue carrier 

density, for example in our device δn = ~2*10
10

/cm
2
 (corresponding to energy δE =~15meV), and 

it gives CQ = 345nF/cm
2
, which is significantly much higher that CG. Thus total capacitance is 

mainly defined by geometry capacitance. In the case of magnetic field, the DOS is quantized 

according to Landau levels. Any way we can try to estimate the CQ in the vicinity of sDP at hole 

side using the data in Fig. 2d in ref
8
, which give a measured DOS of ~0.1 eV

-1
nm

-2
 at 3T. Then we 

can roughly estimate CQ is around 1600 nF/cm
2
, which is much larger than CG. To sum up, the 

contribution of quantum capacitance to the total capacitance is trivial, thus it can’t be accounted as 

main reason for the deviation of constant capacitor model. 

 

V. Weak localization effects 

Weak localization effect is quite universal in our epitaxial graphene/hBN samples, which we 

mentioned before in previous paper
9
. For the one studied in this paper, the WL effect is evident in 

Figure S5, in which resistances decrease a little bit as magnetic field (before the onset of LLs) is 

increased, regardless of carrier doping level. 

 

Figure S5. Transport curves at a magnetic field of B=0 (black), 0.05T (blue), 0.1T (red), at a temperature of 1.8K. 

 

VI. Fermi velocity measurements 

The Fermi velocity (vF) is estimated from cyclotron mass (m) at a given magnetic field (B), which 

in turn measured by analyzing the temperature dependence of Shubnikov–de Haas oscillations 



(SdHOs) amplitudes
1
. The Fermi velocity is given by /Fv n mπ= h , with n the carrier density 

defined above. The cyclotron mass m is extracted from the fitting formula,

2/ sinh(2 / )BA T k mT eBπ∝ h , where A is SdHOs amplitude at a given temperature (T) and 

magnetic field (B), kB is Boltzmann constant, and ћ is the reduced Planck constant. Take Vg=20V 

for example, the SdHOs are displayed in Figure S6. The temperature dependence of Rxx at each 

resistance minima is indicated by blue arrows in Fig. S6a, and from which the amplitudes of 

SdHOs are extracted. Fig. S6b-e show the normalized amplitude A(T)/A(T=1.8K) at a magnetic 

field of 2.4T, 3T, 4.25T, and 7T respectively, and the fitted curves are depicted in red. The 

resulting fitted cyclotron mass (m=m
*
me, where me is free electron mass) as well as Fermi velocity 

calculated from which are then obtained and displayed as green and blue stars respectively in Fig. 

S6f. Clearly we could see that the vF decreases as magnetic field is increased, and this is true even 

for other gate voltages as shown in Fig. 5b in the main text. 

 

 



Figure S6. a, SdH Oscillations at different temperature for a gate voltage of 20V away from DP, while the green 

arrow indicates symmetry broken states v=8 and the blue ones the symmetry conserved states. b-e are normalized 

amplitudes of SdHOs at B=2.4T, 3T, 4.25T, and 7T respectively. f is the fitted effective (cyclotron) mass as well as 

corresponding calculated Fermi velocity. 

 

VII. Observation of a second generation of superlattice Dirac points 

The existence of graphene superlattice (λ) due to the lattice mismatch between graphene and h-BN 

underneath produce additional Dirac points, so called superlattice Dirac points
5-7, 9-12

, which 

locates at the M
*
 (the star denote superlattice) point of the mini-Brillouin zone (superlattice 

Brillouin zone, whose Γ
*
 point is the K point of graphene Brillouin zone). And this is exactly what 

we have observed before
9
, and it is manifested in secondly resistance points located on both sides 

of main charge neutral point.  

However, we only considered the effect of the first mini-Brillouin zone, and how about the case 

where momentum is big enough to include nearby the second mini-Brillouin zones as shown in 

Figure S7a (the yellow dots denote the M points of first mini-Brillouin zone, and the red ones 

denote M points of nearby second mini-Brillouin zone). We expect a second generation of 

superlattice Dirac points. This is a higher order effect of superlattice, and in principal it should be 

much weaker than that of superlattice Dirac point, so we just consider the next nearest M
*
 points. 

The nearest M
*
 points are indicated by yellow dots, corresponding to superlattice Dirac points 

(SDP), while the next-nearest M
*
 points to Γ

*
 point are denoted in red, corresponding to the 

second generation of superlattice Dirac point (SSDP), as shown in Fig. S7a. And it is easy to see 

that the ratio of momentum at SSDP to that at SDP is square root of 3. 

 

Figure S7. a, The first and nearby mini-Brillouin zone of superlattice, whose Γ* is the K of the Brillouin of 



graphene lattice. The yellow and red dots indicate the nearest and next-nearest M* of mini-Brillouin zone 

respectively. b, Typical transport curve of a two terminal device at T=4.2K without magnetic field. DP, SDP, and 

SSDP are indicated by black, yellow, and red arrows. The inset of b shows the conductivity. 

We fabricate a two terminal device, with epitaxial graphene/hBN on top of a gold gate 

electrode (device fabricated in Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551). The thickness 

of hBN is around 300nm, and the device geometry is W×L=3×5µm. The transfer curve is shown 

in Fig. S7b, the Dirac point is indicated by black arrow at a gate voltage of 0.5V, and the SDP in 

the first mini-Brillouin zone at hole side is indicated by yellow arrow at a gate voltage of -38.5V 

while the SSDP out of the first mini-Brillouin zone is indicated by red arrow at a gate voltage of 

-65V. And it is more convenient to see the conductivity in the inset of Fig. S7b, where 

conductance dips at SDP and SSDP is prominent. Similar features can be found in electron side, 

even though they are much weaker. And note that the ratio of position at SSDP to that at SDP is 

~1.7, very close to the estimated square root of 3. 

Last but not least, at high magnetic field the presence of SSDP may make the fractal 

Hofstadter butterfly spectra even more complicated since DP, SDP, and SSDP are not evenly 

separated in momentum space (or gate voltage). 

 

Reference 

1. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201-204. 

2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; 

Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197-200. 

3. Zhang, Y.; Jiang, Z.; Small, J.; Purewal, M.; Tan, Y.-W.; Fazlollahi, M.; Chudow, J.; Jaszczak, J.; 

Stormer, H.; Kim, P. Phys. Rev. Lett. 2006, 96, 136806. 

4. Hofstadter, D. R. Phys.Rev. B 1976, 14, 2239-2249. 

5. Hunt, B.; Sanchez-Yamagishi, J. D.; Young, A. F.; Yankowitz, M.; LeRoy, B. J.; Watanabe, K.; 

Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P.; Ashoori, R. C. Science 2013, 340, 

1427-1430. 

6. Dean, C. R.; Wang, L.; Maher, P.; Forsythe, C.; Ghahari, F.; Gao, Y.; Katoch, J.; Ishigami, M.; 

Moon, P.; Koshino, M.; Taniguchi, T.; Watanabe, K.; Shepard, K. L.; Hone, J.; Kim, P. Nature 

2013, 497, 598-602. 

7. Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, 

A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R.; Mucha-Kruczynski, M.; Piot, B. A.; Potemski, 

M.; Grigorieva, I. V.; Novoselov, K. S.; Guinea, F.; Fal'ko, V. I.; Geim, A. K. Nature 2013, 497, 

594-597. 

8. Yu, G. L.; Gorbachev, R. V.; Tu, J. S.; Kretinin, A. V.; Cao, Y.; Jalil, R.; Withers, F.; Ponomarenko, 

L. A.; Piot, B. A.; Potemski, M.; Elias, D. C.; Chen, X.; Watanabe, K.; Taniguchi, T.; Grigorieva, I. 

V.; Novoselov, K. S.; Fal/'ko, V. I.; Geim, A. K.; Mishchenko, A. Nat. Phys. 2014, 10, 525-529. 



9. Yang, W.; Chen, G.; Shi, Z.; Liu, C.-C.; Zhang, L.; Xie, G.; Cheng, M.; Wang, D.; Yang, R.; Shi, 

D.; Watanabe, K.; Taniguchi, T.; Yao, Y.; Zhang, Y.; Zhang, G. Nat. Mater. 2013, 12, 792-797. 

10. Park, C.-H.; Yang, L.; Son, Y.-W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2008, 101, 126804. 

11. Park, C. H.; Yang, L.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Nat. Phys. 2008, 4, 213-217. 

12. Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; 

Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Nat. Phys. 2012, 8, 382-386. 

 

 


