Supporting Information

A Theoretical Study on the Strain Energy of Carbon Nanobelts

Yasutomo Segawa,^{1,2,*} Akiko Yagi,² Hideto Ito,² and Kenichiro Itami^{1,2,3,*}

¹JST, ERATO, Itami Molecular Nanocarbon Project, Chikusa, Nagoya 464-8602, Japan. ²Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan. ³Institute of Transformative Bio-molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan.

E-mail: ysegawa@nagoya-u.jp (YS), itami@chem.nagoya-u.ac.jp (KI)

Table of Contents

1. Hypothetical reactions	S2–S3
2. POAV analysis	S4
3. Plot for strain energy of CNBs	S5–S9
4. Complete reference 11a	S10

1. Hypothetical reactions

Scheme S1. Hypothetical reactions for carbon nanobelts (additional unsuccessful results).

Figure S1. Strain energy of A_n obtained from the current method shown in Figure 4 (a) and from the unsuccessful hypothetical reaction shown in eq 2 (b).

Scheme S2. Hypothetical homodesmotic reactions for the possible precursors for CNBs

2. POAV analysis

n	[n]CPP	\mathbf{A}_n	\mathbf{B}_n
6	3.493 (24C)	2.096 (24C)	1.953 (24C)
	6.101 (12C)	4.548 (24C)	4.405 (24C)
			4.185 (12C)
8	2.821 (32C)	1.603 (32C)	1.547 (32C)
	4.633 (16C)	3.245 (32C)	3.147 (32C)
			2.759 (16C)
10	2.403 (40C)	1.278 (40C)	1.271 (40C)
	3.747 (20C)	2.424 (40C)	2.414 (40C)
			2.001 (20C)
12	2.109 (48C)	1.083 (48C)	1.066 (48C)
	3.126 (24C)	2.087 (48C)	1.955 (48C)
			1.537 (24C)

Table S1. POAV angles of [n]CPP, \mathbf{A}_n , and \mathbf{B}_n (°)

Figure S2. Strain energies of [n]CPP, \mathbf{A}_n , and \mathbf{B}_n calculated by using $\Sigma(\theta_{ar}-1/2\pi)^2 \times 200$ (kcal/mol).

3. Plot for strain energies of CNBs

Figure S3. Plot of the total energy per *n* of A_n as a function of n^{-2} with the linear regulation line.

Figure S4. Plot of the total energy per *n* of **B**_{*n*} as a function of n^{-2} with the linear regulation line.

Figure S5. Plot of the total energy per *n* of C_n as a function of n^{-2} with the linear regulation line.

Figure S6. Plot of the total energy per *n* of D_n as a function of n^{-2} with the linear regulation line.

Figure S7. Plot of the total energy per *n* of E_n as a function of n^{-2} with the linear regulation line.

Figure S8. Plot of the total energy per *n* of \mathbf{F}_n as a function of n^{-2} with the linear regulation line.

Figure S9. Plot of the total energy per *n* of [n]CPP as a function of n^{-2} with the linear regulation line.

Figure S10. Plot of the total energy per *n* of G_n as a function of n^{-2} with the linear regulation line.

Figure S11. Plot of the total energy per *n* of \mathbf{H}_n as a function of n^{-2} with the linear regulation line.

Figure S12. Plot of the total energy per *n* of I_n as a function of n^{-2} with the linear regulation line.

4. Complete reference 11a

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.;
Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell,
A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J.
E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V.
G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J.
B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision C.01*, Gaussian, Inc., Wallingford CT, 2010.