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Table S1. Atomic ratios of raw elements and volume fractions of TiO2 nanoparticles in 12 different kinds 

of solid solutions made of magnesium silicide and magnesium stannide. Note that 10% excessive 

magnesium was used to compensate loss during synthesis processes.  

 

Sample 

no. 

Volume 

fraction 
Atomic ratio 

TiO2 Sn Sb Si As Mg 

1 0% 

0.5925 0.0075 

0.392 0.008 2.2 

2 1% 

3 2% 

4 5% 

5 0% 

0.585 0.015 

6 0.1% 

7 0.2% 

8 0.5% 

9 1% 

10 2% 

11 5% 

12 10% 
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Figure S1. Scanning electron microscope (SEM) image with energy dispersive spectroscopy (EDS) 

results on dark and grey regions.   
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Figure S2. High resolution transmission electron microscope (TEM) images used to determine 

distribution of nanograin sizes. The scale bar indicates 2 nm (continued to the next page). 
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Figure S2. (continued from the previous page) 
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Figure S3. SEM images (upper row) used to estimate the ratio of phase segregation percentage and 

binary masks (lower row) created from those figures in the first row by using ImageJ.   

 

 

 

 

Figure S4. (a) TEM-EDS elemental mapping of Sample 6 (2% TiO2). (b) Colored mapping results of Si, 

Sn, As, Mg, Sb, Ti, and O.   

 

100 nm

a b c



- 7 - 

 

 

Figure S5. Electrical conductivity (a), thermopower (b), and thermal conductivity (c) of Sample 5~12 

containing TiO2 nanoparticles (0~10 vol%) and 1.5% Sb dopants.   

 

 

 

Figure S6.  Thermoelectric power factor of Sample 5~12 (a) and Sample 1~4 (b). Thermoelectric figure 

of merit (ZT) of Sample 5~12 (c).    
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Electrical Conductivity and Thermopower Calculation 

Electron (or majority) carrier concentration (Ne) and hole (or minority) carrier concentration (Nh) 

can be calculated with the Fermi levels as input parameters:  
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Here we considered two X-valleys in the conduction band (labeled as X1 and X3) and two -valleys in 

the valence band (labeled as HH, and LH), as shown in Fig. S6.
1
 Each integral was calculated with respect 

to the band edge of each valley (i.e., E = 0 at the band edge). For convenience, we used the band edge of 

X3 valley as a reference, the four valleys can be expressed with the Fermi level (EF) as:   

FXF EE 3,
                                                                               (S3) 

01, EEE FXF                                                                            (S4) 

 , ,F HH F LH G FE E E E                                                                     (S5) 

where E0 is the energy offset (EEdge,X1  EEdge,X3) and EG is the band gap as shown in Fig. S6.  

 

 

Figure S7. Multi valley schematic of Mg2Si0.4Sn0.6. 

 

 With the effective mass (m
*
) in Table S1, Ne and Nh were found, and then ionized impurity 

concentration (NII) was calculated by: 

II e hN N N                                                                          (S6) 
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Thermopower (S) can be calculated with electrical conductivity () by: 
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where q, T, E, m
*
, NV are electron charge, absolute temperature, carrier energy with respect to band edge, 

carrier effective mass, and valley degeneracy, respectively. The index j indicates valley (X1, X3, HH, and 

LH). The subscripts AC, POP, II, and NI in scattering relaxation time represent acoustic phonon, ionized 

impurity, polar optical phonon, non-ionized impurity, respectively. The material parameters employed are 

summarized in Table S2.  

The mobility of electron (μe) and hole (μh) carriers can be obtained by:  
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The mean free path of electronic carrier (lj) as a function of energy in valley j can be obtained by:  

j

j

j
m

E
l 

*

2
                                                                  (S18)  



- 10 - 

 

 

Figure S8. Calculated mean free path of electron carriers in X3 and X1 valley as a function of energy for 

no TiO2 nanoparticle sample at 800 K and 400 K using the velocity and relaxation time. 
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Table S2. Parameters used for calculation.
1-2

 The atomic concentration of Sn is y.  

Parameters Values 

m
*

X3 (m0) 0.38 

m
*

X1 (m0) 0.49+2.0×10
-4

×T 

m
*
HH (m0) 1.5 

m
*
LH (m0) 1.0 

EG (eV) (0.78-4.0×10
-4

×T )×(1- y) + (0.38-2.8×10
-4

×T )× y 

E0 (eV) (0.4)×(1- y) + (-0.165)× y 

ε0 (F/m) (20×(1- y) + 23.75× y)×8.85×10
-12

 

ε∞ (F/m) (13.3×(1- y) + 17× y)×8.85×10
-12

 

ħω0 (meV) 40×(1- y)+28.8× y 

ρNP (g/cm
3
) 3.78 

d (nm) 11 

ρM (g/cm
3
) 1.88×(1- y)+3.59× y 

De (eV) 7 

Dh (eV) 1 

Cl (N/m
2
) (4.15×(1- y)+3.22× y)×10

10
 

ωC,L (THz) 52.3×(1- y)+ 22.4× y 

ωC,T (THz) 29.7×(1- y)+ 13.9× y 

vL (m/s) 7700×(1- y)+ 4900× y 

vT (m/s) 4900×(1- y)+ 3000× y 

γ 2.5×(1- y)+ 1.7× y 

α for TiO2 0%, 1%, 2%, 5% Respectively 0.65, 0.60, 0.55, 0.50 

β for TiO2 0%, 1%, 2%, 5% Respectively 1, 0.8, 0.6, 0.5 

NV,X3, NV,X1 3 

NV,HH, NV,LH 1 

 

  



- 12 - 

 

Thermal Conductivity Calculation 

Electronic thermal conductivity (ke) and bipolar thermal conductivity (kbi) can be calculated by: 

e j j

j
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The Lorenz number is expressed as:  
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Lattice thermal conductivity was calculated by using a modified Callaway model that separately 

considered longitudinal and transverse modes of phonons. 
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The subscript i stands for either longitudinal mode (L) or transverse mode (T). 
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where x=ħω/(kBT) is the reduced energy of phonon and ϴi  is the Debye temperature.  

, , ,
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The relaxation time corresponding to the normal scattering is described as:
3
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where kB, γ, V, M, vL, vT, ħ and T are Boltzmann constant, Grüneisen parameter, average volume of an 

atom, average mass of an atom, longitudinal sound velocity, transverse sound velocity, reduced Planck 

constant, and absolute temperature, respectively. 

Umklapp scattering is expressed as: 
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where θi is the Debye temperature which is equal to ħωC/kB. The scattering due to random alloy between 

Si and Sn is  
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where y is the atomic ratio of Sn, which is 0.6 for Mg2Si0.4Sn0.6, and MSi,Sn is the average atomic mass of 

Si and Sn accordingly with the ratio y. 

Phonon scattering by electronic carriers was considered by using: 
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where De and ρ are electron deformation potential and density of Mg2Si0.4Sn0.6, respectively. We ignored 

phonon scattering due to holes (minority carriers) since its influence on the total relaxation time is very 

small.   

Phonon scattering by nanoparticles was considered by using: 
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where NNP is the concentration of nanoparticles and DNP is the diameter of nanoparticles with the 

assumption of a sphere shape. λ accounts for the density difference between the matrix material and TiO2 

nanoparticles. λ approaches 1 when the density difference is infinity. NNP and DNP are related each other 

since the volume percent of TiO2 nanoparticles is given.  
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where X is the volume percent of TiO2. NNP was found to be 1.510
17

, 3.110
17

, and 2.810
16

 cm
-3

 

respectively for samples with 1%, 2%, and 5% TiO2 nanoparticles.  

 

Figure S9. Undoped single crystalline Mg2Si and Mg2Sn data
4-5

 was fitted to find the Grüneisen 

parameters (2.5 and 1.7) by considering normal scattering and Umklapp scattering.  

 

Phase segregation was calculated by using the area percentage of Mg2Sn (AMg2Sn) obtained from 

ImageJ software.
6
 The segregated Mg2Si (AMg2Si) phase was calculated by multiplying AMg2Sn and both 

atomic ratio (0.6:0.4 for Sn:Si) and areal ratio (square of lattice constant). 
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where aMg2Si and aMg2Sn are lattice constants of Mg2Si and Mg2Sn, respectively. The total segregated portion 

was obtained by adding the two segregated areas.    

2 2Total Mg Si Mg SnA A A                                                         (S43) 

It should be noted that the areal ratio for the two phases is the same as the volumetric ratio, assuming that 
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the thickness is the same for both.  

The relaxation time of holes (minority carriers) was adjusted with a multiplying factor β, ranging 

from 0 to 1 in order to consider the reduction of bipolar thermal conductivity due to the minority carrier 

scattering by TiO2 nanoparticles. For the sample without TiO2 nanoparticles, β=1.   
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Error Estimation 

Experimental errors related to thermal conductivity, electrical conductivity, and thermopower 

measurements were obtained mainly from uncertainty in instrumentation and dimensions. For electrical 

conductivity, uncertainty related to distance measurement between two probes, width, and thickness was 

estimated as ±4%. For thermopower measurements, uncertainty was estimated by using the largest and 

lowest slope as an upper (+8%) and lower bound (-4%) from the temperature-voltage relation. Thermal 

conductivity (k) was obtained by using the formula k = c, where c, , and   are specific heat, mass 

density, and thermal diffusivity, respectively. For the density measurement, estimated uncertainty was 

±3% and ±2% respectively corresponding to volume and mass measurements. For thermal diffusivity, 

±3% was obtained from three consecutive measurements with the flash apparatus. Therefore, the overall 

uncertainty corresponding to thermal conductivity measurements was estimated to be as ±8%. Overall 

uncertainty of the thermoelectric figure-of-merit was then calculated using the error propagation formula 

shown below. 
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