Biomass gasification using carbon dioxide: Effect of temperature, CO₂/C ratio and the study of reactions influencing the process

Narendra Sadhwani^{a, b}, Sushil Adhikari^{b,‡} and Mario R. Eden^a

^aDepartment of Chemical Engineering, ^bDepartment of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA

Table S1: Calculations for minimum fluidization velocity:

Ergun's correlation for pressure drop per unit length across packed of solid particles is shown in equation [A.1].

$$\frac{\Delta P}{L} = \frac{150 \left(1-\varepsilon\right)^2}{\phi^2 \varepsilon^2} \frac{\mu u}{dp^2} + \frac{1.75(1-\varepsilon)u^2 \rho_g}{\varepsilon^3 \phi dp}$$
[A.1]

where, ε is the void fraction (porosity), ϕ is the sphericity of the bed solids, μ is the dynamic viscosity, and ρ g the gas density. However, when the particle of bed fluidizes, the drag forces equal the buoyancy of the particle, thus the drag force is given by [A.2]

$$F_D = \Delta P A = A L (1 - \varepsilon) (\rho_p - \rho_g) g \qquad [A.2]$$

These equations are solved simultaneously to obtain the minimum fluidization velocity, Umf, as defined in equation [A.3]:

$$Re_{mf} = [C_1^2 - C_2 Ar]^{0.5} - C_1$$
 [A.3]

$$Ar = \frac{\rho_{g}(\rho_{p} - \rho_{g})gdp^{3}}{\mu^{2}}$$
[A.4]

The values of C_1 and C_2 have been approximated in literature³⁸ over a wide range of fluid properties and particle sizes and the equation is written as:

$$Re_{mf} = [33.7^2 + 0.0408 Ar]^{0.5} - 33.7$$
 [A.5]

For sand ($\rho_p = 2776 \text{ kg/m}^3$ & mean particle size dp= 263 µm), the minimum fluidization velocity was found out to be 0.0636 m/s.

Table S2: Intra particle mass transfer limitation calculations:

Thiele modulus (ϕ) is the measurement of reaction rate with respect to the rate of diffusion. Lower values of ϕ (less than 0.3) imply that the rate of diffusion is high and the process is kinetically controlled

[‡] Corresponding author. Tel: +1 334 844 3543; fax: +1 334 844 3530

Email address: sushil.adhikari@auburn.edu (S. Adhikari)

whereas higher values imply that the system shows mass transfer resistance. Simplifying, the value of ϕ can be calculated using equation [B.1].

$$\phi = \frac{d_p}{6} \sqrt{\frac{R_{obs}}{De_{CO_2}}}$$
[B.1]

where dp = particle diameter, $R_{obs} = observed$ reaction rate, and De = effective diffusivity which is calculated using equation [B.2].

$$De = \frac{D_{CO_2}\phi_p \,\sigma_c}{\tau} \tag{B.2}$$

Where ϕ_p = particle porosity calculated to be 0.32, σ_c = Constriction factor and τ = tortuosity. The value of R_{obs} is calculated using the specific reaction rate obtained from a study by Van Dan Aarsen, et al. as mentioned in Appendix A. The calculated values of De and R_{obs} are plugged in equation [B.1] to yield the value of ϕ = 0.106. This implies that the process is kinetically controlled and the influence of mass transfer can be neglected.

Table S3: Heat transfer limitations between bulk phase and particle

A heat balance between the particle and surrounding medium at the particle surface can be written as:

$$h * A_p * (T - T_s) = \Delta H * R_r$$
 [C.1]

Where *h* is the heat transfer coefficient (W/m²K), A_p is the surface area of the particle (m²), T and T_s are the temperatures (K) of the surrounding medium and the particle respectively, ΔH is the heat of reaction (kJ/mol) taking place inside the particle and R_r is the rate of reaction (mol/s). The value of *h* is determined using the correlation [C.2]:

$$Nu = 0.3 \text{ Re}^{1.3}$$
 [C.2]

Parameters in this study:

dp (biomass) = $315*10^{-6}$ m; u = 0.11 m/s; Viscosity = $1.76*10^{-5}$ Pa s; $\rho_g = 1.251$ kg/m³; K = 0.024 W/mK. The value of *h* obtained from this correlation = 76.4 W/m²K

Due to presence of multiple reactions in the current process, ΔH and R_r cannot be specified. Considering Boudouard reaction, $\Delta H = 172$ kJ/mol. Van Dan Aarsen, et al.²⁶ studied the char – CO₂ gasification in a fluidized bed and reported the following values at 815°C:

R" (specific reaction rate) = $75.9*10^{-6}$ (mol/m²s); S_o (specific surface area) = $1.05*10^{8}$ (m²/m³). Equation [C.1] becomes:

$$h * A_p * (T - T_s) = \Delta H * R'' * S_o * V_p$$
 [C.3]

From the above correlation, the value of (T-Ts) obtained = 1.1. Therefore, the bulk temperature of the particle has to be corrected by 1.1° C