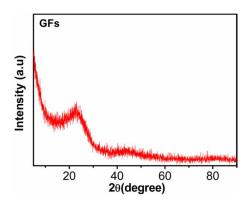
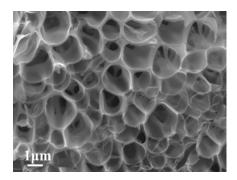
Supporting Information

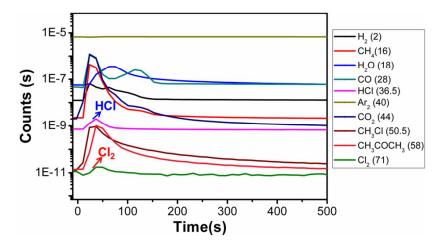
Chlorine-Induced In-situ Regulation to Synthesize Graphene Frameworks with Large Specific Area for Excellent Supercapacitor Performance

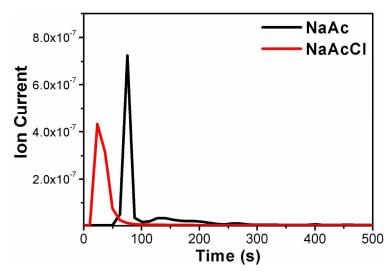

Yanyan Zhu,†,‡ Huijuan Cui,†,‡, Xin Meng,† Jianfeng Zheng† Pengju Yang,†,‡ Li Li,† Zhijian Wang†, Suping Jia,*,†and Zhenping Zhu*,†

†State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taoyuan South Road 27, Taiyuan, 030001 China


‡University of Chinese Academy of Sciences, Beijing, 100049 China

*Email: jiasuping@sxicc.ac.cn; Tel: +86-351-4048715; Fax: +86-351-4048433.


*Email:zpzhu@sxicc.ac.cn.


Figure S1 XRD pattern of the GFs that was after washing fast pyrolysis sample of NaAcCl at 1000 °C.

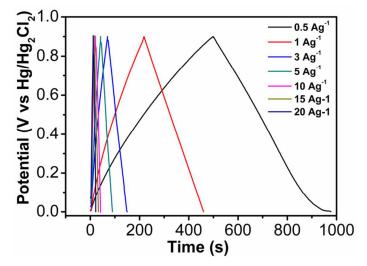

Figure S2. SEM image of the washed products obtained from the fast decomposition of NaAc.

Figure S3. Mass spectrometry cycles obtained over the duration of heating for gas products detection during fast pyrolysis of NaAcCl at 1000 °C.

Figure S4. Mass spectrometry cycles obtained over the duration of heating emphasizing 16 amu fragments (CH₄) during fast pyrolysis of NaAc and NaAcCl at the temperature of 1000 °C.

Figure S5 Galvanostatic charge and discharge curves of GFs-NaAcCl at different current densities.