Supporting Information

Oligoresorcinols fold into double helices in water

Hidetoshi Goto¹, Hiroshi Katagiri¹, Yoshio Furusho¹, and Eiji Yashima^{1,2}

¹Yashima Super-structured Helix Project. Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Creation Core Nagoya 101, 2266-22 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-0003, Japan.

²Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.

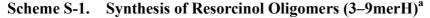
*To whom correspondence should be addressed. E-mail: furusho@yp-jst.jp (Y.F.); yashima@apchem.nagoya-u.ac.jp (E.Y.).

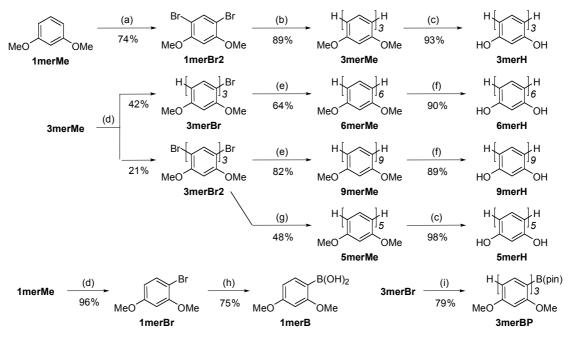
Table of Contents

1.	Instruments	S3
2.	Materials	S4
3.	Synthetic Procedures	
	3-1. Synthesis of Achiral Oligoresorcinols	S5
	3-2. Synthesis of Chiral Oligoresorcinols	S17
4.	Investigation of Double Helix Formation of Oligoresorcinols	
	4-1. Concentration Effect	S31
	4-2. Temperature Effect	S32
	4-3. VPO Measurement	S36
	4-4. Chain Length Dependence of Absorption Spectra	S37
	4-5. Molecular Modeling and Calculations	S38
	4-6. Single-Crystal X-ray Analysis	
	4-6-1. Single Helix of 5merH	S41
	4-6-2. Double Helix of 5merH	S46

1. Instruments

The melting points were measured using a Yanaco MP-500D melting point apparatus (Kyoto, Japan) and were uncorrected. The solution pH was measured with a Horiba B-211 pH meter (Kyoto, Japan) or a DKK-TOA GST-5428S pH meter (Tokyo, The NMR spectra were obtained using a Varian UNITY INOVA 500AS Japan). spectrometer operating at 500 MHz for ¹H and 125 MHz for ¹³C. Chemical shifts are reported in parts per million (δ) downfield from tetramethysilane (TMS) as the internal standard in CDCl₃ and from acetone or 1,4-dioxane dissolved in D₂O as the external standard in D₂O and CD₃OD. The electron spray ionization mass spectra (ESI-MS) were recorded using a Jeol JMS-T100CS spectrometer (Akishima, Japan). The matrixassisted laser desorption-ionization time-of-flight mass spectra (MALDI-TOF-MS) were measured using a Shimadzu AXIMA-CFR Plus spectrometer (Kyoto, Japan). The elemental analyses were performed by the Nagoya University Analytical Laboratory in the Graduate School of Engineering. The IR spectra were recorded using a Jasco Fourier Transform IR-680 spectrophotometer (Hachioji, Japan). The absorption and CD spectra were measured in a 0.2- or 1.0-mm quartz cell on a Jasco V-570 spectrophotometer and a Jasco J-820 spectropolarimeter, respectively. The temperature was controlled by a Jasco PTC-423L apparatus (-10 to 90°C). Optical rotations were taken using a Jasco P-1030 polarimeter in water and methanol in a 5-cm quartz cell equipped with a temperature controller (EYELA NCB-2100). The molecular weights of the oligomer aggregates in water were estimated using a Gonotec 070 vapor pressure osmometer (VPO) (Berlin, Germany) with NaCl (300 mOsmol/kg) as the standard. The samples were prepared in the range of 5–20 mmol/kg. The single crystal X-ray data were collected using a Bruker Smart Apex (153 K) or a Bruker Smart ApexII (90 K) CCD-based X-ray diffractometer with Mo-K α radiation (λ = 0.71073 Å).


2. Materials


All starting materials and dehydrated solvents were purchased from Aldrich, Wako Pure Chemical Industries (Osaka, Japan), and Tokyo Kasei Kogyo (Tokyo, Japan). 1,3-Diiodo-5,5-dimethylhydantoin (DIH) was kindly supplied from Nippoh Chemicals Co., Ltd. (Tokyo, Japan). Triethylamine (NEt₃) was distilled over CaH₂ under Ar after being stirred with KOH pellets overnight under Ar. The distilled water and D₂O (99.9 atom %D) purchased from Wako and Cambridge Isotope Laboratories (Andover, MA, USA), respectively, were degassed with Ar and used throughout all the experiments. Silica gel (SiO₂) and aminopropyl-modified silica gel (NH₂-SiO₂) for the flash chromatography were purchased from Merck and Fuji Silysia Chemical Ltd. (Kasugai, Japan), respectively.

3. Synthetic Procedures

3-1. Synthesis of Achiral Oligoresorcinols

Achiral oligoresorcinols were synthesized according to Scheme S-1. **1merBr**,¹ **1merB**,² and **1merBr2**³ were prepared by the previously reported methods. The reaction progresses were monitored by TLC or ESI-MS.

^a Reagents and conditions: (a) HBr, DMSO, reflux, 1 day; (b) 1merB, Pd(PPh₃)₄, Na₂CO₃, THF, H₂O, reflux, 1 week; (c) BBr₃, -78°C, 1 day; (d) DBH, THF, 0°C, 1 day;
(e) 3merBP, Pd(PPh₃)₄, K₂CO₃, THF, H₂O, reflux, 2 days; (f) BBr₃, 0°C, 1 day; (g) 1merB, Pd(PPh₃)₄, K₂CO₃, THF, H₂O, reflux, 4 days; (h) (1) *n*-BuLi, THF, -78°C, 1 h,
(2) B(O*i*-Pr)₃, -78°C, 1 day, (3) H₃O⁺; (i) pinacolborane, PdCl₂(PPh₃)₂, NEt₃, 1,4-

dioxane, 80°C, 1 day.

3merMe [2,4,4',6',2",4"-Hexamethoxy-1,1':3',1"-terphenyl]⁴

To a solution of 1merBr2 (25.2 g, 85.3 mmol), 1merB (31.1 g, 171 mmol) and Pd(PPh₃)₄ (5.9 g, 4.33 mmol, Aldrich) in dehydrated THF (1 L) was added a degassed solution of Na₂CO₃ (2 M, 200 mL, 400 mmol) through a cannula under Ar and the mixture was refluxed for 1 week. After most of the solvent had been removed by evaporation, the aqueous solution was extracted with CHCl₃. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by SiO₂ chromatography with *n*-hexane/CHCl₃ (2/1 to 0/1, v/v) to obtain **3merMe** as a slightly yellow solid (31 g, 75.5 mmol, 88.8% yield). Mp: 112–113°C. IR (KBr, cm⁻¹): 2937, 1607, 1493, 1205, 1164, 1033, 930, 824. ¹H NMR (CDCl₃): δ 3.76 (s, OMe, 6H), 3.82 (s, OMe, 6H), 3.83 (s, OMe, 6H), 6.53 (dd, Ar-H_{5 and 5}", J = 8.0, 2.5 Hz, 2H), 6.54 (d, Ar-H_{3 and 3"}, J = 2.5 Hz, 2H), 6.62 (s, Ar-H₅, 1H), 7.12 (s, Ar-H₂, 1H), 7.19 (d, Ar-H_{6 and 6}", J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃): δ 55.31, 55.64, 55.85, 96.02, 98.88, 104.14, 119.16, 120.20, 132.12, 134.56, 157.12, 158.10, 159.96. ESI-MS (CH₂Cl₂/CH₃OH (1/1, v/v), positive): Calcd for C₂₄H₂₆O₆Na [**3merMe**+Na]⁺: m/z =433.16. Found: m/z = 433.20. Anal. Calcd for C₂₄H₂₆O₆: C, 70.23; H, 6.38. Found: C, 70.17; H, 6.36.

3merBr [5-Bromo-2,4,4',6',2",4"-hexamethoxy-1,1':3',1"-terphenyl] and 3merBr2 [5,5"-Dibromo-2,4,4',6',2",4"-hexamethoxy-1,1':3',1"-terphenyl]¹ To a solution of **3merMe** (20.5 g, 49.9 mmol) in THF (100 mL) was added 1,3dibromo-5,5-dimethylhydantoin (DBH) (7.15 g, 25.0 mmol, Wako) at 0°C and the reaction mixture was stirred at that temperature overnight. After evaporation, the residue was dissolved in CHCl₃ and the solution was washed with sat. Na₂S₂O₃ aq., dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by SiO₂ chromatography with *n*-hexane/Et₂O (1/1, v/v) to obtain pure **3merBr** (10.2 g, 20.8 mmol, 41.6% yield) as a slightly yellow solid and crude **3merBr2**. The crude **3merBr2** was purified by SiO₂ chromatography with CH₂Cl₂ and by subsequent washing with Et₂O to obtain **3merBr2** (5.95 g, 10.5 mmol, 20.9% yield) as a white solid.

3merBr. Mp: 147–148°C. IR (KBr, cm⁻¹): 2945, 1600, 1492, 1457, 1359, 1204, 1028, 930, 813. ¹H NMR (CDCl₃): δ 3.76 (s, OMe, 3H), 3.79 (s, OMe, 3H), 3.82 (s, OMe, 3H), 3.83 (s, OMe, 6H), 3.93 (s, OMe, 3H), 6.53 (dd, Ar-H₅., *J* = 8.0, 2.5 Hz, 1H), 6.54 (d, Ar-H₃., *J* = 2.5 Hz, 1H), 6.56 (s, Ar-H₃, 1H), 6.61 (s, Ar-H₅., 1H), 7.09 (s, Ar-H₂., 1H), 7.18 (d, Ar-H₆., *J* = 8.0 Hz, 1H), 7.43 (s, Ar-H₆, 1H). ¹³C NMR (CDCl₃): δ 55.32, 55.65, 55.85, 55.86, 56.09, 56.36, 95.91, 97.09, 98.89, 101.67, 104.17, 117.82, 119.35, 119.99, 121.39, 132.06, 134.37, 135.39, 155.62, 156.99, 157.48, 158.09, 160.04. HRMS (ESI+): *m/z* calcd for C₂₄H₂₅BrNaO₆ (M+Na⁺), 511.07322; found, 511.07221.

3merBr2. Mp: 204–205°C. IR (KBr, cm⁻¹): 2937, 1598, 1492, 1464, 1375, 1301, 1204, 1032, 935, 816. ¹H NMR (CDCl₃): δ 3.79 (s, OMe, 6H), 3.83 (s, OMe, 6H), 3.93 (s, OMe, 6H), 6.56 (s Ar-H_{3 and 3"}, 2H), 6.60 (s, Ar-H_{5"}, 1H), 7.06 (s, Ar-H_{2"}, 1H), 7.42 (s, Ar-H_{6 and 6"}, 2H). ¹³C NMR (CDCl₃): δ 55.87, 56.10, 56.38, 95.79, 97.09,

S7

101.70, 118.00, 121.18, 134.20, 135.33, 155.71, 157.36, 157.49. HRMS (ESI+): m/z calcd for C₂₄H₂₄Br₂NaO₆ (M+Na⁺), 588.98373; found, 588.98923

3merBP [3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolyl)- 4,6,4',6',2",4"-hexamethoxy-1,1':3',1"-terphenyl]⁵

To a solution of **3merBr** (12 g, 24.5 mmol) and PdCl₂(PPh₃)₂ (1.72g, 2.45 mmol, Aldrich) in dehydrated 1,4-dioxane (100 mL) were added distilled NEt₃ (10.2 mL, 73.4 mmol) and pinacolborane (5.3 mL, 36.4 mmol, Aldrich) under Ar, and subsequently the mixture was heated at 80°C overnight. After concentration, the black residue was extracted with Et₂O (*ca.* 200 mL). The Et₂O-insoluble black precipitate was removed with Celite filtration. After concentration of the filtrate, the crude product was purified by SiO₂ chromatography with *n*-hexane/Et₂O (2/1 to 3/2, v/v) and by further recrystallization from Et₂O to obtain **3merBP** as a slightly gray powder (8.65 g, 16.1 mmol, 79.0% yield). Mp: 175–176°C. IR (KBr, cm⁻¹): 2975, 2937, 1602, 1571, 1493, 1460, 1333, 1205, 1033, 938, 833. ¹H NMR (CDCl₃): δ 1.30 (s, Me, 12H), 3.76 (s, OMe, 3H), 3.81 (2 x s, OMe, 2 x 3H), 3.82 (s, OMe, 3H), 3.83 (s, OMe, 3H), 3.88 (s, OMe, 3H), 6.49 (s, Ar-H₅, 1H), 6.52 (dd, Ar-H₅, J = 8.0, 2.5 Hz, 1H), 6.54 (d, Ar-H₃, J = 2.5 Hz, 1H), 6.60 (s, Ar-H_{5'}, 1H), 7.11 (s, Ar-H_{2'}, 1H), 7.19 (d, Ar-H_{6''}, J = 8.0 Hz, 1H), 7.60 (s, Ar-H₂, 1H). ¹³C NMR (CDCl₃): δ 24.79, 55.31, 55.59, 55.92, 56.26, 82.97, 95.24, 96.05, 98.88, 104.11, 119.26, 119.49, 119.75, 120.29, 132.09, 134.41, 140.20, 157.16, 157.22, 158.10, 159.94, 160.93, 165.53.

[2,4,4',6',4'',6'',4''',6''',2'''',4''''-Decamethoxy-

1,1':3',1'':3'',1'''-quinquephenyl]⁶

5merMe

A solution of 1merB (362 mg, 2.00 mmol), 3merBr₂ (568 mg, 1.00 mmol), and Pd(PPh₃)₄ (115 mg, 0.10 mmol) in dehydrated THF (14 mL) was purged with Ar. An aqueous solution of K₂CO₃ (2 M, 4 mL, 8 mmol) purged with Ar was added to the solution by a syringe. The mixture was refluxed for 4 days and was then evaporated to dryness. The residue was partitioned between CHCl₃ (40 mL) and 10% aq. NaOH (10 The CHCl₃ layer was separated, washed with H_2O (10 mL) and successively mL). with brine (10 mL), and dried over MgSO₄. After filtration, the solvent was evaporated, and the residue was purified by column chromatography (SiO₂, 40 g, nhexane/CHCl₃ = 1/1 to 0/1, v/v) and by preparative HPLC (CHCl₃) to afford **5merMe** as a yellow solid in 48% yield. Mp: 117–119°C. IR (KBr, cm⁻¹): 2995, 2936, 1604, 1491, 1204, 1161, 1034, 930, 822. ¹H NMR (CDCl₃): δ 3.74 (s, OMe, 6H), 3.80 (s, OMe, 6H), 3.82 (s, OMe, 12H), 3.83 (s, OMe, 6H), 6.51 (dd, J = 8.0, 2.5 Hz, Ar-H_{5 and} 5¹, 2H), 6.52 (d, *J* = 2.5 Hz, Ar-H_{3 and 3}, 2H), 6.60 (s, Ar-H₅, and 5¹, 2H), 6.61 (s, Ar-H₅¹, 1H), 7.15 (s, Ar-H₂['] and 2^{'''}, 2H), 7.16 (d, J = 8.0 Hz, Ar-H_{6 and 6}^{''''}, 2H), 7.22 (s, Ar-H₂^{,,} 1H). ¹³C NMR (CDCl₃): δ 55.28, 55.62, 55.82, 55.83, 95.97, 98.82, 104.09, 119.13, 119.20, 119.25, 120.27, 132.12, 134.73, 134.88, 157.01, 157.04, 157.10, 158.08, 159.88. ESI-MS (CH₂Cl₂/CH₃OH (1/1, v/v), positive): Calcd for C₄₀H₄₂O₁₀Na $[5merMe+Na]^+$: m/z = 705.27. Found: m/z = 705.34. Anal. Calcd for C₄₀H₄₂O₁₀·(CHCl₃)_{0.7}: C, 63.79; H, 5.62. Found: C, 64.37; H, 5.67.

S9

6merMe [2,4,4',6',4'',6'',4''',6''',4'''',6'''',2''''',4'''''-Dodecamethoxy-1,1':3',1'':3''',1'''':3'''',1'''''-sexiphenyl]⁶

A solution of 3merBP (1.41 g, 2.62 mmol), 3merBr (1.28 g, 2.62 mmol), and Pd(PPh₃)₄ (152 mg, 0.132 mmol) in dehydrated THF (24 mL) was purged with Ar. An aqueous solution of K₂CO₃ (2 M, 4 mL, 8 mmol) purged with Ar was added to the solution by a syringe and the mixture was refluxed for 2 days. After most of the solvent had been removed by evaporation, the aqueous solution was extracted with The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. CHCl₃. The crude product was purified by NH₂-SiO₂ chromatography with *n*-hexane/CH₂Cl₂ (2/1 to 1/1, v/v) and then by recycling preparative SEC with CHCl₃ as the eluent to obtain **6merMe** as a white powder (1.38 g, 1.69 mmol, 64.3% yield). Mp: 138–140°C. IR (KBr, cm⁻¹): 2935, 1604, 1490, 1203, 1165, 1034, 930, 821. ¹H NMR (CDCl₃): δ 3.73 (s, OMe, 6H), 3.80 (s, OMe, 6H), 3.81 (s, OMe, 12H), 3.82 (s, OMe, 12H), 6.51 $(dd, J = 8.0, 2.5 Hz, Ar-H_5 and 5, 2H), 6.52 (d, J = 2.5 Hz, Ar-H_3 and 3, 2H), 6.60 (s, J = 2.5 Hz, Ar-H_3 and 3, 2H), 7.5 Hz, 7.5$ Ar-H_{5', 5'', 5''', and 5''''}, 4H), 7.15 (s, Ar-H_{5' and 5}'''', 2H), 7.17 (d, *J* = 8.0 Hz, Ar-H_{6 and 6}''''', 2H), 7.21 (s, Ar-H₂^{", and 2}", 2H). ¹³C NMR (CDCl₃): δ 55.29, 55.63, 55.82, 55.84, 95.99, 98.84, 104.09, 119.10, 119.17, 119.22, 119.31, 120.31, 132.14, 134.78, 134.95, 156.98, 157.00, 157.03, 157.12, 158.10, 159.86. ESI-MS (CH₂Cl₂/CH₃OH (1/1, v/v), positive): Calcd for C₄₈H₅₀O₁₂Na [6merMe+Na]⁺: m/z = 841.32. Found: m/z = 841.40. Anal. Calcd for C₄₈H₅₀O₁₂: C, 70.40; H, 6.15. Found: C, 70.48; H, 6.13.

9merMe

A mixture of 3merBP (4.51 g, 8.4 mmol), 3merBr2 (2.27 g, 4.0 mmol), and Pd(PPh₃)₄ (930 mg, 0.80 mmol) in dehydrated THF (80 mL) was purged with Ar. An aqueous solution of K₂CO₃ (2 M, 12 mL, 24 mmol) purged with Ar was added to the solution by a syringe and the mixture was refluxed for 2 days. After most of the solvent had been removed by evaporation, the aqueous solution was extracted with The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. CHCl₃. The crude product was purified by NH_2 -SiO₂ chromatography with *n*-hexane/CH₂Cl₂ (1/1, v/v) and then by recycling preparative SEC with CHCl₃ as the eluent to obtain **9merMe** as a white powder (4.0 g, 3.26 mmol, 81.5% yield). Mp: 180–182°C. IR (KBr, cm⁻¹): 2934, 1604, 1490, 1203, 1166, 1034, 930, 819. ¹H NMR (CDCl₃): δ 3.72 (s, OMe, 6H), 3.78 (s, OMe, 12H), 3.79 (s, OMe, 12H), 3.80 (s, OMe, 12H), 3.81 (2 x s, OMe, 2 x 6H), 6.49 (dd, J = 8.0, 2.5 Hz, Ar-H_{5 and 5}, 2H), 6.51 (d, J = 2.5 Hz, Ar-H₃ and 3", 2H), 6.58 (s, Ar, 3H), 6.59 (s, Ar, 4H), 7.14 (s, Ar, 2H), 7.16 (d, J = 8.0 Hz, Ar- $H_{6 \text{ and } 6}$, H_{6 and 6}, H₁, 2H), 7.20 (s, Ar-H₂, H, and 2 x s, Ar, 2 x 2H). ¹³C NMR (CDCl₃): δ 55.26, 55.61, 55.81, 96.02, 98.81, 104.08, 119.09, 119.13, 119.18, 119.25, 119.32, 120.32, 132.12, 134.76, 134.94, 135.00, 135.01, 156.93, 156.94, 156.98, 157.03, 157.12, 158.09, 159.84. ESI-MS (CH₂Cl₂/CH₃OH (1/1, v/v), positive): Calcd for C₇₂H₇₄O₁₈Na $[9merMe+Na]^+$: m/z = 1249.48. Found: m/z = 1249.61. Anal. Calcd for C₇₂H₇₄O₁₈:

C, 70.46; H, 6.08. Found: C, 70.40; H, 6.07.

3merH [2,4,4',6',2",4"-Hexahydroxy-1,1':3',1"-terphenyl]

To a solution of **3merMe** (410 mg, 1.00 mmol) in dehydrated CH₂Cl₂ (100 mL) was dropwise added BBr₃ (1 M in CH₂Cl₂, 20 mL, 20 mmol) at -78°C over 10 min, and the mixture was then stirred overnight at -78°C. After water (10 mL) was slowly added to the solution at that temperature to quench any excess BBr₃, the solution was slowly warmed to room temperature. After concentration, the resulting mixture was found to contain a considerable amount of HBr and water, which were repeatedly removed by evaporation as an azeotropic mixture with EtOH (20 mL) until the water was completely removed. The CH₃CN (ca. 10 mL)-insoluble part was removed by filtration and the filtrate was concentrated in vacuo. The EtOH (ca. 10 mL)-insoluble part was then removed by filtration, and the filtrate was concentrated in vacuo. The residue was dissolved in water (ca. 10 mL) and dialyzed using a Spectra/Por membrane (MW = 100). The resulting aqueous solution was filtered by membrane filtration and the filtrate was lyophilized to obtain **3merH** as a slightly gray powder (314 mg, 0.931 mmol, 93.1% yield). Mp: 145–148°C. IR (KBr, cm⁻¹): 3389 (v_{O-H}), 1617, 1496, 1415, 1285, 1163, 971, 843. ¹H NMR (CD₃CN): δ 6.41 (d, J = 2.5 Hz, Ar-H_{3 and 3"}, 2H), 6.42 (dd, J = 8.0, 2.5 Hz, Ar-H_{5 and 5}, 2H), 6.53 (s, Ar-H₅, 1H), 6.97 (s, Ar-H₂, 1H), 7.05 (d, J = 8.0 Hz, Ar-H_{6 and 6}", 2H), 6.0–8.0 (br, OH, 6H). ¹ H NMR (CD₃OD): δ 7.12 (d, J = 2.5 Hz, Ar-H_{3 and 3}", 2H, and dd, J = 9.0, 2.5 Hz, Ar-H_{5 and 5}", 2H), 7.24 (s, Ar-H_{5'}, 1H), 7.73 (s, Ar-H_{2'}, 1H), 7.77 (d, J = 9.0 Hz, Ar-H_{6 and 6''}, 2H).

¹³C NMR (CD₃CN): δ 104.00, 104.79, 108.93, 117.97, 119.27, 133.32, 135.07, 155.00, 155.58, 158.59. ESI-MS (CH₃OH, negative): Calcd for C₁₈H₁₃O₆ [**3merH**-H]⁻: m/z = 325.07. Found: m/z = 325.11. Anal. Calcd for C₁₈H₁₄O₆·4.3H₂O: C, 61.63; H, 4.46. Found: C, 61.64; H, 4.51.

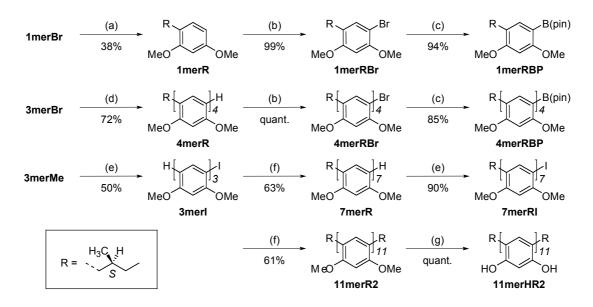
To a solution of **5merMe** (250 mg, 0.366 mmol) in dehydrated CH₂Cl₂ (30 mL) was dropwise added BBr₃ (1 M in CH₂Cl₂, 10 mL, 10 mmol) at 0°C under Ar, and the mixture was then stirred overnight at that temperature. After water (1 mL) was slowly added at 0°C, the solution was slowly warmed to room temperature. After concentration, the resulting mixture was found to contain a considerable amount of HBr and water, which were repeatedly removed by evaporation as an azeotropic mixture with EtOH (20 mL) until the water was completely removed. The CH₃CN (ca. 10 mL)-insoluble part was removed by filtration and the filtrate was concentrated in vacuo. The EtOH (ca. 10 mL)-insoluble part was then removed by filtration, and the filtrate was concentrated in vacuo. The residue was dissolved in water (ca. 10 mL) and dialyzed using a Spectra/Por membrane (MW = 100). The resulting aqueous solution was filtered by membrane filtration and the filtrate was lyophilized to obtain 5merH as a slightly brown powder (195 mg, 0.359 mmol, 98.2% yield). Mp: 210°C (dec). IR (KBr, cm^{-1}) : 3366 ($v_{\text{O-H}}$), 1615, 1497, 1408, 1284, 1165, 972, 840. ¹H NMR (CD₃CN): δ 6.41 (d, J = 2.5 Hz, Ar-H_{3 and 3}, 2H), 6.42 (dd, J = 8.0, 2.5 Hz, Ar-H_{5 and 5}, 2H), 6.55 (s, Ar-H_{5' and 5'''}, 2H), 6.57 (s, Ar-H_{5''}, 1H), 7.04 (s, Ar-H_{2''}, 1H), 7.05 (d, J = 8.0 Hz, Ar-H_{6 and 6''''}, 2H), 7.10 (s, Ar-H_{2' and 2'''}, 2H), 6.0–8.0 (m OH, 10H). ¹³C NMR (CD₃CN): δ 104.00, 104.81, 104.83, 108.95, 117.92, 119.02, 119.09, 119.31, 133.36, 135.18, 135.23, 155.00, 155.07, 155.10, 155.54, 158.58. ESI-MS (CH₃OH, negative): Calcd for C₃₀H₂₁O₁₀ [**6merH**-H]⁻: m/z = 541.11. Found: m/z = 541.18. ESI-MS: [**5merH**-H]⁻ = C₃₀H₂₁O₁₀, Exact Mass = 541.18, m/z = 541.11. Anal. Calcd for C₃₀H₂₂O₁₀·2.8H₂O: C, 60.77; H, 4.69. Found: C, 60.61; H, 4.29.

6merH [2,4,4',6',4'',6'',4''',6''',4'''',6'''',2''''',4'''''-Dodecahydroxy-1,1':3',1'':3'',1''':3'''',1'''''-sexiphenyl]

To a solution of **6merMe** (110 mg, 0.134 mmol) in dehydrated CH_2Cl_2 (20 mL) was dropwise added BBr₃ (1 M in CH_2Cl_2 , 5 mL, 5 mmol) at 0°C under Ar, and the mixture was then stirred overnight at that temperature. After water (2 mL) was slowly added at 0°C, the solution was slowly warmed to room temperature. After concentration, the resulting mixture was found to contain a considerable amount of HBr and water, which were repeatedly removed by evaporation as an azeotropic mixture with EtOH (20 mL) until the water was completely removed. The CH_3CN (*ca*. 10 mL)-insoluble part was removed by filtration and the filtrate was concentrated *in vacuo*. The EtOH (*ca*. 10 mL)-insoluble part was then removed by filtration, and the filtrate was concentrated *in vacuo*. The residue was dissolved in water (*ca*. 10 mL) and dialyzed using a Spectra/Por membrane (MW = 100). The resulting aqueous solution was filtered by membrane filtration and the filtrate was lyophilized to obtain **6merH** as

a slightly brown powder (78.8 mg, 0.121 mmol, 90.2% yield). Mp: 270°C (dec). IR (KBr, cm⁻¹): 3389 (v_{O-H}), 1615, 1492, 1406, 1281, 1163, 972, 843. ¹H NMR (CD₃CN): δ 6.40 (d, J = 2.5 Hz, Ar-H_{3 and 3}, 2H, and dd, J = 8.0, 2.5 Hz, Ar-H_{5 and 5}, 2H), 6.54 (s, Ar, 2H), 6.55 (s, Ar, 2H), 7.02 (s, Ar, 2H), 7.03 (d, J = 8.0 Hz, Ar-H_{6 and 6}, 2H), 7.09 (s, Ar, 2H), 6.0–8.0 (m OH, 12H). ¹H NMR (CD₃OD): δ 7.10 (d, J = 2.5 Hz, Ar-H_{3 and 3}, 2H, and dd, J = 9.0, 2.5 Hz, Ar-H_{5 and 5}, 2H), 7.24 (s, Ar, 2H), 7.26 (s, Ar, 2H), 7.76 (d, J = 9.0 Hz, Ar-H_{6 and 6}, 2H), 7.78 (s, Ar, 2H), 7.84 (s, Ar, 2H). ¹³C NMR (CD₃CN): δ 104.01, 104.80, 108.97, 117.92, 118.99, 119.00, 119.02, 119.27, 133.34, 135.18, 135.24, 155.02, 155.06, 155.13, 155.52, 158.55. ESI-MS (CH₃OH, negative): Calcd for C₃₆H₂₅O₁₂ [**6merH**-H]⁻: m/z = 649.13. Found: m/z = 649.20. Anal. Calcd for C₃₆H₂₆O₁₂, 2.2H₂O: C, 62.64; H, 4.44. Found: C, 62.65; H, 4.47.

9merH


noniphenyl]

To a solution of **9merMe** (800 mg, 0.652 mmol) in dehydrated CH_2Cl_2 (50 mL) was dropwise added BBr₃ (1 M in CH_2Cl_2 , 30 mL, 30 mmol) at 0°C under Ar over 10 min, and the mixture was then stirred overnight at that temperature. After water (10 mL) was slowly added to the solution at 0°C, the solution was slowly warmed to room temperature. After concentration, the resulting mixture was found to contain a

considerable amount of HBr and water, which were repeatedly removed by evaporation as an azeotropic mixture with EtOH (20 mL) until the water was completely removed. The CH₃CN (ca. 10 mL)-insoluble part was removed by filtration and the filtrate was concentrated in vacuo. The EtOH (ca. 10 mL)-insoluble part was then removed by filtration, and the filtrate was concentrated in vacuo. The residue was dissolved in water (ca. 10 mL) and dialyzed using a Spectra/Por membrane (MW = 500). The resulting aqueous solution was filtered by membrane filtration and the filtrate was lyophilized to obtain **9merH** as a slightly brown powder (610 mg, 0.579 mmol, 88.8% yield). Mp: 300° C (dec). IR (KBr, cm⁻¹): 3399 (v_{O-H}), 1616, 1492, 1405, 1279, 1161, 976, 841. ¹H NMR (CD₃CN): δ 6.38 (dd, J = 8.0, 2.5 Hz, Ar-H_{5 and 5}, 2.4), 6.40 (d, J = 2.5 Hz, Ar-H_{3 and 3}, 2H), 6.54 (2 x s, Ar, 2H and 3H), 6.55 (s, Ar, 2H), 6.99 (s, Ar, 2H), 6. 2H), 7.00 (d, J = 8.0 Hz, Ar-H_{6 and 6}, 2H), 7.05 (s, Ar, 2H), 7.06 (s, Ar, 3H), 6.0-8.0 (br, OH, 18H). ¹H NMR (CD₃OD): δ 7.10 (d, J = 2.5 Hz, Ar-H_{3 and 3}, 2H, and dd, J = 9.0, 2.5 Hz, Ar-H_{5 and 5}, 2H), 7.23 (s, Ar, 2H), 7.24 (2 x s, Ar, 3H and 2H), 7.76 $(d, J = 9.0 \text{ Hz}, \text{Ar-H}_{6 \text{ and } 6}, 2\text{H}), 7.77 \text{ (s, Ar, 2H)}, 7.83 \text{ (2 x s, Ar, 2H and 3H)}.$ ¹³C NMR (CD₃CN): δ 104.02, 104.75, 104.78, 104.81, 104.83, 108.98, 117.92, 118.86, 118.88, 118.90, 118.97, 118.99, 119.27, 133.33, 135.13 135.19, 135.22, 135.24, 154.96, 155.00, 155.07, 155.10, 155.11, 155.14, 155.47, 158.51. ESI-MS (CH₃OH, negative): Calcd for $C_{54}H_{37}O_{18}$ [9merH–H]⁻: m/z = 973.20. Found: m/z = 973.24. Anal. Calcd for C₅₄H₃₈O₁₈·4.4H₂O: C, 64.13; H, 4.54. Found: C, 64.03; H, 4.52.

3-2. Synthesis of Chiral Oligoresorcinols

Chiral oligoresorcinols were synthesized according to Scheme S-2. The reaction progresses were monitored by TLC or ESI-MS.

^a Reagents and conditions: (a) (1) *t*-BuLi, THF, -78°C, 25 min, (2) MgBr₂·Et₂O, -78°C,
30 min, (3) (*S*)-1-bromo-2-methyl-butane, CuCl₂, reflux, 2 days; (b) DBH, 0°C, 1 day;
(c) pinacolborane, PdCl₂(PPh₃)₂, NEt₃, 1,4-dioxane, 80°C, 1 day; (d) 1merRBP,
Pd(PPh₃)₄, K₂CO₃, toluene, H₂O, 80°C, 2 days; (e) DIH, 0°C, 1 day; (f) 4merRBP,
Pd(PPh₃)₄, K₂CO₃, toluene, H₂O, 80°C, 2 days; (g) BBr₃, 0°C, 4 days.

1merR [4-((S)-2-Methylbutyl)-1,3-dimethoxybenzene]⁷

To a solution of 1merBr (9.7 g, 44.7 mmol) in dehydrated THF (90 mL) was slowly added t-BuLi (1.45 M in n-pentane, 61 mL, 88.5 mmol, Kanto Chemical) over 15 min at -78°C under Ar, and then the solution was further stirred for 10 min at room temperature. The solution was again cooled to -78°C and MgBr₂·Et₂O (12.7 g, 49.2 mmol, Aldrich) was then added at one time. After being stirred at room temperature for 30 min, the resulting suspension became an almost clear yellow solution. (S)-1-Bromo-2-methylbutane (8.1 g, 53.6 mmol, Aldrich) and copper(II) chloride (180 mg, 1.34 mmol, Aldrich) were subsequently added to the solution at -78° C. The solution was stirred at room temperature for 30 min and then refluxed for 2 days. After evaporation, the residue was dissolved in *n*-hexane and the solution was washed with brine. The organic layer was washed with an aqueous EDTA solution, dried over Na₂SO₄, and filtered. After concentrated *in vacuo*, the crude product was purified by short NH_2 -SiO₂ chromatography (CH₂Cl₂) and then by subsequent SiO₂ chromatography (n-hexane) to obtain 1merR as a colorless oil (3.53 g, 16.9 mmol, 37.9% yield). IR (neat, cm⁻¹): 2998, 2958, 1613, 1506, 1464, 1288, 1208, 1156, 1040, 927, 834. ¹H NMR (CDCl₃): δ 0.82 (d, CHCH₃, J = 7.0 Hz, 3H), 0.89 (t, CH₂CH₃, J = 7.5 Hz, 3H), 1.14 (m, CHCH₃, 1H), 1.38 (m, CHCH₃, 1H), 1.62 (m, CH, 1H), 2.29 (dd, CH₂, J = 13.5, 8.0 Hz, 1H), 2.55 (dd, CH₂, J = 13.5, 6.0 Hz, 1H), 3.78 (s, OMe, 3H), 3.79 (s, OMe, 3H), 6.41 (dd, Ar-H₆, J = 8.0, 2.5 Hz, 1H), 6.44 (d, Ar-H₂, J = 2.5 Hz, 1H), 6.98 (d, Ar-H₅, J = 8.0 Hz, 1H). ¹³C NMR (CDCl₃): δ 11.51, 19.01, 29.35, 35.20, 36.77, 55.25, 55.30, 98.41, 103.55, 122.62, 130.91, 158.54, 158.92.

1merRBr [4-Bromo-6-((S)-2-methylbutyl)-1,3-dimethoxybenzene]

To a solution of **1merR** (3.48 g, 16.7 mmol) in THF (50 mL) was added DBH (2.50 g, 8.74 mmol) at 0°C and the mixture was stirred overnight at that temperature. After evaporation, the residue was dissolved in *n*-hexane and the solution was washed with sat. Na₂S₂O₃ aq., dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by short SiO₂ chromatography with *n*-hexane/ethyl acetate (4/1, v/v) to give **1merRBr** as a colorless oil (4.75 g, 16.5 mmol, 99.0% yield). IR (neat, cm⁻¹): 3001, 2958, 1602, 1503, 1463, 1289, 1204, 1161, 1036, 891, 813. ¹H NMR (CDCl₃): δ 0.82 (d, CHC*H*₃, *J* = 7.0 Hz, 3H), 0.89 (t, CH₂C*H*₃, *J* = 7.5 Hz, 3H), 1.14 (m, CHCH₃, 1H), 1.36 (m, CHCH₃, 1H), 1.60 (m, CH, 1H), 2.27 (dd, CH₂, *J* = 13.5, 8.0 Hz, 1H), 2.53 (dd, CH₂, *J* = 13.5, 6.0 Hz, 1H), 3.81 (s, OMe, 3H), 3.89 (s, OMe, 3H), 6.45 (s, Ar-H₂, 1H), 7.21 (s, Ar-H₅, 1H). ¹³C NMR (CDCl₃): δ 11.48, 18.92, 29.29, 35.21, 36.38, 55.63, 56.41, 96.67, 101.22, 124.08, 134.25, 154.58, 157.83.

1merRBP [5-((*S*)-2-Methylbutyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolyl)-2,4dimethoxybenzene]

To a solution of **1merRBr** (4.70 g, 16.3 mmol) and $PdCl_2(PPh_3)_2$ (564 mg, 0.804 mmol) in dehydrated 1,4-dioxane (50 mL) were added distilled NEt₃ (6.9 mL, 49.2 mmol) and pinacolborane (3.5 mL, 24.6 mmol) under Ar, and subsequently the mixture was heated at 80°C overnight. After concentration, the black residue was extracted with Et₂O (*ca.* 100 mL). The Et₂O-insoluble black precipitate was removed with Celite filtration. After concentration of the filtrate, the crude product was purified by

SiO₂ chromatography with *n*-hexane/Et₂O (2/1, v/v) to obtain **1merRBP** as a white solid (5.13 g, 15.4 mmol, 93.6% yield). Mp: 53–54°C. IR (KBr, cm⁻¹): 3367, 2999, 2956, 1609, 1507, 1468, 1413, 1334, 1260, 1209, 1146, 1035, 864, 815. ¹H NMR (CDCl₃): δ 0.81 (d, CHC*H*₃, *J* = 6.5 Hz, 3H), 0.89 (t, CH₂C*H*₃, *J* = 7.5 Hz, 3H), 1.14 (m, C*H*CH₃, 1H), 1.33 (s, Me, 12H), 1.37 (m, C*H*CH₃, 1H), 1.63 (m, CH, 1H), 2.30 (dd, CH₂, *J* = 13.5, 8.0 Hz, 1H), 2.54 (dd, CH₂, *J* = 13.5, 6.0 Hz, 1H), 3.82 (s, OMe, 3H), 3.83 (s, OMe, 3H), 6.38 (s, Ar-H₃, 1H), 7.39 (s, Ar-H₆, 1H). ¹³C NMR (CDCl₃): δ 11.54, 18.96, 24.81, 29.43, 35.38, 36.55, 55.15, 56.37, 82.98, 94.95, 121.92, 138.91, 161.32, 164.62.

4merR [5-((*S*)-2-Methylbutyl)-2,4,4',6',4'',6'',2''',4'''-octamethoxy-1,1':3',1'':3'',1'''-quarterphenyl]

To a solution of **3merBr** (2.45 g, 5.0 mmol), **1merRBP** (1.67 g, 5.0 mmol), and Pd(PPh₃)₄ (289 mg, 0.25 mmol) in dehydrated toluene (30 mL) was added a degassed K₂CO₃ aqueous solution (2 M, 7.5 mL, 15 mmol) under Ar and the mixture was heated at 80°C for 2 days. After most of the solvent had been removed by evaporation, the aqueous solution was extracted with ethyl acetate. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by NH₂-SiO₂ chromatography with CH₂Cl₂ and subsequent by SiO₂ chromatography with THF/*n*-hexane (1/3 to 1/0, v/v) to obtain a mixture of **3merBr** and **4merR**. *n*-BuLi (1.6 M in *n*-hexane, 10 mL, 160 mmol) was slowly added to a solution of the mixture was

stirred at that temperature for 1 h. After methanol (10 mL) was slowly added to the mixture over 5 min at -78°C, the solution was warmed to room temperature. After evaporation, the residue was dissolved in ethyl acetate and the solution was washed The organic layer was dried over Na₂SO₄, filtered, and concentrated in with water. The crude product was purified by SiO_2 chromatography with THF/*n*-hexane vacuo. (1/3 to 1/0, v/v) and subsequently by NH₂-SiO₂ chromatography with CH₂Cl₂/ethyl acetate (1/1, v/v) to obtain **4merR** as a white solid (2.21 g, 3.58 mmol, 71.6% yield). Mp: 173–175°C. IR (KBr, cm⁻¹): 2995, 2954, 1605, 1492, 1462, 1300, 1203, 1158, 1032, 931, 815. ¹H NMR (CDCl₃): δ 0.84 (d, CHCH₃, J = 6.5 Hz, 3H), 0.88 (t, CH₂CH₃, J = 7.5 Hz, 3H), 1.14 (m, CHCH₃, 1H), 1.40 (m, CHCH₃, 1H), 1.63 (m, CH, 1H), 2.30 (dd, CH_2 , J = 13.5, 8.0 Hz, 1H), 2.55 (dd, CH_2 , J = 13.5, 6.0 Hz, 1H), 3.75 (s, OMe, 3H), 3.77 (s, OMe, 3H), 3.81 (2 x s, OMe, 2 x 3H), 3.82 (s, OMe, 3H), 3.83 (s, OMe, 6H), 3.84 (s, OMe, 3H), 6.50 (s, Ar, 1H), 6.52 (dd, J = 8.0, 2.5 Hz, Ar-H₅^{...}, 1H), 6.53 (d, Ar-H₃, J = 2.5 Hz, 1H), 6.62 (2 x s, Ar, 2 x 1H), 6.98 (s, Ar, 1H), 7.18 (d, J =8.0 Hz, Ar-H₆, 1H, and s, Ar, 1H), 7.19 (s, Ar, 1H). 13 C NMR (CDCl₃): δ 11.53, 19.15, 29.38, 35.14, 36.69, 55.30, 55.45, 55.64, 55.81, 55.85, 56.00, 95.71, 96.01, 96.10, 98.85, 104.12, 118.87, 119.16, 119.26, 119.33, 119.59, 120.26, 121.63, 132.14, 133.89, 134.74, 134.76, 156.00, 157.04, 157.14, 157.48, 158.10, 159.92. HRMS (ESI+): m/z calcd for C₃₇H₄₄NaO₈ (M+Na⁺), 639.29339; found, 639.29149.

4merRBr [5-Bromo-5'''-((*S*)-2-methylbutyl)-2,4,4',6',4'',6'',2''',4'''-octamethoxy-1,1':3',1'':3'',1'''-quaterphenyl]

To a solution of 4merR (1.09 g, 1.77 mmol) in THF (20 mL) was added DBH (304 mg, 1.06 mmol) at 0°C and the mixture was stirred overnight at that temperature. After evaporation, the residue was dissolved in CHCl₃ and the solution was washed with sat. Na₂S₂O₃ aq., dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by NH₂-SiO₂ chromatography with CHCl₃/n-hexane (1/2 to 1/1, v/v) to obtain **4merRBr** as a white solid (1.24 g, 1.78 mmol, 100% yield). Mp: 96–99°C. IR (KBr, cm⁻¹): 2995, 2955, 1601, 1491, 1462, 1282, 1203, 1168, 1034, 932, ¹H NMR (CDCl₃): δ 0.84 (d, CHCH₃, J = 6.5 Hz, 3H), 0.88 (t, CH₂CH₃, J = 7.5 816. Hz, 3H), 1.14 (m, CHCH₃, 1H), 1.40 (m, CHCH₃, 1H), 1.63 (m, CH, 1H), 2.30 (dd, CH₂, J = 13.5, 8.0 Hz, 1H), 2.56 (dd, CH₂, J = 13.5, 6.0 Hz, 1H), 3.77 (s, OMe, 3H), 3.78 (s, OMe, 3H), 3.81 (s, OMe, 3H), 3.82 (s, OMe, 3H), 3.84 (3 x s, OMe, 3 x 3H), 3.92 (s, OMe, 3H), 6.51 (s, Ar, 1H), 6.55 (s, Ar, 1H), 6.61 (s, Ar, 1H), 6.62 (s, Ar, 1H), 6.99 (s, Ar, 1H), 7.15 (s, Ar, 1H), 7.17 (s, Ar, 1H), 7.42 (s, Ar-H₆, 1H). 13 C NMR (CDCl₃): δ 11.53, 19.14, 29.38, 35.14, 36.69, 55.45, 55.83, 55.85, 55.87, 56.00, 56.09, 56.36, 95.71, 95.90, 96.13, 97.10, 101.66, 117.80, 118.81, 119.04, 119.50, 119.64, 121.45, 121.64, 133.87, 134.60, 134.66, 135.43, 155.59, 155.99, 156.90, 157.01, 157.13, 157.47, 157.50. HRMS (ESI+): *m/z* calcd for C₃₇H₄₃BrNaO₈ (M+Na⁺), 717.20390; found, 717.19747.

4merRBP [5'''-((*S*)-2-Methylbutyl)-4,6,4',6',4'',6'',2''',4'''-octamethoxy-3-(4,4,5,5tetramethyl-1,3,2-dioxaborolyl)-1,1':3',1'':3'',1'''-quaterphenyl]

To a solution of **4merRBr** (1.21 g, 1.74 mmol) and PdCl₂(PPh₃)₂ (61 mg, 0.087 mmol) in dehydrated 1,4-dioxane (20 mL) were added distilled NEt₃ (1.46 mL, 10.4

mmol) and pinacolborane (0.75 mL, 5.21 mmol) under Ar, and subsequently the mixture was heated at 80°C overnight. After concentration, the black residue was extracted with Et₂O (ca. 100 mL). The Et₂O-insoluble black precipitate was removed with Celite filtration. After concentration of the filtrate, the crude product was purified by SiO₂ chromatography with Et_2O/n -hexane (4/1, v/v) to obtain **4merRBP** as a slightly brown solid (1.10 g, 1.48 mmol, 85.1% yield). Mp: 113–115°C. IR (KBr, cm⁻¹): 2992, 2956, 1603, 1493, 1463, 1437, 1334, 1269, 1203, 1168, 1145, 1034, 931, 818. ¹H NMR (CDCl₃): δ 0.84 (d, CHCH₃, J = 7.0 Hz, 3H), 0.88 (t, CH₂CH₃, J = 7.5 Hz, 3H), 1.14 (m, CHCH₃, 1H), 1.30 (s, Me, 12H), 1.40 (m, CHCH₃, 1H), 1.64 (m, CH, 1H), 2.30 (dd, CH₂, J = 13.5, 8.0 Hz, 1H), 2.55 (dd, CH₂, J = 13.5, 6.0 Hz, 1H), 3.77 (s, OMe, 3H), 3.80 (2 x s, OMe, 2 x 3H), 3.81 (s, OMe, 3H), 3.83 (2 x s, OMe, 6H and 3H), 3.87 (s, OMe, 3H), 6.47 (s, Ar, 1H), 6.50 (s, Ar, 1H), 6.60 (s, Ar, 1H), 6.61 (s, Ar, 1H), 6.99 (s, Ar, 1H), 7.16 (s, Ar, 1H), 7.18 (s, Ar, 1H), 7.60 (s, Ar-H₂, 1H). ¹³C NMR (CDCl₃): δ 11.53, 19.15, 24.79, 29.38, 35.13, 36.68, 55.45, 55.58, 55.83, 55.88, 55.91, 55.99, 56.23, 82.95, 95.18, 95.68, 96.01, 96.13, 118.85, 119.33, 119.43, 119.54, 119.78, 121.58, 133.90, 134.64, 134.71, 140.30, 155.98, 157.00, 157.01, 157.11, 157.17, 157.45, 160.90, 165.46.

3merI [5-Iodo-2,4,4',6',2'',4''-hexamethoxy-1,1':3',1''-terphenyl]

To a solution of **3merMe** (4.1 g, 10 mmol) in THF (100 mL) was added DIH (5.7 g, 15 mmol) at 0°C and the solution was stirred at that temperature for 1 day. To the solution was added a 20 w% aqueous $Na_2S_2O_3$ solution (50 mL) at 0°C to quench any

excess DIH. After most of the solvent had been removed by evaporation, the aqueous solution was extracted with CHCl₃. The organic layer was dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude product was purified by SiO₂ chromatography with THF/*n*-hexane (1/2, v/v) to obtain **3merI** as a slightly brown solid (2.70 g, 5.02 mmol, 50.2% yield). Mp: 83–85°C. IR (KBr, cm⁻¹): 2997, 2936, 1606, 1489, 1463, 1358, 1282, 1205, 1160, 1032, 930, 818. ¹H NMR (CDCl₃): δ 3.77 (s, OMe, 3H), 3.80 (s, OMe, 3H), 3.82 (s, OMe, 3H), 3.83 (s, OMe, 6H), 3.91 (s, OMe, 3H), 6.50 (s, Ar-H₃, 1H), 6.53 (dd, Ar-H₅., *J* = 8.0, 2.5 Hz, 1H), 6.54 (d, Ar-H₃., *J* = 2.5 Hz, 1H), 6.60 (s, Ar-H₅., 1H), 7.08 (s, Ar-H₂., 1H), 7.18 (d, Ar-H₆., *J* = 8.0 Hz, 1H), 7.63 (s, Ar-H₆, 1H). ¹³C NMR (CDCl₃): δ 55.33, 55.65, 55.86, 55.88, 55.96, 56.46, 74.16, 95.94, 96.27, 98.90, 104.18, 117.83, 119.38, 120.01, 122.29, 132.06, 134.33, 141.17, 156.99, 157.49, 158.10, 158.14, 158.67, 160.05. HRMS (ESI+): *m*/z calcd for C₂₄H₂₅INaO₆ (M+Na⁺), 559.05935; found, 559.05786.

7merR

[5-((*S*)-2-methylbutyl)-

2,4,4',6',4'',6'',4''',6''',4'''',6'''',4''''',6''''',2''''',4''''''-tetradecamethoxy-1,1':3',1'':3'',1''':3''',1'''':3'''',1'''':3'''',1'''''-septiphenyl]

To a solution of **3merI** (320 mg, 0.60 mmol), **4merRBP** (446 mg, 0.60 mmol), and $Pd(PPh_3)_4$ (21 mg, 0.018 mmol) in dehydrated toluene (10 mL) was added a degassed aqueous K₂CO₃ solution (2 M, 2 mL, 4 mmol) under Ar and the mixture was heated at 80°C for 2 days. After most of the solvent had been removed by evaporation at room temperature, the aqueous solution was extracted with CHCl₃. The organic layer was

dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by SiO₂ chromatography with THF/*n*-hexane (1/1 to 2/1, v/v) and subsequently by NH₂-SiO₂ chromatography with CH₂Cl₂/*n*-hexane (1/3 to 2/1, v/v) to obtain 7merR as a white solid (387 mg, 0.378 mmol, 62.9% yield). Mp: 143-145°C. IR (KBr, cm⁻ ¹): 2994, 2953, 1604, 1491, 1463, 1282, 1202, 1167, 1034, 931, 818. ¹H NMR (CDCl₃): δ 0.83 (d, CHCH₃, J = 6.5 Hz, 3H), 0.88 (t, CH₂CH₃, J = 7.5 Hz, 3H), 1.13 (m, CHCH₃, 1H), 1.40 (m, CHCH₃, 1H), 1.63 (m, CH, 1H), 2.30 (dd, CH₂, J = 13.5, 8.0 Hz, 1H), 2.55 (dd, CH_2 , J = 13.5, 6.0 Hz, 1H), 3.72 (s, OMe, 3H), 3.75 (s, OMe, 3H), 3.80 (s, OMe, 24H), 3.82 (s, OMe, 9H), 3.83 (s, OMe, 3H), 6.49 (s, Ar, 1H), 6.50 (dd, Ar- H_5 , J = 8.0, 2.5 Hz, 1H), 6.52 (d, Ar- H_3 , J = 2.5 Hz, 1H), 6.59 (s, Ar, 1H), 6.60 (2) x s, Ar, 3H and 1H), 6.98 (s, Ar, 1H), 7.15 (s, Ar, 1H), 7.16 (s, Ar, 1H), 7.17 (d, Ar- H_{6} , J = 8.0 Hz, 1H), 7.21 (2 x s, Ar, 2 x 1H), 7.22 (s, Ar, 1H). ¹³C NMR (CDCl₃): δ 11.53, 19.14, 29.37, 35.11, 36.68, 55.26, 55.42, 55.61, 55.78, 55.79, 55.80, 55.82, 55.84, 55.99, 95.71, 95.97, 96.08, 98.82, 104.08, 118.91, 119.07, 119.11, 119.15, 119.16, 119.21, 119.29, 119.31, 119.46, 120.32, 121.52, 132.13, 133.90, 134.78, 134.96, 134.99, 135.01, 155.99, 156.92, 156.96, 157.00, 157.02, 157.11, 157.40, 158.09, 159.84. HRMS (ESI+): m/z calcd for C₆₁H₆₈NaO₁₄ (M+Na⁺), 1047.45067; found, 1047.44546.

7merRI

[5-Iodo-5'''''-((*S*)-2-methylbutyl)-

2,4,4',6',4'',6'',4''',6''',4'''',6'''',4''''',6''''',2'''''',4''''''-tetradecamethoxy-1,1':3',1'':3'',1''':3''',1'''':3'''',1''''':3''''',1'''''-septiphenyl]

To a solution of 7merR (350 mg, 0.34 mmol) in THF (20 mL) was added DIH

(2.28 g, 6.0 mmol) at 0°C and the mixture was stirred at that temperature for 1 day. То the solution was added a 20 w% aqueous Na₂S₂O₃ solution (20 mL) at 0°C. After most of the solvent had been removed by evaporation, the aqueous solution was extracted with CHCl₃. The organic layer was dried over Na₂SO₄, filtered, and concentrated in The crude product was purified by SiO_2 chromatography with THF/*n*-hexane vacuo. (1/1 to 2/1, v/v) to obtain **7merRI** as a white solid (354 mg, 0.308 mmol, 90.3% yield). Mp: 148–150°C. IR (KBr, cm⁻¹): 2994, 2952, 2934, 1604, 1490, 1463, 1355, 1263, 1202, 1167, 1033, 931, 817. ¹H NMR (CDCl₃): δ 0.84 (d, CHCH₃, J = 6.5 Hz, 3H), 0.88 (t, CH₂CH₃, J = 7.5 Hz, 3H), 1.14 (m, CHCH₃, 1H), 1.40 (m, CHCH₃, 1H), 1.64 (m, CH, 1H), 2.30 (dd, CH₂, J = 13.5, 8.0 Hz, 1H), 2.55 (dd, CH₂, J = 13.5, 6.0 Hz, 1H), 3.74 (2 x s, OMe, 2 x 3H), 3.79 (s, OMe, 12H), 3.80 (s, OMe, 12H), 3.81 (s, OMe, 6H), 3.82 (s, OMe, 3H), 3.87 (s, OMe, 3H), 6.47 (s, Ar, 1H), 6.49 (s, Ar, 1H), 6.58 (s, Ar, 1H), 6.60 (2 x s, Ar, 3H and 1H), 6.98 (s, Ar, 1H), 7.11 (s, Ar, 1H), 7.16 (s, Ar, 1H), 7.18 (s, Ar, 1H), 7.19 (s, Ar, 1H), 7.21 (s, Ar, 1H), 7.61 (s, Ar-H₆, 1H). ¹³C NMR (CDCl₃): δ 11.46, 19.07, 29.29, 35.04, 36.61, 55.35, 55.70, 55.73, 55.75, 55.76, 55.82, 55.91, 56.31, 73.94, 95.62, 95.81, 95.87, 95.91, 96.00, 96.15, 117.66, 118.81, 118.87, 119.03, 119.09, 119.18, 119.22, 119.40, 121.40, 122.27, 133.79, 134.44, 134.66, 134.75, 134.84, 141.04, 155.92, 156.75, 156.88 (x 2), 156.90, 156.93, 157.05, 157.33, 157.39, 157.94, 158.58. HRMS (ESI+): m/z calcd for C₆₁H₆₇INaO14 (M+Na⁺), 1173.34732; found, 1173.34595.

.....,4......,6.....,2.....,4.....,docosamethoxy-

To a solution of 7merRI (320 mg, 0.278 mmol), 4merRBP (309 mg, 0.417 mmol), and Pd(PPh₃)₄ (16 mg, 0.014 mmol) in dehydrated toluene (6 mL) was added a degassed aqueous K₂CO₃ solution (2 M, 1.5 mL, 3 mmol) and the mixture was stirred at 80°C for 2 days. After most of the toluene had been removed by evaporation at room temperature, the residue was extracted with CHCl₃. The organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified successively by short NH₂-SiO₂ chromatography with CHCl₃, by SiO₂ chromatography with $CHCl_3$ /ethyl acetate (10/1, v/v), and by recycled preparative SEC chromatography The CHCl₃ solution was evaporated and the residue was dissolved in with CHCl₃. benzene and freeze-dried to obtain 11merR2 as a slightly brownish white solid (278 mg, 0.170 mmol, 61.2% yield). **11merR2**: $[\alpha]_D^{25}$: +2.9° (c = 1.11, CHCl₃). Mp: 299–301°C. IR (KBr, cm⁻¹): 2994, 2952, 1604, 1508, 1490, 1459, 1355, 1263, 1202, 1167, 1035, 930, 897, 818. ¹H NMR (CDCl₃): δ 0.83 (d, CHCH₃, J = 6.5 Hz, 6H), 0.88 (t, CH₂CH₃, J = 7.5 Hz, 6H), 1.14 (m, CHCH₃, 2H), 1.40 (m, CHCH₃, 2H), 1.64 (m, CH, 2H), 2.30 (dd, CH₂, *J* = 13.5, 8.0 Hz, 2H), 2.55 (dd, CH₂, *J* = 13.5, 6.0 Hz, 2H), 3.74 (s, OMe, 6H), 3.77 (s, OMe, 12H), 3.78 (s, OMe, 12H), 3.79 (2 x s, OMe, 2 x 12H), 3.81 (2 x s, OMe, 2 x 6H), 6.49 (s, Ar, 2H), 6.58 (s, Ar, 5H), 6.59 (s, Ar, 4H), 6.98 (s, Ar, 2H), 7.17 (s, Ar, 2H), 7.19 (s, Ar, 2H), 7.21 (s, Ar, 3H), 7.22 (s, Ar, 2H). ¹³C NMR (CDCl₃): δ 11.48, 19.09, 29.32, 35.06, 36.64, 55.35, 55.72, 55.75, 55.78, 55.91, 95.65,

95.95, 95.98, 96.05, 118.85, 118.99, 119.01, 119.05, 119.08, 119.13, 119.24, 119.40, 121.43, 133.83, 134.72, 134.92, 134.99, 135.00, 155.95, 156.85, 156.87, 156.89, 156.92, 156.96, 157.35. ESI-MS (CH₂Cl₂/CH₃OH (1/1, v/v), positive): Calcd for $C_{98}H_{110}O_{22}Na [11merR2+Na]^+: m/z = 1662.74.$ Found: m/z = 1662.89. Anal. Calcd for $C_{98}H_{110}O_{22}0.7H_2O$: C, 71.23; H, 6.79. Found: C, 71.26; H, 6.75.

""",1"""":3""",1""""-undeciphenyl]

To a solution of **11merR2** (101 mg, 0.062 mmol) in dehydrated CH_2Cl_2 (20 mL) was dropwise added BBr₃ (1.0 M in CH_2Cl_2 , 4.0 mL, 4.0 mmol) over 10 min at 0°C under Ar, and the mixture was then stirred overnight at that temperature. After water (0.5 mL) was slowly added at the same temperature, the solution was slowly warmed to room temperature. After concentration, the resulting mixture was found to contain a considerable amount of HBr and water, which were repeatedly removed by evaporation as an azeotropic mixture with EtOH (20 mL) until the water was completely removed. The CH₃CN (*ca.* 10 mL)-insoluble part was removed by filtration, and the filtrate was concentrated *in vacuo*. The EtOH (*ca.* 10 mL)-insoluble part was then removed by filtration, and the filtrate was concentrated *in vacuo*. The EtOH (*ca.* 10 mL)-insoluble part was dissolved in water (*ca.* 10 mL) and dialyzed using a Spectra/Por membrane (MW = 500). The

resulting aqueous solution was filtered by membrane filtration and the filtrate was lyophilized to obtain 11merHR2 as a slightly brown powder (82.6 mg, 0.062 mmol, 100% yield). $[\alpha]_D^{25}$: +4.6 (*c* = 1.06, CH₃OH) and +107° (*c* = 0.27, H₂O). Mp: 270°C (dec). IR (KBr, cm⁻¹): 3399 (v_{0-H}), 2959, 1611, 1497, 1408, 1280, 1163, 982, 841. ¹H NMR (CD₃CN): δ 0.76 (d, CHCH₃, J = 7.0 Hz, 6H), 0.82 (t, CH₂CH₃, J = 7.5 Hz, 6H), 1.08 (m, CHCH₃, 2H), 1.33 (m, CHCH₃, 2H), 1.57 (m, CH, 2H), 2.23 (dd, CH₂, J = 13.5, 8.0 Hz, 2H), 2.47 (dd, CH₂, J = 13.5, 6.0 Hz, 2H), 6.39 (s, Ar, 2H), 6.51 (s, Ar-H₅, 1H, and s, Ar, 2H), 6.52 (2 x s, Ar, 2 x 2H), 6.53 (s, Ar, 2H), 6.85 (s, Ar, 2H), 6.98 (s, Ar, 2H), 7.01 (s, Ar-H₂, 1H, and s, Ar, 2H), 7.03 (s, Ar, 2H), 7.05 (s, Ar, 2H), 6.0–8.0 (br, OH, 22H). ¹H NMR (CD₃OD): δ 1.51 (d, CHCH₃, J = 6.5 Hz, 6H), 1.56 (t, CH₂CH₃, J = 7.5 Hz, 6H), 1.82 (m, CHCH₃, 2H), 2.09 (m, CHCH₃, 2H), 2.34 (m, CH, 2H), 2.98 (dd, CH₂, J = 13.5, 8.0 Hz, 2H), 3.23 (dd, CH₂, J = 13.5, 6.0 Hz, 2H), 7.10 (s, Ar, 2H), 7.22 (s, Ar-H₂, 1H), 7.23 (2 x s, Ar, 2 x 2H), 7.24 (s, Ar, 2H), 7.25 (s, Ar, 2H), 7.59 (s, Ar, 2H), 7.78 (s, Ar, 2H), 7.83 (3 x s, Ar, 2H, 3H and 2H). ¹³C NMR (CD₃CN): δ 11.79, 19.21, 29.97, 36.07, 37.13, 104.00, 104.78, 104.81, 104.87, 117.48, 118.75, 118.77, 118.78, 118.81, 118.82, 118.93, 119.00, 119.57, 121.52, 134.65, 135.08, 135.19, 135.20, 153.02, 154.88, 154.92, 155.12, 155.13, 155.15, 155.16, 156.07. ESI-MS (CH₃OH, negative): Calcd for $C_{76}H_{65}O_{22}$ [11merHR2-H]⁻: m/z = 1329.40. Found: m/z = 1329.51. Anal. Calcd for C₇₆H₆₆O₂₂7.7H₂O: C, 62.09; H, 5.58. Found: C, 62.19; H, 5.20.

References

- 1. Chassaing, C.; Haudrechy, A.; Langlois, Y. Tetrahedron Lett. 1997, 38, 4415–4416.
- 2. Narioka, T.; Ishikawa, T. Heterocycles 2002, 56, 413–420.
- 3. Majetich, G.; Hicks, R.; Reister, S. J. Org. Chem. 1997, 62, 4321–4326.
- Monkman, A. P.; Palsson, L.-O.; Higgins, R. W. T.; Wang, C.; Bryce, M.; Batsanov, A. S.; Howard, J. A. K. J. Am. Chem. Soc. 2002, 124, 6049–6055.
- Murata, M.; Oyama, T.; Watanabe, S.; Masuda, Y. J. Org. Chem. 2000, 65, 164–168.
- Neuteboom, E. E.; Meskers, S. C. J.; van Hal, P. A.; van Duren, J. K. J.; Meijer, E. W.; Janssen, R. A. J.; Dupin, H.; Pourtois, G.; Cornil, J.; Lazzaroni, R.; Brédas, J.-L.; Beljonne, D. J. Am. Chem. Soc. 2003, 125, 8625–8638.
- Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646–5647.

4. Investigation of Double Helix Formation of Oligoresorcinols

4-1. Concentration Effect

The ¹H NMR (500 MHz, 25° C) spectra of **9merH** in D₂O exhibited almost no change in the range of 0.1 to 8 mM, suggesting that **9merH** forms the stable double helix within the concentration range.

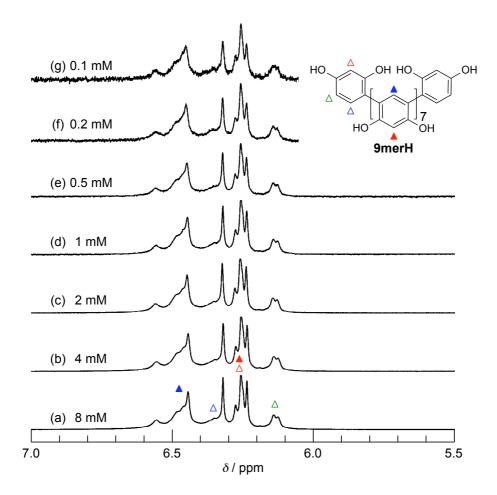
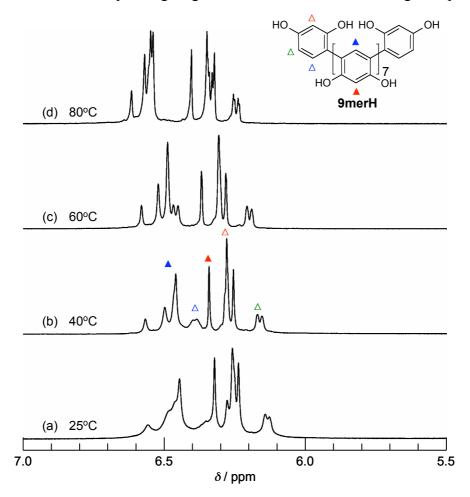



Figure S-1. ¹H NMR spectra of 9merH in D₂O at 25°C. 1,4-Dioxane in D₂O was used as the external standard. [9merH] = 8 (a), 4 (b), 2 (c), 1 (d), 0.5 (e), 0.2 (f), and 0.1 mM (g).

4-2. Temperature Effect

The ¹H NMR signals of **9merH** in D₂O slightly shifted downfield and became sharper with an increase in temperature, suggesting that the double helix of **9merH** dissociates into the corresponding single strands to a lesser extent at high temperatures.

Figure S-2. ¹H NMR spectra of **9merH** in D_2O at various temperatures. 1,4-Dioxane in D_2O was used as the external standard.

The ¹H NMR signals of **9merH** in D₂O/CD₃OD (72/28, v/v) largely shifted downfield and were quite broadened compared with those in D₂O, suggesting that most of **9merH** exists as a single strand at high temperatures



Figure S-3. (A) ¹H NMR spectral changes of 9merH in D_2O/CD_3OD (72/28, v/v). [9merH] = 1 mM. (B) Plots of the chemical shifts of the marked signals vs. temperature.

The ¹H NMR signals of **6merH** in D_2O shifted downfield with an increase in temperature, indicating that the double helix of **6merH** favorably dissociates into the single strands at high temperatures in D_2O .

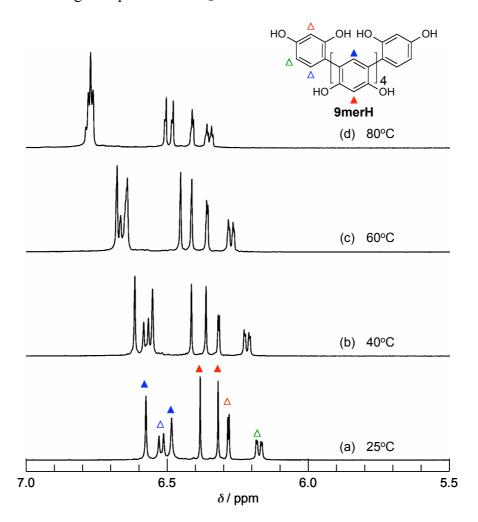
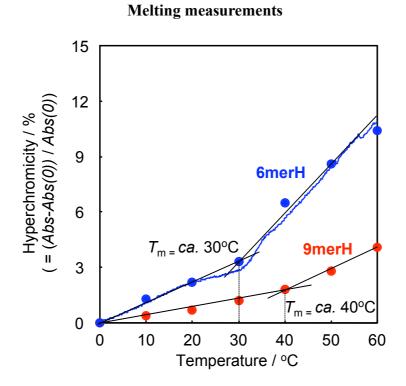
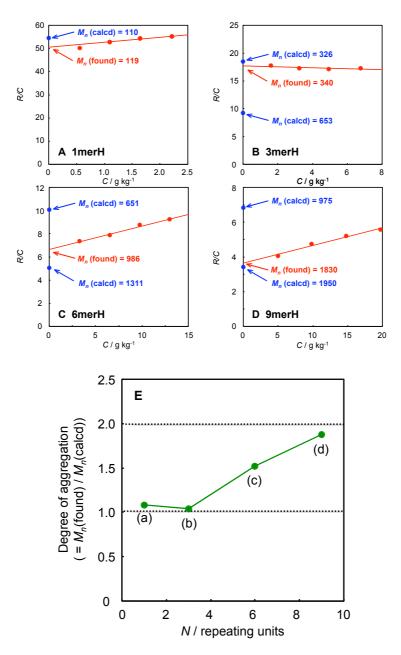
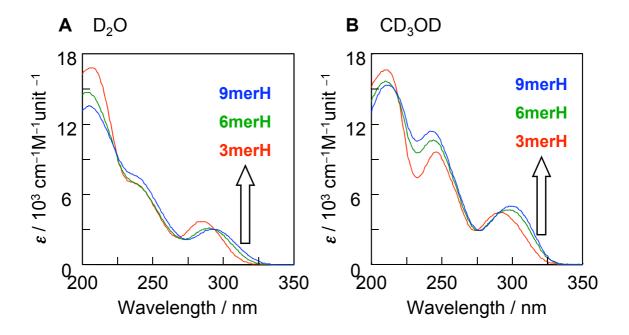




Figure S-4. ¹H NMR spectra of 6merH in D_2O at various temperatures. 1,4-Dioxane in D_2O was used as the external standard.


Figure S-5. UV melting profiles of **6merH** (blue line (heating rate 0.5 °C/min) and blue circles) and **9merH** (red circles) in H₂O. [**6merH**] = 1.5 mM, [**9merH**] = 1 mM.

4-3. VPO Measurement

Figure S-6. (A–D) Plots of *R/C vs.* concentration of oligoresorcinols (**1merH** (A), **3merH** (B), **6merH** (C), and **9merH** (D)) in H₂O at 40°C (*R*: VPO response, arbitrary unit; *C*: initial concentration of oligomer). [Oligomers] = 5, 10, 15, and 20 mmol/kg. (E) Plots of the degree of aggregation of the oligomers (M_n (found) / M_n (calcd)) in H₂O.

4-4. Chain Length Dependence of Absorption Spectra

Figure S-7. Absorption spectra of oligoresorcinols (**3merH**, **6merH**, and **9merH**) in $D_2O(A)$ and $CD_3OD(B)$ at 25 °C.

4-5. Molecular Modeling and Calculations

Molecular modeling and molecular mechanics calculations were performed using the Compass Force Field as implemented in the Materials Studio software (version 3.0; The models of the single strands of 9merH and 11merHR2 were Accerlys Inc.). constructed using Materials Visualizer in the Materials Studio. The parameter, "relative electric" was set to 4 that is the recommended value for calculations in water. The initial conformations of the main chains of 9merH and 11merHR2 were constructed based on the crystal structures of the poly- or oligo(m-phenylene) that adopt the 5_1 -helical conformation.¹ Charges on the atoms of the oligomers were calculated using the charge equilibration (QEq) in the Materials Studio; the total charge of the molecule was set to 0. The structures of the double helices of 9merH and 11merHR2 were constructed by duplicating the initial structures of the single strands of 9merH and 11merHR2. The energy minimization was conducted using the Smart Minimizer of the Discover module until the root-mean-square (rms) value became less than 0.1 kcal mol⁻¹ Å⁻¹. Molecular dynamics calculations were run for 1 ns at a constant volume and temperature (300 K) (NVT MD using the Nosé temperature thermostat²) with a step size of 1 fs, and the trajectory structures were obtained at 20 ps intervals.

The double helices of both **9merH** and **11merHR2** were calculated to be more stable than their single strands by energy minimization. Furthermore, the MD simulations showed that the double helical structures were retained after the 1 ns MD calculations at 300 K, while the single helices were broken.

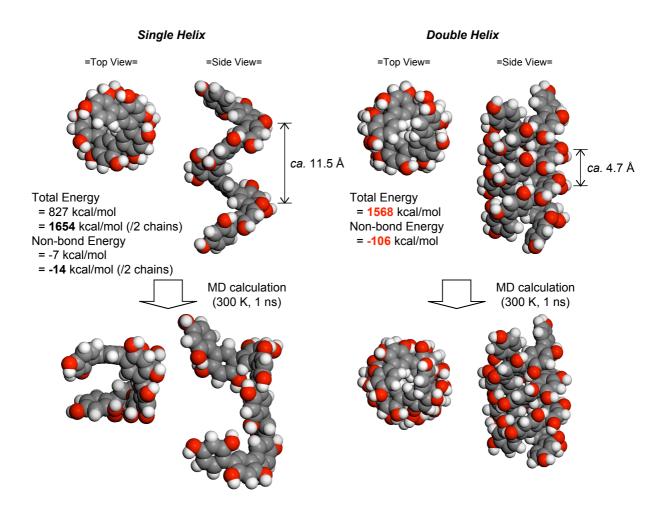


Figure S-8. Possible models for single and double helices of 9merH.

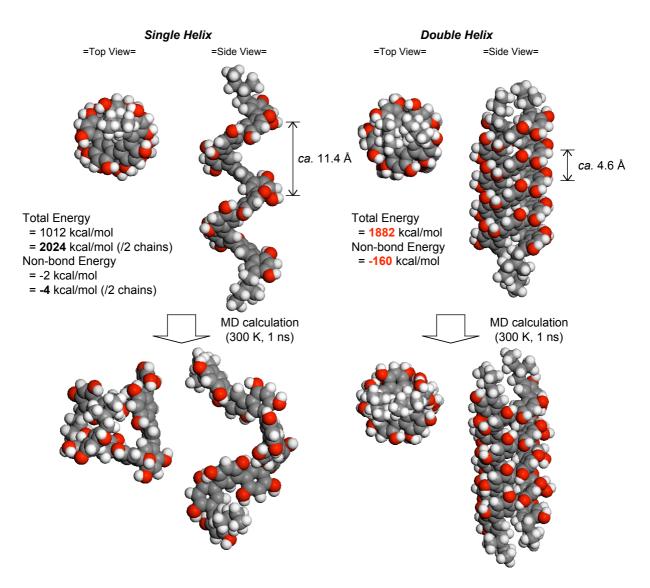


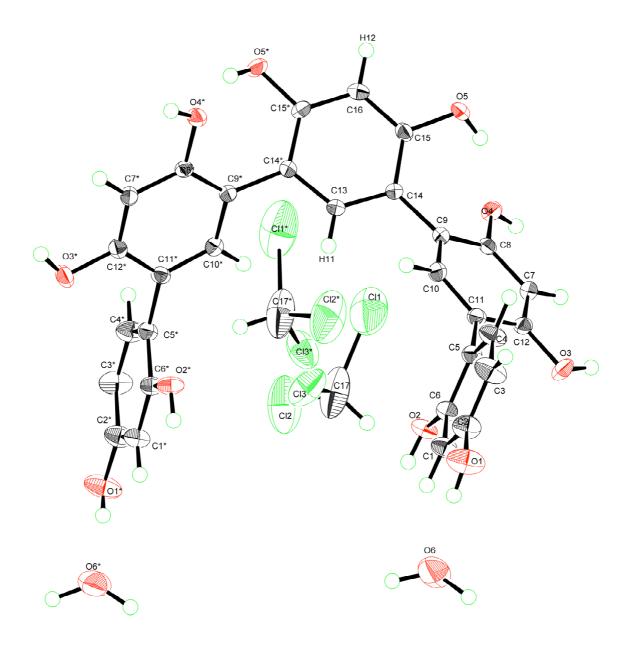
Figure S-9. Possible models for single and double helices of 11merHR2.

References

- (a) Williams, D. J.; Colquhoun, H. M.; O'Mahoney, C. A. J. Chem. Soc., Chem. Commun. 1994, 1643–1644. (b) Kobayashi, N.; Sasaki, S.; Abe, M.; Watanabe, S.; Fukumoto, H.; Yamamoto, T. Macromolecules 2004, 37, 7986–7991.
- (a) Nosé, S. Molec. Phys. 1984, 52, 255–268, (b) Nosé, S. J. Chem. Phys. 1984, 81, 511–519, (c) Nosé, S. Prog. Theoret. Phys. Supplement 1991, 103, 1–46.

4-6. Single-Crystal X-ray Analysis

4-6-1. Single Helix of 5merH


X-ray diffraction data for the single helix of **5merH** were collected on a Bruker Smart Apex CCD-based X-ray diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å) at 153 K.

Single crystals of the single helix of **5merH** [C₃₀H₂₂O₁₀·1.2(CHCl₃)·2(H₂O), Mw = 721.75] suitable for X-ray analysis were grown by slow liquid diffusion of CHCl₃ into an CH₃CN solution of **5merH**, and a single colorless crystal with dimensions 0.30 × 0.20 × 0.05 mm was selected for intensity measurements. The unit cell was orthorhombic with the space group *Pbcn*. The lattice constants with Z = 4, $\rho_{calcd} = 1.387$ g cm⁻³, μ (Mo-K α) = 0.37 cm⁻¹, F(000) = 1486, $2\theta_{max} = 55.0^{\circ}$ were a = 14.0511(5), b = 10.1199(4), c = 24.3010(8) Å, and V = 3455.5(2) Å³. A total of 22005 reflections were collected, of which 3958 reflections were independent ($R_{int} = 0.0360$). The structure was refined to final $R_1 = 0.0875$ for 3958 data [$I > 2\sigma(I)$] with 240 parameters and $wR_2 = 0.2782$ for all data, GOF = 1.060, and residual electron density max./min. = 1.420/ -0.372 e·Å⁻³.

Data collection, indexing, and initial cell refinements were carried out using the program SMART.¹ Frame integration and final cell refinements were performed using SAINT software.² A multiple absorption correction for each data set was applied using the program SADABS.³ The structure was solved by direct methods and Fourier

techniques using the program SHELXS-97,⁴ and refined by full-matrix least squares methods on F^2 using SHELXL-97⁵ incorporated in SHELXTL-PC.⁶

All non-hydrogen atoms were refined anisotropically. The C13, C16, H11, and H12 sit on special positions with an occupancy of 0.5. The H11 and H12 were found by differential-Fourier analysis and refined with $U_{iso}(H)$ values of $1.2U_{eq}(C)$. The water hydrogen atoms were also located in differential-Fourier syntheses, but their positional and displacement parameters were refined with O-H distance restraints of 0.9 Å, and with $U_{iso}(H)$ values of $1.5U_{eq}(O)$. The positions of other hydrogen atoms were calculated geometrically and refined as a riding model with $U_{iso}(H)$ values of $1.2U_{eq}(C)$ or $1.3U_{eq}(O)$. A molecule of solvent CHCl₃ that was gradually lost during data collection, was determined to have an occupancy of *ca*. 0.6 based on a trial refinement of occupancy parameters. This value was fixed in the subsequent refinement.

Figure S-10. ORTEP drawing of the single helix of **5merH** with thermal ellipsoids at 50% probability.

 Table S-1.
 Crystal data and structure refinement for the single helix of 5merH (CIF

 file is available in a separate file.).

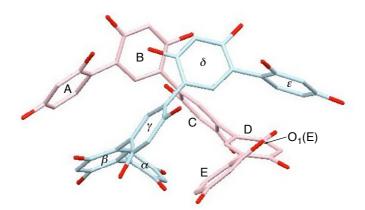
Identification code	297375	
Empirical formula	C31.2 H27.2 Cl3.6 O12	
Formula weight	721.75	
Temperature	153(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbcn	
Unit cell dimensions	a = 14.0511(5) Å	$\alpha = 90^{\circ}$
	<i>b</i> = 10.1199(4) Å	$\beta = 90^{\circ}$
	c = 24.3010(8) Å	$\gamma = 90^{\circ}$
Volume	3455.5(2) Å ³	
Z	4	
Density (calculated)	1.387 g/cm ³	
Absorption coefficient	0.371 mm ⁻¹	
F(000)	1486	
Crystal size	0.30 x 0.20 x 0.05 mm ³	
Theta range for data collection	2.22 to 27.50°.	
Index ranges	-18<=h<=16, -13<=k<=6, -28<=l<=31	
Reflections collected	22005	

Independent reflections	3958 [R(int) = 0.0360]	
Completeness to theta = 27.50°	99.8%	
Absorption correction	Empirical	
Max. and min. transmission	0.979 and 0.904	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3958 / 1 / 240	
Goodness-of-fit on F ²	1.060	
Final R indices [I>2sigma(I)]	$R_1 = 0.0875, wR_2 = 0.2515$	
R indices (all data)	$R_1 = 0.1095, wR_2 = 0.2782$	
Largest diff. peak and hole 1.420 and $-0.372 \text{ e} \cdot \text{Å}^{-3}$		

4-6-2. Double Helix of 5merH

X-ray diffraction data for the double helix of **5merH** were collected on a Bruker Smart ApexII CCD-based X-ray diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å) at 90 K.

Single crystals of the double helix of **5merH** [2($C_{30}H_{22}O_{10}$)·5(H_2O), Mw = 1164.95] suitable for X-ray analysis were grown by slow evaporation of an aqueous solution of **5merH**, and a single colorless crystal with dimensions 0.06 × 0.04 × 0.02 mm was selected for intensity measurements. The unit cell was orthorhombic with the space group *P-1*. The lattice constants with Z = 2, $\rho_{calcd} = 1.507$ g cm⁻³, μ (Mo-K α) = 0.12 cm⁻¹, *F*(000) = 1208, $2\theta_{max} = 50.9^{\circ}$ were a = 11.4241(19), b = 12.300(2), c = 19.998(3)Å, and V = 2567.3(7) Å³. A total of 25368 reflections were collected, of which 9416 reflections were independent ($R_{int} = 0.0459$). The structure was refined to final $R_1 =$ 0.0715 for 5901 data [$I > 2\sigma(I)$] with 787 parameters and $wR_2 = 0.2133$ for all data, *GOF* = 1.038, and residual electron density max / min = 1.552 / -0.846 e·Å⁻³.


Data collection, indexing, and initial cell refinements were carried out using the program SMART.¹ Frame integration and final cell refinements were performed using SAINT software.⁷ A multiple absorption correction for each data set was applied using the program SADABS.³ The structure was solved by direct methods and Fourier techniques using the program SHELXS-97⁴ and refined by full-matrix least squares methods on F^2 using SHELXL-97⁵ incorporated in SHELXTL-PC.⁶

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were

calculated geometrically and refined as a riding model with $U_{iso}(H)$ values of $1.2U_{eq}(C)$ or $1.3U_{eq}(O)$. The water hydrogen atoms were not located because they have disordered configurations.

Figure S-11. ORTEP drawing of the double helix of **5merH** with thermal ellipsoids at 50% probability.

 Table S-2.
 Centroid–Centroid Separations for Pairs of Aromatic Rings

Interaction	Mode	Distance / Å	Angle / deg ^{a)}
Α…β	π-π	3.937	17.92
C···a	π–π	4.016	19.75
D…ε	π–π	4.324	35.86
$E\cdots\gamma$	π–π	4.189	18.99
$\mathrm{B} ightarrow eta$	CH–π	5.675	58.16
$C \rightarrow \delta$	CH–π	5.593	81.90
$\beta \rightarrow C$	CH–π	5.886	63.94
$\gamma \rightarrow B$	CH–π	5.754	80.38
$\delta \rightarrow E$	CH–π	5.776	70.04
$O_1(E) \rightarrow \varepsilon$	ОН– <i>π</i>	3.426	-

a) Defined by the two mean planes of the aromatic rings.

Table S-3. Crystal data and structure refinement for the double helix of **5merH** (CIFfile is available in a separate file.).

Identification code	297376	
Empirical formula	C60 H44 O25	
Formula weight	1164.95	
Temperature	90(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.4241(19) Å	$\alpha = 98.767(2)^{\circ}$
	b = 12.300(2) Å	$\beta = 105.237(2)^{\circ}$
	c = 19.998(3) Å	$\gamma = 103.483(2)^{\circ}$
Volume	2567.3(7) Å ³	
Z	2	
Density (calculated)	1.507 g/cm ³	
Absorption coefficient	0.119 mm ⁻¹	
F(000)	1208	
Crystal size	0.06 x 0.04 x 0.02 mm ³	
Theta range for data collection	1.08 to 25.43°.	
Index ranges	-13<=h<=13, -14<=k<=14, -24<=l<=24	
Reflections collected	25368	

Independent reflections	9416 [R(int) = 0.0459]
Completeness to theta = 27.50°	99.2%
Absorption correction	Empirical
Max. and min. transmission	0.9976 and 0.9929
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9416 / 0 / 787
Goodness-of-fit on F ²	1.038
Final R indices [I>2sigma(I)]	$R_1 = 0.0715, wR_2 = 0.1822$
R indices (all data)	$R_1 = 0.1219, wR_2 = 0.2133$
Largest diff. peak and hole	1.556 and -0.849 e·Å ⁻³

References

- Bruker. SMART Version 5.624: Program for collecting frames of data, indexing reflection, and determination of lattice parameters; Bruker AXS, Inc., Madison, Wisconsin, USA, 2000.
- Bruker. SAINT Version 6.02: Program for integration of the intensity of reflections and scaling; Bruker AXS, Inc., Madison, Wisconsin, USA, 2000.
- Sheldrick, G. M. SADABS Version 2.03: Program for Performing Absorption Corrections to Single-Crystal X-ray Diffraction Patterns; University of Göttingen, Göttingen, Germany, 2001.
- Sheldrick, G. M. SHELXS-97: Program for the Solution of Crystal Structures; University of Göttingen, Göttingen, Germany, 1997.

- Sheldrick, G. M. SHELXL-97: Program for the Refinement of Crystal Structures; University of Göttingen, Göttingen, Germany, 1997.
- Bruker. SHELXTL Version 5.10: Suite of Programs for Crystal Structure Analysis, Incorporating Structure Solution (XS), Least-Squares Refinement (XL), and Graphics (XP); Bruker AXS, Inc., Madison, Wisconsin, USA, 2000.
- Bruker. SAINT Version 7.12: Program for integration of the intensity of reflections and scaling; Bruker AXS, Inc., Madison, Wisconsin, USA, 2000.