The Asymmetric Silaboration of Terminal Allenes Bearing α-Stereogenic Centers: Stereoselection Based on "Reagent Control"

Toshimichi Ohmura and Michinori Suginome*
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan suginome@sbchem.kyoto-u.ac.jp

1. General

All reactions were performed in a drybox or using Schlenk technique under a nitrogen atmosphere with magnetic stirring. Column chromatography was performed with Ultra Pure Silica Gel (SILICYCLE, pH 7.0, 40-63 $\mu \mathrm{m}$, $60 \AA) .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury$400(400.44 \mathrm{MHz})$ spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian GEMINI-2000 (75.45 MHz), JEOL JNM-A500 (125.65 MHz), or JEOL ECA-600 (150.92 $\mathrm{MHz})$ spectrometers. Chemical shifts were reported in ppm downfield from tetramethylsilane. Elemental analyses were performed by Elemental Analysis Center of Kyoto University. High resolution mass spectra were recorded on a JEOL JMS-700 spectrometer.

2. Materials

Toluene was dried and degassed by The Ultimate Solvent System (GlassContour). Silylboranes $\mathbf{1}^{1}$, (-)-2 $\mathbf{2}^{2}$, and $(+)-\mathbf{2}^{2}$ were synthesized by the method reported previously. $\mathrm{CpPd}\left(\eta^{3} \text {-allyl }\right)^{3}$ and $(R)-3^{4}$ were prepared according to the literature methods. (R) - and (S)-4a were synthesized from commercially available (R)- and (S)-1-butyn-3-ol via (i) silylation ($\mathrm{Me}_{2} \mathrm{PhSiCl}$, imidazole, DMF), and then (ii) Crabbé reaction ${ }^{5}$. Allenes $\mathbf{4 b - 4 g}$ were prepared from cooresponding propargylic alcohols by a procedure similar to 4a. (R) - and (S) - $\mathbf{7}$ were synthesized by silylation of (R) and (S)-4-methyl-1,2-pentadien-5-ol ${ }^{6}$.

3. Silaboration of (R)-4a with silylboranes 1 or 2 (Table 1)

A typical procedure is given for the reaction of entry 4 in Table 1. In a drybox, $(R)-\mathbf{3}(2.1 \mathrm{mg}, 4.8 \mu \mathrm{~mol})$ and $\mathrm{CpPd}\left(\eta^{3}\right.$-allyl) $(0.85 \mathrm{mg}, 4.0 \mu \mathrm{~mol})$ were dissolved in 200 $\mu \mathrm{L}$ of toluene in a screw-capped vial. The mixture was stirred at room temperature for $15 \mathrm{~min} .(R)-\mathbf{4 a}(105 \mathrm{mg}$, $0.48 \mathrm{mmol})$ and $(-)-2(126 \mathrm{mg}, 0.40 \mathrm{mmol})$ were added sequentially to the reaction mixture. The reaction mixture

[^0]was stirred at room temperature and the reaction was monitored by GC. After the reaction was completed (15 h), the volatile materials were evaporated. ${ }^{1} \mathrm{H}$ NMR analysis of the residual crude mixture indicated the ratio of $(3 R, 4 R)$ 6a: $(3 S, 4 R)$ - $\mathbf{6 a}$ to be $98: 2$. Absolute configuration of the allylic carbon in major isomer was assumed to R based on the previous report. ${ }^{2}$ The product was isolated by bulb-tobulb distillation to give 6a as colorless viscous liquid (208 $\mathrm{mg}, 98 \%$).

($3 R, 4 R$)-6a. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.49-7.54 (m, 4H), 7.27-7.39 (m, 6H), 5.72 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (d, J $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dq}, J=9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=$ $8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dt}, J=8.8$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{ddt}, J=10.8,6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{t}, J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{ddd}, J=14.4,5.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.343(\mathrm{~s}, 3 \mathrm{H}), 0.335(\mathrm{~s}, 3 \mathrm{H})$, $0.32(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $140.0,138.9,134.4$ (2C), 133.5 (2C), 129.2, 128.4, 128.2, 127.6 (2C), 127.1 (2C), 85.7, 77.8, 72.2, 51.3, 45.1, 39.5, 38.1, 35.4, 28.6, 27.1, 26.3, 24.7, 24.0, -0.1, -1.2, $-2.0,-2.4$. The boron-bound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{BO}_{3} \mathrm{Si}_{2}$: C, 69.90; H, 8.52. Found: C, 69.90; H, 8.59.
($3 R, 4 R$)-5 (entry 2). According to the typical procedure, 5 was obtained as a diastereomeric mixture $[(3 R, 4 R)-5$: $(3 S, 4 R)-\mathbf{5}=89: 11]$ by the reaction of $(R)-\mathbf{4 a}(108 \mathrm{mg})$ with $1(106 \mathrm{mg})$. The product was isolated by bulb-to-bulb distillation ($190 \mathrm{mg}, 98 \%$).

($3 R, 4 R$)-5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.54(\mathrm{~m}, 4 \mathrm{H})$, 7.26-7.37 (m, 6H), 5.73 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.23(\mathrm{dq}, J=8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.17(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~d}, J=6.0,3 \mathrm{H}), 0.34(\mathrm{~s}$, $3 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.0,138.9,134.5$ (2C), 133.5 (2C), 129.2,
128.5, 128.2, 127.6 (2C), 127.1 (2C), 83.2 (2C), 72.3, 44.6, 24.8 (2C), 24.6 (2C), 24.6, -0.1, $-1.2,-2.1,-2.3$. The boronbound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{BO}_{3} \mathrm{Si}_{2}: \mathrm{C}, 67.48 ; \mathrm{H}, 8.60$. Found: C, 67.71; H, 8.49.
(3R,4R)-6a' (entry 5). According to the typical procedure, 6a' was obtained as a mixture of four diastereomers $\left[(3 R, 4 R)-\mathbf{6 a}{ }^{\prime}:(3 S, 4 R)-\mathbf{6 a} \mathbf{'}^{\prime}:(3 R, 4 S)-\mathbf{6 a} \mathbf{'}^{\prime}\right.$: $(3 S, 4 S)-\mathbf{6 a}{ }^{\prime}=37: 14: 21: 28$ (determined by ${ }^{1} \mathrm{H}$ NMR on the basis of the integrations of the vinylic protons)] by the reaction of rac-4a (55 mg) with (+)-2 $(61 \mathrm{mg})$. The product was isolated by bulb-to-bulb distillation ($100 \mathrm{mg}, 97 \%$).

Because of low selectivity, the diastereomers were not separable or identifiable by ${ }^{1} \mathrm{H}$ NMR. Only characteristic ${ }^{1} \mathrm{H}$ NMR chemical shifts of $(3 R, 4 R)-\mathbf{6 a}{ }^{\prime}$ are shown; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.76(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H})$.

4. Silaboration of (S)-4a (Table 2)

$(3 R, 4 S)-5$ (entry 2). According to the typical procedure described above, $\mathbf{5}$ was obtained as a diastereomeric mixture $[(3 R, 4 S)-5:(3 S, 4 S)-5=78: 22]$ by the reaction of $(S)-\mathbf{4 a}(109 \mathrm{mg})$ with $\mathbf{1}(110 \mathrm{mg})$. The product was isolated by bulb-to-bulb distillation ($195 \mathrm{mg}, 97 \%$).

($3 R, 4 S$)-5. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.52(\mathrm{~m}, 4 \mathrm{H})$, 7.28-7.35 (m, 6H), 5.96 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.23$ (quint, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.184(\mathrm{~s}, 6 \mathrm{H}), 1.180(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $0.34(\mathrm{~s}, 3 \mathrm{H}), 0.300(\mathrm{~s}, 3 \mathrm{H}), 0.295(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,139.1,134.1$ (2C), 133.4 (2C), 130.3, 129.1, 128.5, 127.5 (2C), 127.4 (2C), 83.3 (2C), $71.0,42.4,24.7$ (4C), 24.0, -0.2, -0.9, -2.1, -4.0. The boronbound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{BO}_{3} \mathrm{Si}_{2}$: $\mathrm{C}, 67.48 ; \mathrm{H}, 8.60$. Found: C, 67.39; H, 8.46.
(3R,4S)-6a (entry 4). According to the typical procedure described above, 6a was obtained as a diastereomeric mixture $[(3 R, 4 S)-\mathbf{6 a}:(3 S, 4 S)-\mathbf{6 a}=94: 6]$ by the reaction of $(S)-\mathbf{4 a}(106 \mathrm{mg})$ with $(-)-\mathbf{2}(125 \mathrm{mg})$. The product was isolated by bulb-to-bulb distillation (208 mg , 98\%).

($3 R, 4 S$)-6a. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.52(\mathrm{~m}$, $4 \mathrm{H}), 7.29-7.33$ (m, 6H), 5.93 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77$ (d, J $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (quint, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=$ 8.8, 2.0 Hz, 1H), 2.31 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.34$ (m, $1 \mathrm{H}), 2.14$ (ddt, $J=10.8,6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{t}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.80-1.89$ (m, 2H), 1.30 (s, 3H), 1.28 (s, 3H), 1.05 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}$, $3 \mathrm{H}), 0.30(\mathrm{~s}, 6 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,139.1,134.1$ (2C), 133.4 (2C), 130.0, 129.1, 128.5, 127.5 (2C), 127.4 (2C), 85.5, 77.9, 70.8, 51.4, 43.2, 39.5, 38.1, 35.5, 28.6, 27.1, 26.4, 24.1, 24.0, -0.2, -0.9, -2.1, -3.9. The boron-bound carbon was not detected due to quadrupolar relaxation. HRMS (FAB) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{BO}_{3} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right): 532.3000$, found: 532.3008.
$\mathbf{(3 R , 4 S})-6 \mathbf{a}^{\prime}$ (entry 5). The results were obtained in the same experiment described for entry 5 in Table 1.

Only characteristic ${ }^{1} \mathrm{H}$ NMR chemical shifts of $(3 R, 4 S)-\mathbf{6 a}$ ' are shown; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.97(\mathrm{~d}, J=3.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$.

5. Silaboration of α-alkoxyallenes $4 \mathrm{~b}-\mathrm{g}$ with (-)-2 in the prsence of $\operatorname{Pd} /(R)-3$ catalyst (Table 3)

All reactions shown in Table 3 were carried out using racemic allenes $\mathbf{4 b} \mathbf{- g}$ by a procedure similar to the typical procedure described above. The ratios of diastereomers were determined by ${ }^{1} \mathrm{H}$ NMR, on the basis of the integrations of the vinylic protons. The vinylic signals were assigned based on the chemical shifts of the diastereomers of $\mathbf{6 a}$, which were prepared from the enantiopure allenes. The chemical shifts of vinylic protons of $\mathbf{6 a - g}$ are summarized in Table S1 (see p. S7). For 6b-f, the strong signals observed at 5.74-5.79 and 5.40-5.48 ppm were assigned to $(3 R, 4 R)$-isomer on the basis of the signals of $(3 R, 4 R)-\mathbf{6 a}$ (5.72 and 5.38 ppm). Similarly, another strong signals appeared at 5.88-5.93 and 5.67-5.86 ppm were assigned to $(3 R, 4 S)$-isomer. Signals of minor diastereomers could also be assigned to $(3 S, 4 R)-6$ (5.94-5.98 and 5.82$5.92 \mathrm{ppm})$, and to $(3 S, 4 S)-6$ ($5.76-5.81$ and $5.42-5.56 \mathrm{ppm}$). To determine the diastereomers ratio of $\mathbf{6 g},{ }^{1} \mathrm{H}$ NMR measurement was carried out using $\mathrm{C}_{6} \mathrm{D}_{6}$ as solvent.
$(3 R, 4 R)-6 b$ and $(3 R, 4 S)-6 b$ (entry 1). According to the typical procedure described above, $\mathbf{6 b}$ was obtained as a diastereomeric mixture $[(3 R, 4 R)-\mathbf{6 b}:(3 S, 4 R)-\mathbf{6 b}:(3 R, 4 S)$ $\mathbf{6 b}:(3 S, 4 S)-\mathbf{6 b}=54.6: 1.6: 41.8: 2.0]$ in the reaction of rac-4b (88 mg) with (-)-2 (126 mg). The product was
isolated by bulb-to-bulb distillation ($184 \mathrm{mg}, 94 \%$). The two major diastereomers were isolated by silica gel column chromatography (hexane : $\mathrm{Et}_{2} \mathrm{O}=97: 3$).

$(3 R, 4 R)-6 \mathbf{b} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.22-7.31(\mathrm{~m}, 8 \mathrm{H}), 5.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=8.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dq}, J=10.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (ddt, $J=14.8$, $8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (ddt, $J=10.8,6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ $(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=14.4$, $3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}$, $3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7$, $139.0,134.4$ (2C), 128.5, 128.2, 128.0 (2C), 127.6 (2C), 127.1 (2C), 127.0, 85.7, 77.8, 77.4, 70.2, 51.3, 43.4, 39.5, 38.1, 35.4, 28.6, 27.1, 26.4, 24.0, 19.5, -2.2, -2.4. The boron-bound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{BO}_{3} \mathrm{Si}$: C, 73.75; $\mathrm{H}, 8.46$. Found: C, $73.50 ; \mathrm{H}, 8.34$ (A mixture of diastereomers was used for elemental analysis).

$(3 R, 4 S)-\mathbf{6 b} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.54$ (m, $2 \mathrm{H}), 7.21-7.34(\mathrm{~m}, 8 \mathrm{H}), 5.92(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=8.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dq}, J=7.2,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.10-$ $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.89(\mathrm{~m}, 2 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,139.3$, 134.1 (2C), 129.8, 128.6, 128.0 (2C), 127.5 (2C), 127.3 (2C), 126.9, 85.6, 77.9, 76.1, 69.7, 51.4, 42.6, 39.5, 38.1, 35.5, 28.6, $27.1,26.3,24.0,19.0,-2.1,-3.8$. The boron-bound carbon was not detected due to quadrupolar relaxation. Elemental analysis was carried out for a mixture of diastereomers. See characterization data of $(3 R, 4 R)-\mathbf{6 b}$.
$(3 R, 4 R)-6 \mathrm{c}$ and $(3 R, 4 S)-6 \mathrm{c}$ (entry 2). According to the typical procedure described above, $\mathbf{6 c}$ was obtained as a diastereomeric mixture $[(3 R, 4 R)-\mathbf{6 c}:(3 S, 4 R)-\mathbf{6 c}:(3 R, 4 S)$ $\mathbf{6 c}:(3 S, 4 S)-\mathbf{6} \mathbf{c}=56.8: 1.3: 38.9: 3.0]$ in the reaction of rac-4c (75 mg) with (-)-2 (122 mg). The product was isolated by bulb-to-bulb distillation ($158 \mathrm{mg}, 87 \%$).

$(3 R, 4 R)$-6c. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.54(\mathrm{~m}$, 2H), 7.27-7.32 (m, 3H), 5.74 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.28$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0,134.5$ (2C), 128.2 (2C), 127.1 (2C), 85.7, 77.7, 71.6, 51.3, 45.1, 39.5, 38.1, $35.4,28.5,27.1,26.3,24.6,24.0,0.8$ (3C), $-1.9,-2.6$. The boron-bound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{BO}_{3} \mathrm{Si}_{2}$: C, 66.36; $\mathrm{H}, 9.21$. Found: C, 66.12; H, 8.95 (A mixture of diastereomers was used for elemental analysis).

$(3 R, 4 S)-6 \mathbf{c} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.90(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.26$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.6,134.1$ (2C), 130.0, $128.5,127.4$ (2C), 85.5, 77.9, 70.2, 51.4, 43.4, 39.4, 38.1, $35.5,28.6,27.1,26.3,24.04,23.99,0.7$ (3C), $-2.1,-3.8$. The boron-bound carbon was not detected due to quadrupolar relaxation. Elemental analysis was carried out for a mixture of diastereomers. See characterization data of $(3 R, 4 R)-\mathbf{6 c}$.
$(3 R, 4 R)-6 d$ and $(3 R, 4 S)-6 d$ (entry 3$)$. According to the typical procedure described above, $\mathbf{6 d}$ was obtained as a diastereomeric mixture $[(3 R, 4 R)-\mathbf{6 d}:(3 S, 4 R)-\mathbf{6 d}:(3 R, 4 S)$ $\mathbf{6 d}:(3 S, 4 S)-\mathbf{6 d}=57.0: 0.8: 38.9: 3.3]$ in the reaction of rac-4d (98 mg) with (-)-2 (129 mg). The product was isolated by bulb-to-bulb distillation ($191 \mathrm{mg}, 90 \%$).

$(3 R, 4 R)$-6d. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (ddt, $J=10.8,6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-$ $1.89(\mathrm{~m}, 2 \mathrm{H}), 1.274(\mathrm{~s}, 3 \mathrm{H}), 1.267(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}$,
$3 \mathrm{H}), 0.41(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2,134.4$ (2C), 128.7, 128.2, 127.2 (2C), 85.7, 77.8, 72.2, 51.3, 44.4, 39.5, 38.1, $35.4,28.5,27.1,26.3$ (3H), 26.2, 25.3, 24.0, 18.3, -1.9, -2.7, -3.6, -4.0. The boron-bound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{49} \mathrm{BO}_{3} \mathrm{Si}_{2}$: C, 67.94; H, 9.63. Found: C, 67.75; H, 9.83 (A mixture of diastereomers was used for elemental analysis).

$(3 R, 4 S)-6 d .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.90(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (ddt, $J=10.8,6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-$ $1.89(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H})$, $0.38(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7,134.1$ (2C), 129.7, 128.5, $127.5,85.5,77.9,70.4,51.3,43.8,39.5,38.1,35.4,28.6$, 27.1, 26.3, 26.1 (3C), 24.7, 24.0, 18.1, $-2.0,-3.6,-3.8,-4.3$. The boron-bound carbon was not detected due to quadrupolar relaxation. Elemental analysis was carried out for a mixture of diastereomers. See characterization data of $(3 R, 4 R)$ - $\mathbf{6 d}$.
$(3 R, 4 R)-6 e$ and $(3 R, 4 S)-6 e$ (entry 4$)$. According to the typical procedure described above, $\mathbf{6 e}$ was obtained as a diastereomeric mixture $[(3 R, 4 R)-\mathbf{6 e}:(3 S, 4 R)-\mathbf{6 e}:(3 R, 4 S)$ $\mathbf{6 e}:(3 S, 4 S)-\mathbf{6 e}=52.1: 1.0: 43.8: 3.1]$ in the reaction of $\mathrm{rac}-\mathbf{4 e}(76 \mathrm{mg})$ with (-)-2 (123 mg). The product was isolated by bulb-to-bulb distillation ($185 \mathrm{mg}, 98 \%$).

($3 R, 4 R$)-6e. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.75(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27-2.33 (m, 1H), 2.11-2.17 (m, 1H), 2.00-2.04 (m, 1H), $1.86-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.68(\mathrm{~m}, 2 \mathrm{H})$, $1.28(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.36(\mathrm{~s}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 140.1,134.5$ (2C), 128.4, 128.2, 127.1 (2C), 85.7, 77.7, 75.3, 51.3, 39.5, 39.3, 38.1, 35.5, $28.5,28.1,27.1,26.3,24.0,6.7,0.7$ (3C), $-1.9,-2.8$. The boron-bound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{BO}_{3} \mathrm{Si}_{2}$: C, 66.92; $\mathrm{H}, 9.36$. Found: C, 66.68; H, 9.26 (A mixture of diastereomers was used for elemental analysis).

($3 R, 4 S$)-6e. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.55(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J$ $=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dt}, J=7.6,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.38(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.17$ $(\mathrm{m}, 1 \mathrm{H}), 2.00-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.84$ $(\mathrm{m}, 1 \mathrm{H}), 1.32-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.04$ (d, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.37(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.5,134.5$ (2C), 130.7, 128.5, 127.4 (2C), 85.5, $77.9,76.2,51.3,39.4,38.2,38.1,35.5,28.8,28.5,27.1$, $26.3,24.0,10.1,0.9$ (3C), -2.3, -4.0. The boron-bound carbon was not detected due to quadrupolar relaxation. Elemental analysis was carried out for a mixture of diastereomers. See characterization data of $(3 R, 4 R)-\mathbf{6 e}$.
$(3 R, 4 R)-6 f$ and $(3 R, 4 S)-6 f(e n t r y 5)$. According to the typical procedure described above, $\mathbf{6 f}$ was obtained as a diastereomeric mixture $[(3 R, 4 R)-\mathbf{6 f}:(3 S, 4 R)-\mathbf{6 f}:(3 R, 4 S)$ $\mathbf{6 f}:(3 S, 4 S)-\mathbf{6} \mathbf{f}=54.1: 1.4: 41.2: 3.3]$ in the reaction of rac-4f (89 mg) with (-)-2 (126 mg). The product was isolated by bulb-to-bulb distillation ($188 \mathrm{mg}, 94 \%$). The diastereomers were isolated by silica gel column chromatography (hexane : $\mathrm{Et}_{2} \mathrm{O}=100: 1$).

$(3 R, 4 R)$-6f. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.49-7.52 (m, $2 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 3 \mathrm{H}), 5.74(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=8.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=$ $8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{ddt}, J=$ $14.4,8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (ddt, $J=10.4,6.4,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.99(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{ddd}, J=$ $14.4,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J$ $=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.78$ (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8,134.6$ (2C), 128.0, $127.6,127.0$ (2C), $85.6,81.5,77.6,51.3,39.5,38.1,37.5$, $35.5,34.9,28.5,27.1,26.3,24.0,18.2,16.6,1.0$ (3C), -1.4 , -3.1. The boron-bound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{BO}_{3} \mathrm{Si}_{2}$: C, $67.44 ;$ H, 9.50. Found: C, 67.17; H, 9.26 (A mixture of diastereomers was used for elemental analysis).

$(3 R, 4 S)-\mathbf{6 f} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.52(\mathrm{~m}$, 2H), 7.30-7.32 (m, 3H), $5.88(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{~d}, J$
$=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ 8.8, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.37$ (m, 1 H), 2.017 (ddt, $J=10.8,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{t}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.86-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.71$ (ddt, $J=13.6,6.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $0.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.56(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.39(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.5,134.1$ (2C), 129.7, 128.5, 127.4 (2C), 85.4, 78.6, 78.1, 51.4, 39.9, 39.5, 38.2, 35.4, 33.4, 28.6, $27.1,26.4,24.1,21.3,15.6,1.1$ (3C), $-1.6,-4.1$. The boronbound carbon was not detected due to quadrupolar relaxation. Elemental analysis was carried out for a mixture of diastereomers. See characterization data of $(3 R, 4 R)-\mathbf{6 f}$.
$(3 R, 4 R)-6 g$ and $(3 R, 4 S)-6 g$ (entry 6). According to the typical procedure described above, $\mathbf{6 g}$ was obtained as a diastereomeric mixture $[(3 R, 4 R) \mathbf{- 6 g}:(3 S, 4 R)-\mathbf{6 g}:(3 R, 4 S)$ $\mathbf{6 g}:(3 S, 4 S)-\mathbf{6 g}=52.5: 1.5: 42.1: 3.9]$ in the reaction of rac-4g (111 mg) with (-) $\mathbf{2}(130 \mathrm{mg})$. The product was isolated by bulb-to-bulb distillation ($185 \mathrm{mg}, 84 \%$). The diastereomers were isolated by silica gel column chromatography (hexane : $\mathrm{Et}_{2} \mathrm{O}=50: 1$).

$(3 R, 4 R)-6 \mathrm{~g} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.57-7.61 (m, 2H), 7.29-7.33 (m, 3H), 7.10-7.22 (m, 5H), $5.59(\mathrm{~d}, J=3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.15(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (ddt, $J=14.4,8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (ddt, $J=10.8,6.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.86(\mathrm{~m}, 1 \mathrm{H})$, 1.71 (ddd, $J=14.4,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26$ (s, 3H), 1.23 (s, $3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.44(\mathrm{~s}, 3 \mathrm{H})$, $0.41(\mathrm{~s}, 3 \mathrm{H}),-0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $145.1,139.9,134.5$ (2C), 129.9, 128.3, 127.6 (2C), 127.5 (2C), 127.2 (2C), 126.8, 85.6, 77.9, 77.7, 51.3, 45.1, 39.4, $38.1,35.3,28.5,27.1,26.3,24.0,0.4$ (3C), -1.7, -2.4. The boron-bound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{BO}_{3} \mathrm{Si}_{2}$: $\mathrm{C}, 69.90 ; \mathrm{H}, 8.52$. Found: C, 70.17; H, 8.76 (A mixture of diastereomers was used for elemental analysis).

$(3 R, 4 S)-6 g .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.39(\mathrm{~m}$, 2H), 7.09-7.27 (m, 8H), 5.92 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78$ (d, J $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=8.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddt}, J=14.4$, $8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ (ddt, $J=10.8,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ $(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{ddt}, J=14.4$, $3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.173(\mathrm{~s}, 3 \mathrm{H}), 0.167(\mathrm{~s}, 3 \mathrm{H}),-0.12(\mathrm{~s}$,

9H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,138.9,134.1$ (2C), $130.8,128.4,127.4$ (2C), 127.3 (2C), 127.2 (2C), 126.8, $85.4,77.8,76.0,51.3,44.2,39.4,38.1,35.4,28.5,27.1$, 26.3, 24.0, 0.4 (3C), $-2.9,-3.3$. The boron-bound carbon was not detected due to quadrupolar relaxation. Elemental analysis was carried out for a mixture of diastereomers. See characterization data of $(3 R, 4 R)-\mathbf{6 g}$.

6. Silaboration of 7 and cyclization of 8 (Scheme 1)

In a drybox, $(R)-\mathbf{3}(2.1 \mathrm{mg}, 4.8 \mu \mathrm{~mol})$ and $\mathrm{CpPd}\left(\eta^{3}-\right.$ allyl) $(0.85 \mathrm{mg}, 4.0 \mu \mathrm{~mol})$ were dissolved in $200 \mu \mathrm{~L}$ of toluene in a screw-capped vial. A small magnetic stirbar was added, and the mixture was stirred at room temperature for $15 \mathrm{~min} .(R)-7(112 \mathrm{mg}, 0.48 \mathrm{mmol})$ and $(-)-2(127 \mathrm{mg}$, 0.40 mmol) were added to the reaction mixture. The reaction mixture was stirred at room temperature and the reaction was monitored by GC. After the reaction was completed (12 h), the volatile materials were evaporated. ${ }^{1} \mathrm{H}$ NMR analysis of the residual crude mixture indicated the ratio of $(3 S, 4 S)-\mathbf{8}:(3 R, 4 S)-\mathbf{8}$ to be $96: 4$. The product was isolated by bulb-to-bulb distillation to give $\mathbf{8}$ as colorless liquid ($194 \mathrm{mg}, 88 \%$).

$(3 S, 4 S)$-8. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.28-7.47 (m, $10 \mathrm{H}), 5.84(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.26 (dd, $J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.0,4.4 \mathrm{~Hz}$, 1 H), 2.97 (dd, $J=10.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (ddt, $J=14.4,8.8$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.01(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.30(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}), 0.252(\mathrm{~s}, 3 \mathrm{H}), 0.249(\mathrm{~s}, 3 \mathrm{H})$, 0.17 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2,138.1$, 133.8 (2C), 133.4 (2C), 129.3, 129.0, 128.4, 127.7 (2C), 127.5 (2C), 85.7, 77.8, 68.4, 51.4, 39.5, 38.1, 37.6, 36.8, $35.5,28.6,27.1,26.4,24.0,17.4,-1.5,-1.8,-2.0,-4.1$. The boron-bound carbon was not detected due to quadrupolar relaxation. HRMS (FAB) m/z calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{BO}_{3} \mathrm{Si}_{2}$ $\left(\mathrm{MH}^{+}\right)$: 547.3235 , found: 547.3225 .

Under an argon atmosphere, benzaldehyde ($21 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ and $(4 S)-\mathbf{8}[(3 S, 4 S):(3 R, 4 S)=96: 4,99 \mathrm{mg}, 0.18$ mmol] were dissolved in $500 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a Schlenk tube. The mixture was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{Me}_{3} \mathrm{SiOTf}$ (44 mg , 0.20 mmol) was slowly added and the resulting solution was stirred at that temperature for 3 h . The mixture was diluted with ether and quenched with aqueous NaHCO_{3}. The organic materials were extracted with ether, washed with water, and dried over anhydrous MgSO_{4}. The product was isolated by bulb-to-bulb distillation to give 9 (59 mg , $0.16 \mathrm{mmol}, 89 \%$). HPLC analysis [column: DAICEL OD-H ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$); eluent: hexane/2-propanol $=99.5$: 0.5 ; flow rate: $0.6 \mathrm{~mL} / \mathrm{min}$; detection wavelength: 220 nm ; $\left.\mathrm{T}_{\mathrm{R}}=10.1(2 R, 6 R), 29.7(2 S, 6 R) \mathrm{min}\right]$ indicated the ratio of
$(2 R, 6 R)-9:(2 S, 6 R)-9$ to be $96: 4$. Absolute configuration of the stereogenic carbon center formed in this reaction was predicted to be R because rigid transition state \mathbf{T} was expected in the cyclization step of oxonium intermediate \mathbf{S} (Scheme S1).

Scheme S1. Expected Reaction Path via Chirality Transfer

(2R,6R)-9. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.40(\mathrm{~m}, 5 \mathrm{H})$, $6.70(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.30 (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ (dd, $J=12.0,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75$ (dd, $J=12.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (dddd, $J=16.8$, $9.6,2.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=16.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-$ $2.76(\mathrm{~m}, 1 \mathrm{H}), 2.33$ (ddt, $J=14.4,8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (ddt, $J=10.8,6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-$ $1.93(\mathrm{~m}, 1 \mathrm{H}), 1.84$ (ddd, $J=14.4,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}$, $3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.17$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.15$ (d, $J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.9$, 143.8, 128.2 (2C), 127.1, 126.1 (2C), 85.9, 81.8, 78.1, 72.9, 51.4, 39.5, 38.6, 38.2, 35.6, 29.7, 28.7, 27.1, 26.5, 24.0, 16.6. The boron-bound carbon was not detected due to quadrupolar relaxation. HRMS (EI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BO}_{3}\left(\mathrm{M}^{+}\right): 366.2366$, found: 366.2366 .

The reaction of $(S)-7(112 \mathrm{mg}, 0.48 \mathrm{mmol})$ with $(-)-2$ ($124 \mathrm{mg}, 0.39 \mathrm{mmol}$) was carried out according to the procedure similar to that of $(R)-7 .{ }^{1} \mathrm{H}$ NMR analysis of crude mixture indicated the ratio of $(3 S, 4 R)-\mathbf{8}:(3 R, 4 R)-\mathbf{8}$ to be $94: 6$. The product was isolated by bulb-to-bulb distillation to give $\mathbf{8}$ as colorless liquid ($174 \mathrm{mg}, 81 \%$).

$(3 S, 4 R)-\mathbf{8} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta} 7.49-7.53(\mathrm{~m}, 4 \mathrm{H})$, 7.29-7.36 (m, 6H), 5.75 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.21$ (dd, $J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (dd, $J=9.6$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dd}, J=9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{ddt}, J=$ $14.4,8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80$ (ddd, $J=14.4,3.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$, $1.03(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}$, $3 \mathrm{H}), 0.37(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 6 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.1,138.3,134.0$ (2C), 133.4 (2C), 129.3, 128.4, 127.7, 127.6 (2C), 127.4 (2C), 85.6, 77.8, 67.9, 51.3, $39.5,38.1,37.7,36.7,35.5,28.6,27.1,26.4,24.0,18.5,-1.5$, $-1.67,-1.73,-3.4$. The boron-bound carbon was not detected due to quadrupolar relaxation. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{BO}_{3} \mathrm{Si}_{2}$: C, 70.30; H, 8.67. Found: C, 70.35; H, 8.71.

According to the procedure described for the reaction of $(4 S)$-8, cyclization of $(4 R)-\mathbf{8}[(3 S, 4 R):(3 R, 4 R)=94: 6,84$ $\mathrm{mg}, 0.15 \mathrm{mmol}]$ was carried out with benzaldehyde (21 mg , 0.20 mmol) and $\mathrm{Me}_{3} \operatorname{SiOTf}$ ($44 \mathrm{mg}, 0.20 \mathrm{mmol}$). The product was isolated by bulb-to-bulb distillation to give 9 ($44 \mathrm{mg}, 0.12 \mathrm{mmol}, 77 \%$). HPLC analysis [column: DAICEL OD-H ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$); eluent: hexane/2propanol $=99.5: 0.5$; flow rate: $0.6 \mathrm{~mL} / \mathrm{min}$; detection wavelength: $\left.220 \mathrm{~nm} ; \mathrm{T}_{\mathrm{R}}=9.4(2 R, 6 S), 18.6(2 S, 6 S) \mathrm{min}\right]$ indicated the ratio of $(2 R, 6 R)-9:(2 S, 6 R)-9$ to be $94: 6$.

($2 R, 6 S$)-9. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.38(\mathrm{~m}, 5 \mathrm{H})$, 6.57 (broad d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=6.4,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (ddd, $J=11.6,3.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=11.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.91(\mathrm{~m}$, 1 H), 2.72-2.73 (m, 2H), 2.33 (ddt, $J=14.4,8.8,2.4 \mathrm{~Hz}$, 1H), 2.23 (ddt, $J=10.8,6.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (t, $J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{ddd}, J=14.4,3.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.5,144.0,128.2$ (2C), 127.1, 125.9 (2C), 86.0, $82.5,78.1,75.3,51.4,40.3,39.5,38.8,38.2,35.6,28.7$, $27.1,26.5,24.0,17.6$. The boron-bound carbon was not detected due to quadrupolar relaxation. HRMS (EI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BO}_{3}\left(\mathrm{M}^{+}\right)$: 366.2366 , found: 366.2363 .

7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the compounds that do not have elemental analysis data

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(3 R, 4 S)-6,(3 S, 4 S)-\mathbf{8}$, $(2 R, 6 R)-9$, and $(2 S, 6 R)-9$ are shown in following pages.

Table S1. ${ }^{1} \mathrm{H}$ NMR Chemical Shifts of Vinylic Protons ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

R^{1}	R^{2}				
Me	$\mathrm{Me}_{2} \mathrm{PhSi}(6 \mathrm{a})$	5.72, 5.38	5.97, 5.82	5.93, 5.77	5.75, 5.41
Me	Bn (6b)	5.78, 5.44	5.97, 5.82	5.92, 5.74	5.81, 5.46
Me	$\mathrm{Me}_{3} \mathrm{Si}(\mathbf{6 c}$)	5.74, 5.40	5.95, 5.82	5.90, 5.75	5.77, 5.42
Me	t--8uMe 2 Si (6d)	5.77, 5.51	5.94, 5.85	5.90, 5.69	5.81, 5.56
Et	$\mathrm{Me}_{3} \mathrm{Si}(6 \mathbf{e})$	5.75, 5.41	5.98, 5.92	5.93, 5.86	5.78, 5.43
$i-\mathrm{Pr}$	$\mathrm{Me}_{3} \mathrm{Si}(6 \mathrm{f})$	5.74, 5.48	5.95, 5.88	5.88, 5.67	5.76, 5.51
Ph	$\mathrm{Me}_{3} \mathrm{Si}(\mathbf{6 g})$	5.59, 5.25	5.95, 5.82	5.92, 5.78	5.58, 5.25
	$\mathbf{6 g}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$	5.99, 5.39	6.44, 6.09	6.42, 6.05	6.01, 5.39
$\boldsymbol{S i}=\operatorname{SiMe}_{2} \mathrm{Ph} \quad \boldsymbol{B}=\left\{-\mathrm{B}^{\prime}\right.$					

ํ

[^0]: (1) Suginome, M.; Matsuda, T.; Ito, Y. Organometallics 2000, 19, 4647. (2) Suginome, M.; Ohmura, T.; Miyake, Y.; Mitani, S.; Ito, Y.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 11175.
 (3) Tatsuno, Y.; Yoshida, T.; Otsuka, S. Inorg. Synth. 1979, 19, 220.
 (4) Uozumi, Y.; Suzuki, N.; Ogiwara, A.; Hayashi, T. Tetrahedron 1994, 50, 4293.
 (5) (a) Crabbé, P.; Nassim, B.; Robert-Lopes, M.-T. Org. Synth. Collect. Vol. VII 1990, pp. 276. (b) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466.
 (6) Konegawa, T.; Ohtsuka, Y.; Ikeda, H.; Sugai, T.; Ohta, H. Synlett 1997, 1297.

