<Supporting Information>

Nucleophilic Substitution at the 4'-Position of Nucleoside: New Access to a Promising Anti-HIV Agent 2',3'-Didehydro-3'-deoxy-

4'-ethynylthymidine (4'-Ed4T)

CONTENTS

- Page S3 General Experimental Section, SCHEME A and procedures for compound II .
- Page S4 procedures for compound II, III and IV
- Page S5 procedures for compound IV and 3
- Page S6 procedures for compound 3, 10 and 11
- Page S7 procedures for compound 11 and 12a and 13
- Page S8 procedures for compound 13 and 12b
- Page S10 procedures for compound **15a** and **15b**
- Page S11 SCHEME B and procedures for compound VII
- Page S12 procedures for compound **19a** and **19b**
- Page S13 procedures for compound **19a** and **19b**
- Page S14 Fig. 1: ¹³C NMR spectrum of compound **10** in DMSO-d₆
- Page S15 Fig. 2: ¹³C NMR spectrum of compound **13** in CDCl₃
- Page S16 Fig. 3: ¹³C NMR spectrum of compound **17a** in CDCl₃
- Page S17 Fig. 4: ¹³C NMR spectrum of compound **17b** in CDCl₃

Page S18 Fig. 5: ¹³C NMR spectrum of compound **23** in CDCl₃

Page S19 Fig. 6: ¹³C NMR spectrum of compound **24a** in CDCl₃

Page S20 Fig. 7: ¹³C NMR spectrum of compound **24a** in CDCl₃

Page S21 Fig. 8: ¹³C NMR spectrum of compound **25** in CDCl₃

Page S22 Fig. 9: ¹³C NMR spectrum of compound **IV** in CDCl₃

General Experimental Section

¹H and ¹³C NMR spectra were recorded either at 400 MHz or at 500 MHz. Chemical sifts are reported relative to Me₄Si. Mass spectra (MS) were taken in FAB mode with *m*-nitrobenzyl alcohol as a matrix. Column chromatography was carried out on silica gel. Thin-layer chromatography (TLC) was performed on silica gel. When necessary, analytical samples were purified by high performance liquid chromatography (HPLC). THF was distilled from benzophenone ketyl.

SCHEME A. Preparation of 3 from 1-(3,5-anhydro-2-deoxy-β-D-threo-pentofuranosyl)thymine (I)^a

^a Horwitz, J. P.; Chua, J.; Da Rooge, M. A.; Noel, M.; Klundt, I. L. J. Org. Chem. 1966, 31, 205.

1-(2,5-Dideoxy-5-iodo-β-D-*threo*-pentofuranosyl)thymine (II). To a solution of I (4.0 g, 17.8 mmol) in AcOH (40 mL) was added NaI (13.4 g, 89.2 mmol). The mixture was stirred

at 90 °C for 0.5 h, evaporated, and partitioned between CHCl₃/saturated aq NaHCO₃. Evaporation of the organic layer gave crystalline **II** (5.35 g, 85%): mp 151-153 °C; UV (MeOH) λ_{max} 266 nm (ϵ 10100), λ_{min} 234 nm (ϵ 2200); ¹H NMR (CDCl₃) δ ; 1.88 (3H, d, J =1.2 Hz), 2.05 (1H, dd, J = 15.1 and 8.0 Hz), 2.67 (1H, ddd, J = 15.1, 8.4, and 5.3 Hz), 3.37 (1H, dd, J = 9.7 and 6.4 Hz), 3.47 (1H, dd, J = 9.7 and 7.7 Hz), 4.15 (1H, ddd, J = 7.7, 6.4, and 3.3 Hz), 4.75 (1H, dd, J = 5.3 and 3.3 Hz), 6.19 (1H, dd, J = 8.4 and 2.2 Hz), 7.87 (1H, d, J = 1.2Hz); ¹³C NMR (DMSO-d₆) δ : 1.4, 11.9, 68.1, 83.1, 83.4, 94.9, 108.5, 136.4, 149.9, 163.2. FAB-MS (m/z) 353 [M+H]⁺. *Anal.* Calcd for C₁₀H₁₃IN₂O₄: C, 34.11; H, 3.72; N, 7.96. Found: C, 34.30; H, 3.51; N, 7.58.

1-(3-O-Acetyl-2,5-dideoxy-5-iodo-β-D-*threo***-pentofuranosyl)thymine (III).** To a solution of **II** (5.3 g, 15.1 mmol) in pyridine (30 mL) was added Ac₂O (4.3 mL, 45.2 mmol). The reaction mixture was stirred at rt for 13 h. Evaporation of the solvent gave crystalline **III** (5.53 g, 93%): mp 160-162 °C; UV (MeOH) λ_{max} 266 nm (ε 9900), λ_{min} 234 nm (ε 2000); ¹H NMR (CDCl₃) δ 1.96 (3H, d, *J* = 0.7 Hz), 2.11 (3H, s), 2.11-2.16 (1H, m), 2.82 (1H, ddd, *J* = 15.8, 8.0, and 5.7 Hz), 3.32-3.39 (2H, m), 4.28 (1H, dt, *J* = 7.1 and 3.3 Hz), 5.48 (1H, dd, *J* = 5.7 and 3.3 Hz), 6.30 (1H, dd, *J* = 8.0 and 2.8 Hz), 7.38 (1H, d, *J* = 0.7 Hz), 8.59 (1H, br); ¹³C NMR (CDCl₃) δ : 12.8, 20.8, 39.8, 72.2, 82.4, 84.5, 110.8, 135.1, 150.1, 163.3, 169.2. FAB-MS (*m*/*z*) 395 [M+H]⁺. Anal. Cald for C₁₂H₁₅IN₂O₅: C, 36.57; H, 3.84; N, 7.11. Found: C, 36.62; H, 3.51; N, 6.89.

1-(3-O-Acetyl-2,5-dideoxy-β-L-glycero-pent-4-enofuranosyl)thymine (IV). A mixture of

III (5.5 g, 14.0 mmol) and DBN (6.9 mL, 55.8 mmol) in CH₃CN (40 mL) was stirred at rt for 17 h under Ar atmosphere. After being neutralized with AcOH, the reaction mixture was evaporated and partitioned between CHCl₃/saturated aq NaHCO₃. Column chromatography (hexane/EtOAc = 1/1) of the organic layer gave **IV** (3.34 g, 90%) as a foam: ¹H NMR (CDCl₃) δ 1.96 (3H, d, *J* = 1.3 Hz), 2.06 (3H, s), 2.21 (1H, dt, *J* = 15.2 and 2.7 Hz), 2.83 (1H, dt, *J* = 15.2 and 7.1 Hz), 4.51 (1H, dd, *J* = 2.7 and 0.8 Hz), 4.73 (1H, dd, *J* = 2.7 and 0.7 Hz), 5.70-5.73 (1H, m), 6.44 (1H, dd, *J* = 7.1 and 2.7 Hz), 7.25 (1H, d, *J* = 1.3 Hz), 8.54 (1H, br); ¹³C NMR (CDCl₃) δ : 12.7, 21.0, 37.4, 70.2, 85.5, 89.0, 110.8, 134.8, 150.2, 159.2, 163.6, 169.5. FAB-MS (*m*/*z*) 267 (M⁺+H); High resolution FAB-MS [M+H]⁺ Calcd for C₁₂H₁₅N₂O₅: 267.0981, found: 267.0926 (M⁺+H).

1-[3-O-(tert-Butyldimethylsilyl)-2,5-dideoxy-β-L-glycero-pent-4-enofuranosyl]-

thymine (3). Compound **IV** (5.2 g, 19.5 mmol) was dissolved in NH₃/MeOH (150 mL). The solution was kept standing at rt for 9 h. The solvent was evaporated. The resulting syrupy **V** was dried under reduced pressure, and then dissolved in DMF (60 mL). To this were added imidazole (5.32 g, 78.1 mmol) and TBDMSCl (8.83 g, 58.6 mmol). After being stirred at rt for 11 h, the mixture was partitioned between EtOAc/H₂O. Column chromatography (hexane/EtOAc = 10/1) of the organic layer gave **3** (6.43 g, 97%) as a foam: UV (MeOH) λ_{max} 266 nm (ε 11600), λ_{min} 236 nm (ε 5700); ¹H NMR (CDCl₃) δ 0.11 and 0.14 (6H, each as s), 0.88 (9H, s), 1.92 (3H, d, *J* = 1.2 Hz), 2.03 (1H, dt, *J* = 10.8 and 3.2 Hz), 2.61-2.68 (1H, m), 4.25 (1H, dd, *J* = 2.2 and 0.7 Hz), 4.57 (1H, dd, *J* = 2.2 and 0.7 Hz), 4.68 (1H, dd, *J* = 6.8

and 3.2 Hz), 6.46 (1H, dd, J = 7.2 and 3.2 Hz), 7.44 (1H, d, J = 1.2 Hz), 9.12 (1H, br); ¹³C NMR (CDCl₃) δ : -5.1, -4.9, 12.5, 17.8, 25.4, 40.1, 79.8, 84.9, 85.2, 110.7, 135.6, 150.6, 163.0, 164.1. FAB-MS (m/z) 339 [M+H]⁺. Anal. Calcd for C₁₆H₂₆N₂O₄Si: C, 56.78; H, 7.74; N, 8.28. Found: C, 56.61; H, 7.87; N, 8.17.

Reaction of Pb(OAc)₄ with 2-methylene-5-(*R*)-(thymin-1-yl)-2,5-dihydro-furan (9).

To a toluene (3.0 mL) solution of **9** (33 mg, 0.16 mmol) was added Pb(OAc)₄ (106.4 mg, 0.24 mmol) at 0 °C under Ar atmosphere. The reaction mixture was stirred for 5 h at rt, diluted with EtOAc, and filtered through a celite pad. The filtrate was partitioned between EtOAc and saturated aq NaHCO₃. Column chromatography (hexane/EtOAc= 3/1) of the organic layer gave **10** (solid, 18.2 mg, 35%, containing a small amount of **11** formed during evaporation of the solvents) and **11** (solid, 21.2 mg, 50%). Physical data for the major isomer of **10**: ¹H NMR (DMSO-d₆) δ 2.02 (3H, s), 2.04 (3H, s), 3.25 (3H, s), 4.34 and 4.49 (2H, each as d, *J* = 11.5 Hz), 6.40 (1H, dd, *J* = 5.9 and 1.5 Hz), 6.61 (1H, dd, *J* = 1.7 and 5.9 Hz), 6.83 (1H, d, *J* = 1.7 Hz), 7.15 (1H, d, *J* = 1.3 Hz), 11.43 (1H, br); FAB-MS (*m*/*z*) 324 (M⁺+H); ¹³C NMR (CDCl₃) δ 12.0, 12.1, 14.1, 20.4, 21.4, 21.6, 59.7, 63.3, 63.8, 87.9, 90.0, 95.4, 110.1, 111.4, 111.8, 131.0, 131.1, 132.0, 135.7, 150.6, 150.6, 163.9, 168.4, 168.6, 169.7. High resolution FAB-MS (*m*/*z*) calcd for C₁₄H₁₇N₂O₇: 325.1036. Found: 325.1075.

Physical data for **11**: m.p. 156-157 °C; UV (MeOH) λ_{max} 259 nm (ϵ 8600), λ_{min} 236 nm (ϵ 7400); ¹H NMR (CDCl₃) δ 2.00 (3H, d, J= 1.2 Hz), 2.10 (3H, s), 5.04 (2H, s), 6.47

(1H, d, J = 3.2 Hz), 6.50 (1H, d, J = 3.2 Hz), 7.41 (1H, d, J = 1.2 Hz), 8.88 (1H, br); ¹³C NMR (CDCl₃) δ 12.3, 20.8, 57.67, 103.3, 111.8, 112.8, 137.2, 143.1, 146.5, 163.0, 170.5. FAB-MS (m/z) 265 [M+H]⁺. Anal. Calcd for C₁₂H₁₂N₂O₅: C, 54.55; H, 4.58; N, 10.60. Found: C, 54.65; H, 4.46; N, 10.39.

Reaction of Pb(OAc)₄ with

1-[3-*O*-(*tert*-butyldimethylsilyl)-2,5-dideoxy-β-L-*glycero*-pent-4-enofuranosyl]thymi ne (3). To a toluene (5.0 mL) solution of 3 (100 mg, 0.3 mmol), was added Pb(OAc)₄ (196 mg, 0.44 mmol) at 0 °C under Ar atmosphere. The reaction mixture was stirred at rt for 16 h, filtered through a celite pad, and then partitioned between CHCl₃/saturated aq NaHCO₃. Column chromatography (hexane/EtOAc = 3/1) of the organic layer gave **12a** (foam, 62.8 mg, 28%) and **13a** (syrup, 52 mg, 60%).

Physical data for **12a**: UV (MeOH) λ_{max} 265 nm (ϵ 9100), λ_{min} 233 nm (ϵ 1700); ¹H NMR (CDCl₃) δ 0.11 and 0.16 (6H, each as s), 0.91 (9H, s), 1.92 (3H, d, J = 1.3 Hz), 2.07 and 2.10 (6H, each as s), 2.16-2.17 (1H, m), 2.82-2.89 (1H, m), 4.64-4.69 (2H, m), 4.89 (1H, d, J = 11.9 Hz), 6.50 (1H, dd, J = 8.2 and 2.8 Hz), 7.53 (1H, d, J = 1.3 Hz), 8.03 (1H, br); ¹³C NMR (CDCl₃) δ –5.2, –5.0, 12.5, 17.9, 20.7, 21.7, 25.5, 29.7, 39.6, 61.1, 73.9, 85.2, 111.1, 111.3, 135.8, 150.1, 163.3, 169.1, 169.9. FAB-MS (m/z) 457 [M +H]⁺. Anal. Calcd for C₂₀H₃₂N₂O₈Si: C, 52.61; H, 7.06; N, 6.14. Found: C, 52.69; H, 7.10; N, 5.94.

Physical data for **13a**: ¹H NMR (CDCl₃) δ 0.11 and 0.16 (6H, each as s), 0.91 (9H, s),

2.17 (3H, s), 2.86 (1H, ddd, J = 17.1, 5.1, and 1.3 Hz), 2.95 (1H, ddd, J = 17.1, 5.1, and 1.3 Hz), 4.60 (1H, t, J = 5.1 Hz), 4.99 (1H, d, J = 17.6 Hz), 5.11 (1H, d, J = 17.6 Hz), 9.71 (1H, t, J = 1.3 Hz); ¹³C NMR (CDCl₃) $\delta : -5.18$, -5.15, -0.02, 17.9, 20.5, 25.6, 25.6, 29.9, 48.5, 66.7, 72.8, 170.3, 198.0; FAB-MS (m/z) 289 (M⁺+H). High resolution FAB-MS (m/z) calcd for C₁₃H₂₄O₅Si : 289.1464 [M+H]⁺. Found: 289.1471.

Reaction of Pb(OAc)₄ with 3 in the presence of *i*-Pr₂NEt. To a toluene (10.0 mL) solution of 3 (500 mg, 1.48 mmol) was added *i*-Pr₂NEt (0.48 mL, 2.7 mmol) and Pb(OAc)₄ (980 mg, 2.22 mmol) at 0 °C under Ar atmosphere. The reaction mixture was stirred at rt for 21 h, filtered through a celite pad, and partitioned between CHCl₃/saturated aq NaHCO₃. Column chromatography (hexane/EtOAc = 2/1) of the organic layer gave a mixture of **12a** and **12b** (216 mg, 32%, **12a/12b** = 1/0.4). Compounds **12a** (foam, t_R 27.6 min) and **12b** (foam, t_R 30.0 min) were separated by HPLC (hexane/AcOEt = 3/2).

Physical data for **12b** : UV (MeOH) λ_{max} 265 nm (ϵ 9000), λ_{min} 233 nm (ϵ 1600); ¹H NMR (CDCl₃) δ 0.07 and 0.08 (6H, each as s), 0.85 (9H, s), 1.94 (3H, d, J = 1.0 Hz), 2.12 and 2.15 (6H, each as s), 2.25-2.28 (1H, m), 2.63-2.69 (1H, m), 4.48-4.54 (3H, m), 4.89 (1H, d, J = 11.9 Hz), 6.19 (1H, t, J = 6.1 Hz), 7.65 (1H, d, J = 1.0 Hz), 8.57 (1H, br); ¹³C NMR (CDCl₃) δ -5.3, -4.9, 12.8, 17.8, 20.7, 21.7, 25.4, 39.3, 63.5, 71.8, 84.0, 108.8, 110.7, 136.0, 150.3, 163.7, 168.0, 169.9. FAB-MS (m/z) 457 [M+H]⁺. Anal. Calcd for C₂₀H₃₂N₂O₈Si: C, 52.61; H, 7.06; N, 6.14. Found: C, 52.90; H, 7.10; N, 5.97. Reaction of 14 with Me₃Al: formation of the spiro derivatives (15a and 15b) and 1-[5-*O*-benzoyl-3-*O*-(*tert*-butyldimethylsilyl)-2-deoxy-4-*C*-methyl- β -D-*threo*-pentofu ranosyl]thymine (16a). To a CH₂Cl₂ (4 mL) solution of 14 (50 mg, 0.086 mmol) was added Me₃Al (1 M hexane solution, 0.34 mL, 0.34 mmol) at 0 °C under Ar atmosphere. The mixture was stirred at rt for 13 h, quenched with saturated aq NaHCO₃, and filtered through a celite pad. The filtrate was partitioned between CHCl₃/saturated aq NaHCO₃. Preparative TLC (hexane/EtOAc = 1/1) of the organic layer gave 16a (foam, 6 mg, 15%) and a mixture of 15a and 15b (31 mg, 76%, 15a/15b = 1:1). Compounds 15a (foam, *t*_R 8.6 min) and 15b (foam, *t*_R 9.4 min) were separated by HPLC (hexane/EtOAc = 2/1).

Physical data for **16a**: UV (MeOH) λ_{max} 269 nm (£8800), λ_{min} 247 nm (£4800); ¹H NMR (CDCl₃) δ 0.05 and 0.09 (6H, each as s), 0.87 (9H, s), 1.36 (3H, s), 1.88 (3H, d, *J* = 1.2 Hz), 2.01-2.04 (1H, m), 2.88 (1H, ddd, *J* = 7.7, 5.5, and 14.7 Hz), 4.24 (1H, dd, *J* = 2.0 and 5.5 Hz), 4.49 (1H, d, *J* = 11.5 Hz), 4.62 (1H, d, *J* = 11.5 Hz), 6.25 (1H, dd, *J* = 3.3 and 7.7 Hz), 7.45-7.47 (2H, m), 7.57-7.61 (1H, m), 7.65 (1H, d, *J* = 1.2 Hz), 8.04-8.07 (2H, m), 8.41 (1H, br);); ¹³C NMR (CDCl₃) δ –5.3, –4.8, 12.5, 17.9, 21.8, 25.5, 41.6, 66.6, 75.9, 84.1, 86.8, 110.5, 129.8, 133.3, 136.3, 150.2, 163.56, 166.2. FAB-MS (*m*/*z*) 475 [M+H]⁺. Anal. Calcd for C₂₄H₃₄N₂O₆Si·1/3 EtOAc: C, 60.73; H, 7.22; N, 5.90. Found: C, 60.49; H, 7.64; N, 5.24.

Physical data for **15a**: UV (MeOH) λ_{max} 266 nm (ϵ 9300), λ_{min} 233 nm (ϵ 1700);

¹H NMR (CDCl₃) δ 0.10 and 0.18 (6H, each as s), 0.90 (9H, s), 1.63 (3H, s), 1.83 (3H, d, J = 1.0 Hz), 1.91 (1H, dd, J = 14.6 and 2.0 Hz), 2.94 (1H, ddd, J = 14.6, 8.0, and 5.0 Hz), 3.95 (1H, d, J = 9.8 Hz), 4.24 (1H, d, J = 5.0 Hz), 4.41 (1H, d, J = 9.8 Hz), 6.30 (1H, dd, J = 8.0 and 2.0 Hz), 7.27-7.36 (4H, m), 7.46 (2H, dt, J = 6.6 and 1.5 Hz), 8.50 (1H, br); HMBC: CH₃/Ph(CH₃)C(O)O; ¹³C NMR (CDCl₃) δ –5.1, –4.8, 12.5, 17.9, 25.6, 28.7, 67.7, 74.7, 83.5, 110.2, 112.0, 115.2, 125.2, 128.1, 136.3, 142.6, 150.2, 163.5. FAB-MS (m/z) 475 [M+H]⁺. Anal. Calcd for C₂₃H₃₄N₂O₆Si: C, 60.73; H, 7.22; N, 5.90. Found: C, 60.74; H, 7.36; N, 5.79.

Physical data for **15b**: UV (MeOH) λ_{max} 266 nm (ε 9700), λ_{min} 234 nm (ε 1900); ¹H NMR (CDCl₃) δ –0.19 and –0.12 (6H, each as s), 0.79 (9H, s), 1.74 (3H, s), 1.90 (3H, d, J = 1.0 Hz), 1.93 (1H, dd, J = 14.9 and 2.0 Hz), 2.89 (1H, ddd, J = 14.9, 8.0, and 5.1 Hz), 4.02 (1H, d, J = 7.6 Hz), 4.02 (1H, d, J = 5.1 Hz), 4.26 (1H, d, J = 7.6 Hz), 6.46 (1H, dd, J = 8.0 and 2.0 Hz), 7.30-7.39 (3H, m), 7.43-7.47 (3H, m), 8.64 (1H, br);); HMBC: C<u>H₃</u>/Ph(CH₃)<u>C</u>(O)O; ¹³C NMR (CDCl₃) δ –5.5, –5.1, 12.6, 17.8, 25.5, 28.5, 40.0, 69.3, 74.8, 84.0, 110.5, 112.0, 114.9, 124.9, 128.2, 128.3, 136.3, 142.4, 150.3, 163.6. FAB-MS (*m*/*z*) 475 [M+H]⁺. Anal. Calcd for C₂₃H₃₄N₂O₆Si: C, 60.73; H, 7.22; N, 5.90. Found: C, 60.52; H, 7.42; N, 6.01.

SCHEME B. Preparation of 19 from 1-(3-*O*-acetyl-2,5-dideoxy- β -D-*glycero*-pent-4-enofuranosyl)thymine (VI)^a

^a Verheyden, J. P. H.; Moffatt, J. G. J. Org. Chem. 1974, 39, 3573.

1-[3-O-(tert-Butyldimethylsilyl)-2,5-dideoxy-β-D-glycero-pent-4-enofuranosyl]-

thymine (VII). Compound VI (6.90 g, 25.9 mmol) was dissolved in NH₃/MeOH (350 mL) and kept standing in refrigerator for 19 h. The solvent was evaporated and the residual syrup was dried under reduced pressure. To a solution of this syrup in DMF (60 mL) were added imidazole (5.29 g, 77.8 mmol) and TBDMSCl (7.81 g, 51.8 mmol). After being stirred at rt for 15 h, the reaction mixture was partitioned between EtOAc/H₂O. Column chromatography hexane/EtOAc = 3/1) of the organic layer gave VII (7.87 g, 90%) as a foam: UV (MeOH) λ_{max} 264 nm (ε 11100), λ_{min} 234 nm (ε 4900); ¹H NMR (CDCl₃) δ 0.13 (6H, s), 0.91 (9H, s), 1.94 (3H, d, *J* = 1.2 Hz), 2.13-2.20 (1H, m), 2.40 (1H, ddd, *J* = 13.6, 6.2, and 3.4 Hz), 4.24 (1H, d, *J* = 2.0 Hz), 4.54 (1H, d, *J* = 2.0 Hz), 4.75 (1H, dd, *J* = 6.0 and 3.4 Hz), 6.49 (1H, t, *J* = 6.2 Hz), 6.98 (1H, d, *J* = 1.2 Hz), 8.47 (1H, br); ¹³C NMR (CDCl₃) δ : -4.8, -4.7, 12.6, 18.0, 25.6, 25.7, 40.7, 70.7, 85.1, 86.1, 111.7, 134.5, 150.0, 162.7, 163.5. FAB-MS (*m*/*z*) 339 [M+H]⁺. Anal. Calcd for C_{1a}H_{2a}N₂O_bSi: C, 56.78; H, 7.74; N, 8.28. Found: C, 57.04; H,

7.99; N, 8.14.

1-[5-*O*-Benzoyl-4-benzoyloxy-3-*O*-(*tert*-butyldimethylsilyl)-2-deoxy-β-D*erythro*-pentofuranosyl]thymine (19a) and 1-[5-*O*-Benzoyl-4-benzoyloxy-3-*O*-(*tert*butyldimethylsilyl)-2-deoxy-α-L-*threo*-pentofuranosyl]thymine (19b).

To a toluene (8 mL) solution of **VII** (338.5 mg, 1.0 mmol) were added *i*-Pr₂NEt (0.61 mL, 3.5 mmol) and Pb(OBz)₄ (2.42 g, 3.5 mmol) at 0 °C under Ar atmosphere. After being stirred at rt for 24 h, the reaction mixture was quenched with saturated aq NaHCO₃ and filtered through a celite pad. The filtrate was partitioned between CHCl₃/saturated aq NaHCO₃. Column chromatography (hexane/EtOAc = 2/1) gave a mixture of **VII**, **19a**, and **19b**. To decompose **VII**, the mixture was treated with 80% aq AcOH (10 mL) in THF (16 mL) at rt for 5 days. The solvent was evaporated and the residue was partitioned between CHCl₃/saturated aq NaHCO₃. Column chromatography (hexane/EtOAc = 2/1) gave a mixture of **VII**, **19a**, and **19b**. To decompose **VII**, the mixture of **VII** (238.8 mg, 41%, **19a/19b** = 1.3/1.0). Compounds **19a** (foam, t_R 10.0 min) and **19b** (foam, t_R 11.6 min) were isolated by HPLC (hexane/EtOAc = 1/1) separation.

Physical data for **19a**: UV (MeOH) λ_{max} 265 nm (ϵ 11900) and 230 nm (ϵ 28000), λ_{min} 250 nm (ϵ 9500); ¹H NMR (CDCl₃) δ 0.02 and 0.07 (6H, each as s), 0.71 (9H, s), 1.77 (3H, s), 2.63-2.69 (1H, m), 2.75-2.79 (1H, m), 4.78 (1H, d, J = 11.5 Hz), 4.99-5.00 (1H, m), 5.03 (1H, d, J = 11.5 Hz), 6.26 (1H, dd, J = 8.3 and 3.7 Hz), 7.15 (1H, s), 7.42-7.47 (5H, m), 7.51-7.64 (3H, m), 8.03-8.09 (5H, m), 9.86 (1H, br); NOE

S12

experiment: H-6/H-5'a (0.3%), H-3'/H-5'a (3.9%) and H-3'/H-5'b (1.2%); ¹³C NMR (CDCl₃) δ –5.2, –4.7, 12.2, 17.6, 25.3, 40.2, 64.7, 73.2, 89.9, 108.7, 110.9, 118.3, 128.6, 129.7, 129.8, 133.2, 133.4, 149.7, 163.7, 164.5, 165.9. FAB-MS (m/z) 581 [M+H]⁺. Anal. Calcd for C₃₀H₃₆N₂O₈Si: C, 62.05; H, 6.25; N, 4.82. Found: C, 61.90; H, 6.26; N, 4.78.

Physical data for **19b**: UV (MeOH) $\lambda_{\text{max}} 26 \text{ nm}$ ($\varepsilon 10600$) and 230 nm ($\varepsilon 26400$), $\lambda_{\text{min}} 251 \text{ nm}$ ($\varepsilon 8400$); ¹H NMR (CDCl₃) $\delta 0.17$ and 0.18 (6H, each as s), 0.94 (9H, s), 1.72 (3H, d, J = 1.2 Hz), 2.32 (1H, ddd, J = 13.7, 8.7, and 4.3 Hz), 2.48 (1H, dd, J =13.7 and 6.0 Hz), 5.01 (1H, d, J = 4.3 Hz), 5.05 (1H, d, J = 12.0 Hz), 5.11 (1H, d, J =12.0 Hz), 6.74 (1H, dd, J = 8.7 and 6.0 Hz), 7.32-7.37, 7.47-7.52, 7.62-7.66, 7.90-7.92 and 8.03-8.06 (11H, each as m), 8.47 (1H, br); NOE experiment: CH₃-Si/H-5'a (1.4%) and *t*-Bu-Si/H-5'a (0.8%); ¹³C NMR (CDCl₃) $\delta -5.1$, -4.7, 12.4, 17.9, 25.6, 62.0, 75.5, 86.9, 111.8, 112.0, 128.3, 128.6, 129.5, 129.6, 129.6, 133.1, 133.9, 134.9, 150.1, 163.2, 164.3, 165.5. FAB-MS (m/z) 581 [M+H]⁺. Anal. Calcd for C₃₀H₃₆N₂O₈Si: C, 62.05; H, 6.25; N, 4.82. Found: C, 61.96; H, 6.37; N, 4.81.

Fig. 1: ¹³C NMR spectrum of compound **10** in DMSO-d₆

Fig. 2: ¹³C NMR spectrum of compound **13** in CDCl₃

Fig. 3: ¹³C NMR spectrum of compound **17a** in CDCl₃

Fig. 4: ¹³C NMR spectrum of compound **17b** in CDCl₃

Fig. 5: ¹³C NMR spectrum of compound **23** in CDCl₃

Fig. 6: ¹³C NMR spectrum of compound **24a** in CDCl₃

Fig. 7: ¹³C NMR spectrum of compound **24b** in CDCl₃

Fig. 8: ¹³C NMR spectrum of compound **25** in CDCl₃

Fig. 9: ¹³C NMR spectrum of compound **IV** in CDCl₃