Nucleophilic Substitution at the 4'-Position of Nucleoside:

New Access to a Promising Anti-HIV Agent $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$-Didehydro- $\mathbf{3}^{\prime}$-deoxy-
4'-ethynylthymidine (4'-Ed4T)

CONTENTS

Page S3 General Experimental Section, SCHEME A and procedures for compound II .

Page S4 procedures for compound II, III and IV

Page S5 procedures for compound IV and $\mathbf{3}$

Page S6 procedures for compound 3,10 and $\mathbf{1 1}$

Page S7 procedures for compound $\mathbf{1 1}$ and 12a and $\mathbf{1 3}$

Page S8 procedures for compound $\mathbf{1 3}$ and 12b

Page S10 procedures for compound 15a and 15b

Page S11 SCHEME B and procedures for compound VII

Page S12 procedures for compound 19a and 19b

Page S13 procedures for compound 19a and 19b
Page S14 Fig. 1: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}$ in DMSO- d_{6}
Page S15 Fig. 2: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 3}$ in CDCl_{3}
Page S16 Fig. 3: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 7 a}$ in CDCl_{3}
Page S17 Fig. 4: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 7 b}$ in CDCl_{3}

Page S18 Fig. 5: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 3}$ in CDCl_{3} Page S19 Fig. 6: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 24a in CDCl_{3} Page S20 Fig. 7: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 4 a}$ in CDCl_{3} Page S21 Fig. 8: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 5}$ in CDCl_{3} Page S22 Fig. 9: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{I V}$ in CDCl_{3}

General Experimental Section

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded either at 400 MHz or at 500 MHz . Chemical sifts are reported relative to $\mathrm{Me}_{4} \mathrm{Si}$. Mass spectra (MS) were taken in FAB mode with m-nitrobenzyl alcohol as a matrix. Column chromatography was carried out on silica gel. Thin-layer chromatography (TLC) was performed on silica gel. When necessary, analytical samples were purified by high performance liquid chromatography (HPLC). THF was distilled from benzophenone ketyl.

SCHEME A. Preparation of 3 from 1-(3,5-anhydro-2-deoxy- β-D-threo-pentofuranosyl)thymine (I) ${ }^{\text {a }}$

${ }^{\text {a }}$ Horwitz, J. P.; Chua, J.; Da Rooge, M. A.; Noel, M.; Klundt, I. L. J. Org. Chem. 1966, 31, 205.

1-(2,5-Dideoxy-5-iodo- β-D-threo-pentofuranosyl)thymine (II). To a solution of $\mathbf{I}(4.0 \mathrm{~g}$, $17.8 \mathrm{mmol})$ in $\mathrm{AcOH}(40 \mathrm{~mL})$ was added $\mathrm{NaI}(13.4 \mathrm{~g}, 89.2 \mathrm{mmol})$. The mixture was stirred
at $90^{\circ} \mathrm{C}$ for 0.5 h , evaporated, and partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3}.

Evaporation of the organic layer gave crystalline $\mathbf{I I}(5.35 \mathrm{~g}, 85 \%): \mathrm{mp} 151-153{ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda_{\max } 266 \mathrm{~nm}(\varepsilon 10100), \lambda_{\min } 234 \mathrm{~nm}(\varepsilon 2200) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta ; 1.88(3 \mathrm{H}, \mathrm{d}, J=$ $1.2 \mathrm{~Hz}), 2.05(1 \mathrm{H}, \mathrm{dd}, J=15.1$ and 8.0 Hz$), 2.67(1 \mathrm{H}, \mathrm{ddd}, J=15.1,8.4$, and 5.3 Hz$), 3.37$ $(1 \mathrm{H}, \mathrm{dd}, J=9.7$ and 6.4 Hz$), 3.47(1 \mathrm{H}, \mathrm{dd}, J=9.7$ and 7.7 Hz$), 4.15(1 \mathrm{H}, \mathrm{ddd}, J=7.7,6.4$, and 3.3 Hz$), 4.75(1 \mathrm{H}, \mathrm{dd}, J=5.3$ and 3.3 Hz$), 6.19(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and 2.2 Hz$), 7.87(1 \mathrm{H}, \mathrm{d}$, $J=1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right) \delta: 1.4,11.9,68.1,83.1,83.4,94.9,108.5,136.4,149.9$, 163.2. FAB-MS $(\mathrm{m} / z) 353[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{IN}_{2} \mathrm{O}_{4}: \mathrm{C}, 34.11 ; \mathrm{H}, 3.72 ; \mathrm{N}, 7.96$. Found: C, 34.30; H, 3.51; N, 7.58..

1-(3-O-Acetyl-2,5-dideoxy-5-iodo- β-D-threo-pentofuranosyl)thymine (III). To a solution of II $(5.3 \mathrm{~g}, 15.1 \mathrm{mmol})$ in pyridine $(30 \mathrm{~mL})$ was added $\mathrm{Ac}_{2} \mathrm{O}(4.3 \mathrm{~mL}, 45.2 \mathrm{mmol})$. The reaction mixture was stirred at rt for 13 h . Evaporation of the solvent gave crystalline III ($5.53 \mathrm{~g}, 93 \%): \mathrm{mp} 160-162^{\circ} \mathrm{C} ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max } 266 \mathrm{~nm}(\varepsilon 9900), \lambda_{\min } 234 \mathrm{~nm}(\varepsilon 2000) ;$ ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.96(3 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 2.11(3 \mathrm{H}, \mathrm{s}), 2.11-2.16(1 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}$, ddd, $J=15.8,8.0$, and 5.7 Hz$), 3.32-3.39(2 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{dt}, J=7.1$ and 3.3 Hz$), 5.48(1 \mathrm{H}, \mathrm{dd}$, $J=5.7$ and 3.3 Hz$), 6.30(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and 2.8 Hz$), 7.38(1 \mathrm{H}, \mathrm{d}, J=0.7 \mathrm{~Hz}), 8.59(1 \mathrm{H}$, br); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 12.8,20.8,39.8,72.2,82.4,84.5,110.8,135.1,150.1,163.3,169.2$. FAB-MS $(\mathrm{m} / \mathrm{z}) 395[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Cald for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{IN}_{2} \mathrm{O}_{5}$: C, 36.57; H, 3.84; N, 7.11. Found: C, $36.62 ; \mathrm{H}, 3.51 ; \mathrm{N}, 6.89$.

1-(3-O-Acetyl-2,5-dideoxy- β-L-glycero-pent-4-enofuranosyl)thymine (IV). A mixture of

III ($5.5 \mathrm{~g}, 14.0 \mathrm{mmol})$ and $\mathrm{DBN}(6.9 \mathrm{~mL}, 55.8 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(40 \mathrm{~mL})$ was stirred at rt for 17 h under Ar atmosphere. After being neutralized with AcOH , the reaction mixture was evaporated and partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3}. Column chromatography (hexane/EtOAc $=1 / 1)$ of the organic layer gave IV $(3.34 \mathrm{~g}, 90 \%)$ as a foam: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.96(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 2.06(3 \mathrm{H}, \mathrm{s}), 2.21(1 \mathrm{H}, \mathrm{dt}, J=15.2$ and 2.7 Hz$), 2.83(1 \mathrm{H}$, $\mathrm{dt}, J=15.2$ and 7.1 Hz$), 4.51(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 0.8 Hz$), 4.73(1 \mathrm{H}, \mathrm{dd}, J=2.7$ and 0.7 Hz$)$, $5.70-5.73(1 \mathrm{H}, \mathrm{m}), 6.44(1 \mathrm{H}, \mathrm{dd}, J=7.1$ and 2.7 Hz$), 7.25(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz}), 8.54(1 \mathrm{H}, \mathrm{br})$;
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 12.7,21.0,37.4,70.2,85.5,89.0,110.8,134.8,150.2,159.2,163.6$, 169.5. FAB-MS $(m / z) 267\left(\mathrm{M}^{+}+\mathrm{H}\right)$; High resolution FAB-MS $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}: 267.0981$, found: $267.0926\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

1-[3-O-(tert-Butyldimethylsily) $)$-2,5-dideoxy- β-L-glycero-pent-4-enofuranosyl]-

thymine (3). Compound IV ($5.2 \mathrm{~g}, 19.5 \mathrm{mmol}$) was dissolved in $\mathrm{NH}_{3} / \mathrm{MeOH}(150 \mathrm{~mL})$. The solution was kept standing at rt for 9 h . The solvent was evaporated. The resulting syrupy \mathbf{V} was dried under reduced pressure, and then dissolved in DMF (60 mL). To this were added imidazole ($5.32 \mathrm{~g}, 78.1 \mathrm{mmol}$) and TBDMSCl ($8.83 \mathrm{~g}, 58.6 \mathrm{mmol}$). After being stirred at rt for 11 h , the mixture was partitioned between $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$. Column chromatography (hexane/EtOAc $=10 / 1$) of the organic layer gave $3(6.43 \mathrm{~g}, 97 \%)$ as a foam: $\mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\text {max }} 266 \mathrm{~nm}(\varepsilon 11600), \lambda_{\text {min }} 236 \mathrm{~nm}(\varepsilon 5700) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.11$ and $0.14(6 \mathrm{H}$, each as s), $0.88(9 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.03(1 \mathrm{H}, \mathrm{dt}, J=10.8$ and 3.2 Hz$), 2.61-2.68(1 \mathrm{H}$, $\mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{dd}, J=2.2$ and 0.7 Hz$), 4.57(1 \mathrm{H}, \mathrm{dd}, J=2.2$ and 0.7 Hz$), 4.68(1 \mathrm{H}, \mathrm{dd}, J=6.8$
and 3.2 Hz$), 6.46(1 \mathrm{H}, \mathrm{dd}, J=7.2$ and 3.2 Hz$), 7.44(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 9.12(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-5.1,-4.9,12.5,17.8,25.4,40.1,79.8,84.9,85.2,110.7,135.6,150.6$, 163.0, 164.1. FAB-MS $(\mathrm{m} / \mathrm{z}) 339[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 56.78 ; \mathrm{H}, 7.74$; N, 8.28. Found: C, 56.61; H, 7.87; N, 8.17.

Reaction of $\mathrm{Pb}(\mathrm{OAc})_{4}$ with 2-methylene-5-(R)-(thymin-1-yl)-2,5-dihydro-furan (9).

To a toluene (3.0 mL) solution of $\mathbf{9}(33 \mathrm{mg}, 0.16 \mathrm{mmol})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(106.4 \mathrm{mg}$, $0.24 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred for 5 h at rt, diluted with EtOAc, and filtered through a celite pad. The filtrate was partitioned between EtOAc and saturated aq NaHCO_{3}. Column chromatography (hexane/EtOAc= 3/1) of the organic layer gave $\mathbf{1 0}$ (solid, $18.2 \mathrm{mg}, 35 \%$, containing a small amount of $\mathbf{1 1}$ formed during evaporation of the solvents) and $\mathbf{1 1}$ (solid, $21.2 \mathrm{mg}, 50 \%$).

Physical data for the major isomer of $\mathbf{1 0}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \quad \delta 2.02(3 \mathrm{H}, \mathrm{s}), 2.04$ $(3 \mathrm{H}, \mathrm{s}), 3.25(3 \mathrm{H}, \mathrm{s}), 4.34$ and $4.49(2 \mathrm{H}$, each as $\mathrm{d}, J=11.5 \mathrm{~Hz}), 6.40(1 \mathrm{H}, \mathrm{dd}, J=5.9$ and 1.5 Hz$), 6.61(1 \mathrm{H}, \mathrm{dd}, J=1.7$ and 5.9 Hz$), 6.83(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 7.15(1 \mathrm{H}, \mathrm{d}, J=$ $1.3 \mathrm{~Hz}), 11.43(1 \mathrm{H}, \mathrm{br}) ;$ FAB-MS $(\mathrm{m} / \mathrm{z}) 324\left(\mathrm{M}^{+}+\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.0,12.1$, $14.1,20.4,21.4,21.6,59.7,63.3,63.8,87.9,90.0,95.4,110.1,111.4,111.8,131.0$, 131.1, 132.0, 135.7, 150.6, 150.6, 163.9, 168.4, 168.6, 169.7. High resolution FAB-MS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{7}$: 325.1036. Found: 325.1075.

Physical data for 11: m.p. $156-157{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max } 259 \mathrm{~nm}(\varepsilon 8600), \lambda_{\min } 236 \mathrm{~nm}$ ($\varepsilon 7400) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \quad \delta 2.00(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.10(3 \mathrm{H}, \mathrm{s}), 5.04(2 \mathrm{H}, \mathrm{s}), 6.47$
$(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{d}, J=3.2 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.88(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.3,20.8,57.67,103.3,111.8,112.8,137.2,143.1,146.5,163.0$, 170.5. FAB-MS $(m / z) 265[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, $54.55 ; \mathrm{H}, 4.58 ; \mathrm{N}$, 10.60. Found: C, 54.65; H, 4.46; N, 10.39 .

Reaction of $\mathrm{Pb}(\mathrm{OAc})_{4}$ with

1-[3-O-(tert-butyldimethylsilyl)-2,5-dideoxy- β-L-glycero-pent-4-enofuranosyl]thymi

 ne (3). To a toluene (5.0 mL) solution of $\mathbf{3}(100 \mathrm{mg}, 0.3 \mathrm{mmol})$, was added $\mathrm{Pb}(\mathrm{OAc})_{4}$ $(196 \mathrm{mg}, 0.44 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred at rt for 16 h , filtered through a celite pad, and then partitioned between $\mathrm{CHCl}_{3} /$ saturated aq $\mathrm{NaHCO}_{3 .}$. Column chromatography (hexane/EtOAc $=3 / 1$) of the organic layer gave 12 a (foam, $62.8 \mathrm{mg}, 28 \%$) and 13a (syrup, $52 \mathrm{mg}, 60 \%$).Physical data for 12a: UV (MeOH) $\lambda_{\text {max }} 265 \mathrm{~nm}(\varepsilon 9100), \lambda_{\min } 233 \mathrm{~nm}(\varepsilon 1700) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.11$ and $0.16(6 \mathrm{H}$, each as s), $0.91(9 \mathrm{H}, \mathrm{s}), 1.92(3 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz})$, 2.07 and $2.10(6 \mathrm{H}$, each as s), 2.16-2.17 $(1 \mathrm{H}, \mathrm{m}), 2.82-2.89(1 \mathrm{H}, \mathrm{m}), 4.64-4.69(2 \mathrm{H}, \mathrm{m})$, $4.89(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{dd}, J=8.2$ and 2.8 Hz$), 7.53(1 \mathrm{H}, \mathrm{d}, J=1.3 \mathrm{~Hz})$, $8.03(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.2,-5.0,12.5,17.9,20.7,21.7,25.5,29.7,39.6$, $61.1,73.9,85.2,111.1,111.3,135.8,150.1,163.3,169.1,169.9$. FAB-MS $(\mathrm{m} / \mathrm{z}) 457[\mathrm{M}$ $+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}$: C, $52.61 ; \mathrm{H}, 7.06 ; \mathrm{N}, 6.14$. Found: C, $52.69 ; \mathrm{H}$, 7.10; N, 5.94.

Physical data for 13a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.11$ and $0.16(6 \mathrm{H}$, each as s$), 0.91(9 \mathrm{H}, \mathrm{s})$,
$2.17(3 \mathrm{H}, \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{ddd}, J=17.1,5.1$, and 1.3 Hz$), 2.95(1 \mathrm{H}, \mathrm{ddd}, J=17.1,5.1$, and $1.3 \mathrm{~Hz}), 4.60(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz})$,
$9.71(1 \mathrm{H}, \mathrm{t}, J=1.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta:-5.18,-5.15,-0.02,17.9,20.5,25.6$, 25.6, 29.9, 48.5, 66.7, 72.8, 170.3, 198.0; FAB-MS (m / z) $289\left(\mathrm{M}^{+}+\mathrm{H}\right)$. High resolution FAB-MS $(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Si}: 289.1464[\mathrm{M}+\mathrm{H}]^{+}$. Found: 289.1471.

Reaction of $\mathbf{P b}(\mathbf{O A c})_{4}$ with $\mathbf{3}$ in the presence of $\boldsymbol{i}-\mathrm{Pr}_{2} \mathbf{N E t}$. To a toluene $(10.0 \mathrm{~mL})$ solution of $\mathbf{3}(500 \mathrm{mg}, 1.48 \mathrm{mmol})$ was added $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.48 \mathrm{~mL}, 2.7 \mathrm{mmol})$ and $\mathrm{Pb}(\mathrm{OAc})_{4}(980 \mathrm{mg}, 2.22 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred at rt for 21 h , filtered through a celite pad, and partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3}. Column chromatography (hexane/EtOAc $=2 / 1$) of the organic layer gave a mixture of $\mathbf{1 2 a}$ and $\mathbf{1 2 b}(216 \mathrm{mg}, 32 \%, \mathbf{1 2} \mathbf{a} / \mathbf{1 2 b}=1 / 0.4)$.

Compounds 12a (foam, $t_{\mathrm{R}} 27.6 \mathrm{~min}$) and $\mathbf{1 2 b}$ (foam, $t_{\mathrm{R}} 30.0 \mathrm{~min}$) were separated by HPLC (hexane/AcOEt = 3/2).

Physical data for 12b : UV (MeOH) $\lambda_{\text {max }} 265 \mathrm{~nm}(\varepsilon 9000), \lambda_{\min } 233 \mathrm{~nm}(\varepsilon 1600) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.07$ and $0.08(6 \mathrm{H}$, each as s), $0.85(9 \mathrm{H}, \mathrm{s}), 1.94(3 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz})$, 2.12 and $2.15(6 \mathrm{H}$, each as s$), 2.25-2.28(1 \mathrm{H}, \mathrm{m}), 2.63-2.69(1 \mathrm{H}, \mathrm{m}), 4.48-4.54(3 \mathrm{H}, \mathrm{m})$, $4.89(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{t}, J=6.1 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, J=1.0 \mathrm{~Hz}), 8.57(1 \mathrm{H}$, br); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3,-4.9,12.8,17.8,20.7,21.7,25.4,39.3,63.5,71.8,84.0$, 108.8, 110.7, 136.0, 150.3, 163.7, 168.0, 169.9. FAB-MS $(\mathrm{m} / \mathrm{z}) 457[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}$: C, 52.61; H, 7.06; N, 6.14. Found: C, 52.90; H, 7.10; N, 5.97.

Reaction of 14 with $\mathrm{Me}_{3} \mathrm{Al}$: formation of the spiro derivatives (15 a and 15 b) and

1-[5-O-benzoyl-3-O-(tert-butyldimethylsilyl)-2-deoxy-4-C-methyl- β-D-threo-pentofu

 ranosyl]thymine (16a). To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ solution of $\mathbf{1 4}(50 \mathrm{mg}, 0.086 \mathrm{mmol})$ was added $\mathrm{Me}_{3} \mathrm{Al}(1 \mathrm{M}$ hexane solution, $0.34 \mathrm{~mL}, 0.34 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under Ar atmosphere. The mixture was stirred at rt for 13 h , quenched with saturated aq NaHCO_{3}, and filtered through a celite pad. The filtrate was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3}. Preparative TLC (hexane/EtOAc = 1/1) of the organic layer gave 16a (foam, 6 mg , $\mathbf{1 5 \%}$) and a mixture of $\mathbf{1 5 a}$ and $\mathbf{1 5 b}(31 \mathrm{mg}, \mathbf{7 6 \%}, \mathbf{1 5 a} / \mathbf{1 5 b}=1: 1)$. Compounds $\mathbf{1 5 a}$ (foam, $t_{\mathrm{R}} 8.6 \mathrm{~min}$) and $\mathbf{1 5 b}$ (foam, $t_{\mathrm{R}} 9.4 \mathrm{~min}$) were separated by HPLC (hexane/EtOAc $=2 / 1$).Physical data for 16a: UV (MeOH) $\lambda_{\text {max }} 269 \mathrm{~nm}(\varepsilon 8800), \lambda_{\min } 247 \mathrm{~nm}(\varepsilon 4800) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 0.05$ and $0.09(6 \mathrm{H}$, each as s), $0.87(9 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.88(3 \mathrm{H}, \mathrm{d}, J$ $=1.2 \mathrm{~Hz}), 2.01-2.04(1 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{ddd}, J=7.7,5.5$, and 14.7 Hz$), 4.24(1 \mathrm{H}, \mathrm{dd}, J$ $=2.0$ and 5.5 Hz$), 4.49(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 6.25(1 \mathrm{H}, \mathrm{dd}, J$ $=3.3$ and 7.7 Hz$), 7.45-7.47(2 \mathrm{H}, \mathrm{m}), 7.57-7.61(1 \mathrm{H}, \mathrm{m}), 7.65(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz})$, 8.04-8.07 (2H, m), $8.41(1 \mathrm{H}, \mathrm{br}) ;) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.3,-4.8,12.5,17.9,21.8$, $25.5,41.6,66.6,75.9,84.1,86.8,110.5,129.8,133.3,136.3,150.2,163.56$,
166.2. FAB-MS $(m / z) 475[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si} \cdot 1 / 3$ EtOAc: C, 60.73; H, 7.22; N, 5.90. Found: C, 60.49; H, 7.64; N, 5.24.

Physical data for 15a: UV (MeOH) $\lambda_{\text {max }} 266 \mathrm{~nm}(\varepsilon 9300), \lambda_{\text {min }} 233 \mathrm{~nm}(\varepsilon 1700)$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.10$ and $0.18(6 \mathrm{H}$, each as s), $0.90(9 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s}), 1.83(3 \mathrm{H}, \mathrm{d}$, $J=1.0 \mathrm{~Hz}), 1.91(1 \mathrm{H}, \mathrm{dd}, J=14.6$ and 2.0 Hz$), 2.94(1 \mathrm{H}, \mathrm{ddd}, J=14.6,8.0$, and 5.0 $\mathrm{Hz}), 3.95(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 4.24(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}), 6.30$ $(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and 2.0 Hz$), 7.27-7.36(4 \mathrm{H}, \mathrm{m}), 7.46(2 \mathrm{H}, \mathrm{dt}, J=6.6$ and 1.5 Hz$), 8.50$ (1H, br); $\mathrm{HMBC}: \mathrm{CH}_{3} / \mathrm{Ph}\left(\mathrm{CH}_{3}\right) \underline{\mathrm{C}}(\mathrm{O}) \mathrm{O} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.1,-4.8,12.5,17.9,25.6$, $28.7,67.7,74.7,83.5,110.2,112.0,115.2,125.2,128.1,136.3,142.6,150.2,163.5$. FAB-MS $(\mathrm{m} / \mathrm{z}) 475[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}: \mathrm{C}, 60.73 ; \mathrm{H}, 7.22 ; \mathrm{N}, 5.90$. Found: C, 60.74; H, 7.36; N, 5.79.

Physical data for 15b: UV (MeOH) $\lambda_{\max } 266 \mathrm{~nm}(\varepsilon 9700), \lambda_{\text {min }} 234 \mathrm{~nm}(\varepsilon 1900) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.19$ and $-0.12(6 \mathrm{H}$, each as s), $0.79(9 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{s}), 1.90(3 \mathrm{H}, \mathrm{d}, J=1.0$ $\mathrm{Hz}), 1.93(1 \mathrm{H}, \mathrm{dd}, J=14.9$ and 2.0 Hz$), 2.89(1 \mathrm{H}, \mathrm{ddd}, J=14.9,8.0$, and 5.1 Hz$), 4.02(1 \mathrm{H}$, d, $J=7.6 \mathrm{~Hz}), 4.02(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 4.26(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.46(1 \mathrm{H}, \mathrm{dd}, J=8.0$ and $2.0 \mathrm{~Hz}), 7.30-7.39(3 \mathrm{H}, \mathrm{m}), 7.43-7.47(3 \mathrm{H}, \mathrm{m}), 8.64(1 \mathrm{H}, \mathrm{br}) ;$); HMBC:
$\mathrm{CH}_{3} / \mathrm{Ph}\left(\mathrm{CH}_{3}\right) \underline{\mathrm{C}}(\mathrm{O}) \mathrm{O} ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.5,-5.1,12.6,17.8,25.5,28.5,40.0,69.3,74.8$, 84.0, 110.5, 112.0, 114.9, 124.9, 128.2, 128.3, 136.3, 142.4, 150.3, 163.6. FAB-MS (m / z) $475[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$: C, $60.73 ; \mathrm{H}, 7.22$; $\mathrm{N}, 5.90$. Found: C, $60.52 ; \mathrm{H}$, 7.42; N, 6.01.

SCHEME B. Preparation of 19 from 1-(3-O-acetyl-2,5-dideoxy- β-D-glycero-pent-4-enofuranosyl)thymine (VI) ${ }^{\text {a }}$

${ }^{\text {a }}$ Verheyden, J. P. H.; Moffatt, J. G. J. Org. Chem. 1974, 39, 3573.

1-[3-O-(tert-Butyldimethylsilyl)-2,5-dideoxy- β-D-glycero-pent-4-enofuranosyl]-

thymine (VII). Compound VI ($6.90 \mathrm{~g}, 25.9 \mathrm{mmol}$) was dissolved in $\mathrm{NH}_{3} / \mathrm{MeOH}(350 \mathrm{~mL})$ and kept standing in refrigerator for 19 h . The solvent was evaporated and the residual syrup was dried under reduced pressure. To a solution of this syrup in DMF (60 mL) were added imidazole ($5.29 \mathrm{~g}, 77.8 \mathrm{mmol}$) and $\operatorname{TBDMSCl}(7.81 \mathrm{~g}, 51.8 \mathrm{mmol})$. After being stirred at rt for 15 h , the reaction mixture was partitioned between $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$. Column chromatography hexane $/ \mathrm{EtOAc}=3 / 1$) of the organic layer gave VII $(7.87 \mathrm{~g}, 90 \%)$ as a foam: $\mathrm{UV}(\mathrm{MeOH})$ $\lambda_{\text {max }} 264 \mathrm{~nm}(\varepsilon 11100), \lambda_{\text {min }} 234 \mathrm{~nm}(\varepsilon 4900) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.13(6 \mathrm{H}, \mathrm{s}), 0.91(9 \mathrm{H}, \mathrm{s})$, $1.94(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.13-2.20(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{ddd}, J=13.6,6.2$, and 3.4 Hz$), 4.24$ $(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 4.54(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}), 4.75(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and 3.4 Hz$), 6.49(1 \mathrm{H}, \mathrm{t}, J$ $=6.2 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 8.47(1 \mathrm{H}, \mathrm{br}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta:-4.8,-4.7,12.6$, 18.0, 25.6, 25.7, 40.7, 70.7, 85.1, 86.1, 111.7, 134.5, 150.0, 162.7, 163.5. FAB-MS $(\mathrm{m} / \mathrm{z}) 339$ $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}, 56.78 ; \mathrm{H}, 7.74 ; \mathrm{N}, 8.28$. Found: C, 57.04; H,
7.99; N, 8.14.

1-[5-O-Benzoyl-4-benzoyloxy-3-O-(tert-butyldimethylsilyl)-2-deoxy- β-D-

erythro-pentofuranosyl]thymine (19a) and 1-[5-O-Benzoyl-4-benzoyloxy-3-O-(tert-butyldimethylsilyl)-2-deoxy- α-L-threo-pentofuranosyl]thymine (19b).

To a toluene (8 mL) solution of VII $(338.5 \mathrm{mg}, 1.0 \mathrm{mmol})$ were added $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.61$ $\mathrm{mL}, 3.5 \mathrm{mmol})$ and $\mathrm{Pb}(\mathrm{OBz})_{4}(2.42 \mathrm{~g}, 3.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under Ar atmosphere. After being stirred at rt for 24 h , the reaction mixture was quenched with saturated aq NaHCO_{3} and filtered through a celite pad. The filtrate was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3}. Column chromatography (hexane/EtOAc $=2 / 1$) gave a mixture of VII, 19a, and 19b. To decompose VII, the mixture was treated with 80% aq AcOH (10 mL) in THF (16 mL) at rt for 5 days. The solvent was evaporated and the residue was partitioned between $\mathrm{CHCl}_{3} /$ saturated aq NaHCO_{3}. Column chromatography (hexane/EtOAc $=2 / 1$) of the organic layer gave a mixture of $\mathbf{1 9 a}$ and $\mathbf{1 9 b}(238.8 \mathrm{mg}$, $41 \%, \mathbf{1 9 a} / \mathbf{1 9 b}=1.3 / 1.0$). Compounds $\mathbf{1 9 a}$ (foam, $t_{\mathrm{R}} 10.0 \mathrm{~min}$) and $\mathbf{1 9 b}$ (foam, $t_{\mathrm{R}} 11.6$ \min) were isolated by HPLC (hexane/EtOAc $=1 / 1$) separation.

Physical data for 19a: $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }} 265 \mathrm{~nm}(\varepsilon 11900)$ and $230 \mathrm{~nm}(\varepsilon$ 28000), $\lambda_{\text {min }} 250 \mathrm{~nm}(\varepsilon 9500) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02$ and $0.07(6 \mathrm{H}$, each as s), 0.71 $(9 \mathrm{H}, \mathrm{s}), 1.77(3 \mathrm{H}, \mathrm{s}), \quad 2.63-2.69(1 \mathrm{H}, \mathrm{m}), 2.75-2.79(1 \mathrm{H}, \mathrm{m}), 4.78(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz})$, 4.99-5.00 $(1 \mathrm{H}, \mathrm{m}), 5.03(1 \mathrm{H}, \mathrm{d}, J=11.5 \mathrm{~Hz}), 6.26(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.3$ and 3.7 Hz$), 7.15$ $(1 \mathrm{H}, \mathrm{s}), 7.42-7.47(5 \mathrm{H}, \mathrm{m}), 7.51-7.64(3 \mathrm{H}, \mathrm{m}), 8.03-8.09(5 \mathrm{H}, \mathrm{m}), 9.86(1 \mathrm{H}, \mathrm{br})$; NOE
experiment: H-6/H-5'a (0.3\%), H-3'/H-5'a (3.9\%) and H-3'/H-5'b (1.2\%); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-5.2,-4.7,12.2,17.6,25.3,40.2,64.7,73.2,89.9,108.7,110.9,118.3,128.6$, 129.7, 129.8, 133.2, 133.4, 149.7, 163.7, 164.5, 165.9. FAB-MS (m/z) $581[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}$: C, 62.05; H, 6.25; N, 4.82. Found: C, 61.90; H, 6.26; N, 4.78 .

Physical data for 19b: $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max } 26 \mathrm{~nm}(\varepsilon 10600)$ and $230 \mathrm{~nm}(\varepsilon 26400)$, $\lambda_{\text {min }} 251 \mathrm{~nm}(\varepsilon 8400) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.17$ and $0.18(6 \mathrm{H}$, each as s$), 0.94(9 \mathrm{H}, \mathrm{s})$, $1.72(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 2.32(1 \mathrm{H}, \mathrm{ddd}, J=13.7,8.7$, and 4.3 Hz$), 2.48(1 \mathrm{H}, \mathrm{dd}, J=$ 13.7 and 6.0 Hz$), 5.01(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{d}, J=$ $12.0 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=8.7$ and 6.0 Hz$), 7.32-7.37,7.47-7.52,7.62-7.66,7.90-7.92$ and 8.03-8.06 $(11 \mathrm{H}$, each as m$), 8.47(1 \mathrm{H}, \mathrm{br})$; NOE experiment: $\mathrm{CH}_{3}-\mathrm{Si} / \mathrm{H}-5$ 'a (1.4%) and t-Bu-Si/H-5'a $(0.8 \%) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-5.1,-4.7,12.4,17.9,25.6,62.0,75.5$, $86.9,111.8,112.0,128.3,128.6,129.5,129.6,129.6,133.1,133.9,134.9,150.1,163.2$, 164.3, 165.5. FAB-MS $(\mathrm{m} / \mathrm{z}) 581[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}: \mathrm{C}, 62.05 ; \mathrm{H}$, 6.25; N, 4.82. Found: C, 61.96; H, 6.37; N, 4.81 .

Fig. 1: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 0}$ in DMSO- d_{6}

Fig. 2: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 3}$ in CDCl_{3}

Fig. 3: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 7 a}$ in CDCl_{3}

Fig. 4: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 7 b}$ in CDCl_{3}

Fig. 5: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 23 in CDCl_{3}

Fig. 6: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 4 a}$ in CDCl_{3}

Fig. 7: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 4 b}$ in CDCl_{3}

Fig. 8: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 25 in CDCl_{3}

Fig. 9: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{I V}$ in CDCl_{3}

