SUPPORTING INFORMATION :

Reverse Iodine Transfer Polymerization (RITP) of Methyl Methacrylate

Cyrille Boyer, Patrick Lacroix-Desmazes*, Jean-Jacques Robin, Bernard Boutevin

UMR 5076 CNRS-ENSCM, Laboratoire de Chimie Macromoléculaire, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale. 34296 Montpellier Cedex 5,

France.

cyrille.boyer@enscm.fr, patrick.lacroix-desmazes@enscm.fr, jrobin@univ-montp2.fr, bernard.boutevin@enscm.fr

Corresponding Author Footnote: UMR 5076 CNRS-ENSCM, Laboratoire de Chimie Macromoléculaire, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale. 34296 Montpellier Cedex 5, France. Tel. 33-4-67-14-72-05, fax : 33-4-67-14-72-20. patrick.lacroix-desmazes@enscm.fr

I. Evolution of [A-I] and [A-M_n-I] versus time, evolution of the iodine functionality of the polymer chains determined by ¹H-NMR spectroscopy during reverse iodine transfer polymerization of methyl methacrylate at 80°C in d⁸-toluene.

To have a more precise knowledge of what happens during the inhibition period between the different species, the reaction was directly performed in a spectrometer and followed on line by ¹H NMR. It allowed us to determine the evolution of the monomer conversion (α) (Equation 1) and the concentration of the A-I adduct (Equation 2) versus time. According to Scheme 2 of the manuscript, A[•] can react with iodine to give A-I, or initiate the polymerization of the monomer to form A-M_n[•] oligoradicals which can also react with iodine to form A-M_n-I oligomers. It is possible to follow the appearance of these species by ¹H NMR. The various chemical shifts for the AIBN initiator, the recombination product A-A, and the adduct A-I were determined by ¹H NMR (Table 1) and a follow-up of the formation of A-I during RITP was carried out.

The monomer conversion (α) *versus* time was calculated by using the values of integration of the vinylic protons (CH₂=C(CH₃)CO₂CH₃) of methyl methacrylate at 5.30 ppm and at 5.95 ppm (Equation 1). The integral of the methoxy protons -OCH₃ (of monomer and polymer) is used as internal reference because its intensity does not vary versus time.

$$\alpha = 1 - ([MMA]_t/[MMA]_0) = 1 - ((\int^{5.30\&5.95ppm} CH_2 = C/2)/(\int^{3.5ppm} -OCH_3/3))$$
(Equation 1)

in which $[MMA]_t$ and $[MMA]_0$ are the monomer concentrations at a given time *t* and at *t*=0, respectively.

As previously, an inhibition period is observed in agreement with the mechanism proposed in Scheme 2 of the manuscript. Moreover, it appears two stages: a first stage where the monomer conversion is null and a second stage where there are a low monomer conversion and polymer formation (Figure 2 of the manuscript). The polymer formation is indicated by the change of aspect of the -OCH₃ signals at 3.50 ppm (one signal for the monomer and one signal for the polymer) and the appearance of a new signal towards 1 ppm assigned to the – $C(CH_3)$ of the PMMA chains (shift from 1.80 ppm to 1.00 ppm). In parallel, we tried to follow the formation of the A-I adduct by ¹H NMR. The signal of the IC(CN)(CH₃)₂ (Table 1) appears towards 1.97 ppm near the signal of the -C(CH₃)- of MMA (1.80 ppm). In spite of their proximity, it is possible to follow the evolution of this signal versus time. As previously, the integral of the methoxy protons (-OCH₃) (at 3.50 ppm) was taken as internal reference (constant intensity versus time). Thus, it is possible to calculate the concentration of A-I, [A-I]_t, by using Equation 2.

$$[A-I]_{t} = [MMA]_{0} \times (\int^{1.97ppm} IC(CN)(CH_{3})_{2}/6)/(\int^{3.5ppm} -OCH_{3}/3)$$
(Equation 2)

As in the case of RITP of methyl acrylate¹, two stages can be distinguished during the inhibition period (Figure 2 of the manuscript): appearance and disappearance of the A-I adduct.

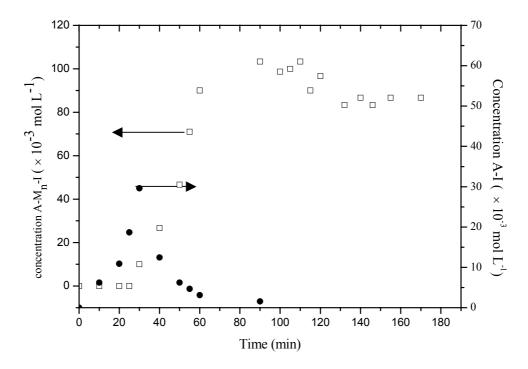

Structures	Abbreviations	Chemical shifts in ppm (given in d ⁸ toluene) at 80 °C
$CH_3 \xrightarrow{CH_3} N = N \xrightarrow{CH_3} CH_3$ $CH_3 \xrightarrow{CN} CH_3$	AIBN	1.46
$CH_3 \xrightarrow{CH_3} I$ CN	A-I	1.97
$CH_3 \xrightarrow{CH_3} CH_3$ $CH_3 \xrightarrow{CH_3} CH_3$ $CN \xrightarrow{CN} CN$	A-A	1.13

Table 1. Assignment of ¹H NMR peaks for 2,2'-azobisisobutyronitrile (AIBN), iodo-adduct (A-I), and coupling product (A-A) in d⁸ deuterated toluene at 80°C.

Figure 1 & Figure 2 below describe the evolution of $[A-I]_t$ (Equation 2) and $[A-M_n-I]_t$ (Equation 3) as well as the iodine functionality F^{iodine} of the polymer chains (Equation 4) for a RITP experiment.

$$[A-M_n-I]_t = [MMA]_0 \times (\int^{2.80ppm} -CH_2CI(CH_3)(CO_2CH_3)/2)/(\int^{3.5ppm} -OCH_3/3)$$
(Equation 3)

$$F^{\text{iodine}} = (\int^{2.80\text{ppm}} -CH_2 CI(CH_3)(CO_2 CH_3)/2) / (\int^{1.2\text{ppm}} -C(CN)(CH_3)_2/6)$$
(Equation 4)

Figure 1. Evolution of $[A-I]_t$ (•) and $[A-M_n-I]_t$ (\Box) concentrations determined by ¹H NMR *vs* time.

Experimental conditions [MMA]/[AIBN]/[I₂] = 100/2.6/1: 5.000 g (5.00 × 10^{-2} mol) of methyl methacrylate (MMA), 0.213 g (1.30×10^{-3} mol) of 2,2'-azobisisobutyronitrile (AIBN), 0.128 g (5.04×10^{-4} mol) of iodine (I₂). 0.300 g of this solution was added with 0.20 g of deuterated toluene in the NMR tube.

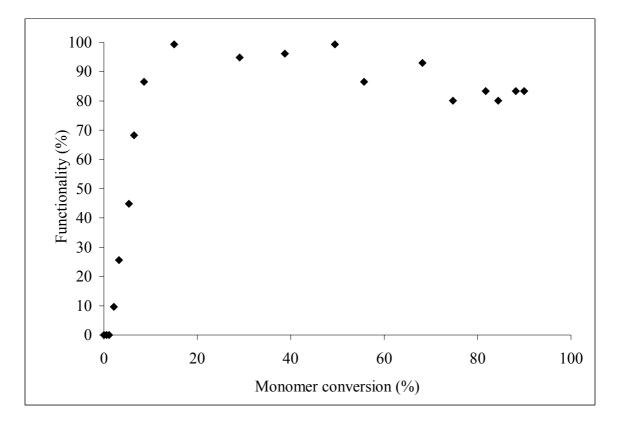
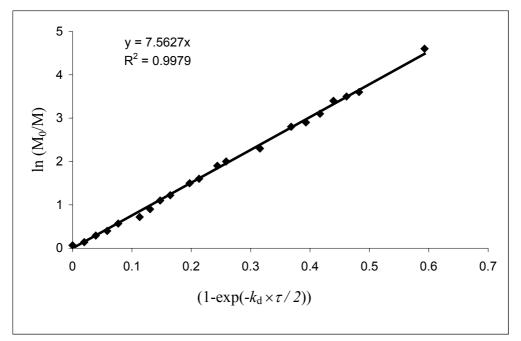
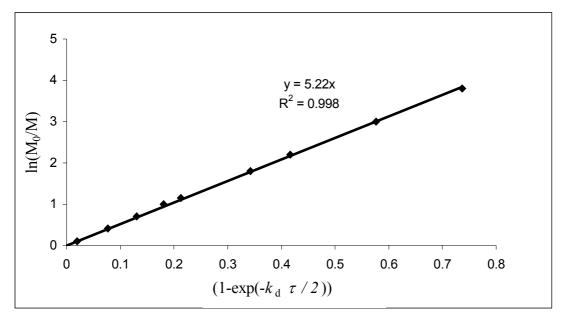



Figure 2: Evolution of the iodine functionality F^{iodine} of the polymer chains vs conversion.

Experimental conditions [MMA]/[AIBN]/[I₂] = 100/2.6/1: 5.000 g (5.00 × 10^{-2} mol) of MMA, 0.213 g (1.30×10^{-3} mol) of AIBN, 0.128 g (5.04×10^{-4} mol) of iodine (I₂). 0.300 g of this solution was added with 0.20 g of deuterated toluene in the NMR tube.

II. Evolution of Ln([M]₀/[M]) versus (1-exp($-k_d \times \tau / 2$)) for reverse iodine transfer polymerizations of methyl methacrylate performed with [AIBN]=0.25M (Figure 3), 0.20M (Figure 4) and 0.17M (Figure 5) at 80°C, and summary of $k_p/k_{te}^{1/2}$ values (Table 2).

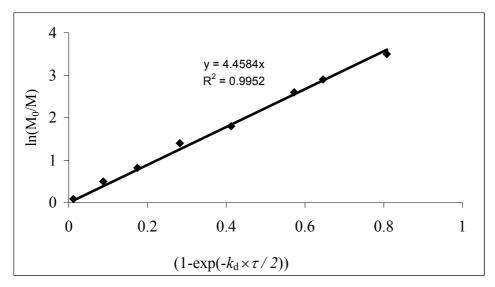

Figure 3. Evolution of ln (M₀/M) vs (1-exp($-k_d \times \tau/2$)) for RITP of MMA performed with [AIBN] = 0.25 M at 80°C.

Experimental conditions [MMA]/[AIBN]/[I₂] = 50/2.6/1: 25.00 g (2.5 × 10⁻¹ mol) of MMA, 2.12 g (1.29 × 10⁻² mol) of AIBN, 1.27 g (5.0 × 10⁻³ mol) of iodine (I₂) and 25 mL of toluene.

Determination of $k_p/k_{te}^{1/2}$:

Time inhibition = 75 min. [AIBN]₀ = 0.25 M [AIBN]_{t, inh.} = 0.137 M ln([M]₀/[M]_t)=2 $k_p \times (f \times [AIBN]_{t,inh})^{1/2}/(k_d \times k_t)^{1/2} \times (1-\exp(-k_d \times \tau/2)),$ with $k_d = 1.331 \times 10^{-4} s^{-1}, f = 0.7, \tau = (t-t^{inh})$

Value of $k_p/k_{te}^{1/2} = 0.141 \text{ L}^{1/2} \text{ mol}^{-1/2} \text{ s}^{-1/2}$


Figure 4. Evolution of ln (M₀/M) vs (1-exp($-k_d \times \tau/2$)) for RITP of MMA performed with [AIBN] = 0.20 M at 80°C.

Experimental conditions [MMA]/[AIBN]/[I₂] = 50/2.0/1: 25.00 g (2.5 × 10⁻¹ mol) of MMA, 1.64 g (1.00 × 10⁻² mol) of AIBN, 1.27 g (5.0 × 10⁻³ mol) of iodine (I₂) and 25 mL of toluene.

Determination of $k_p/k_{te}^{1/2}$:

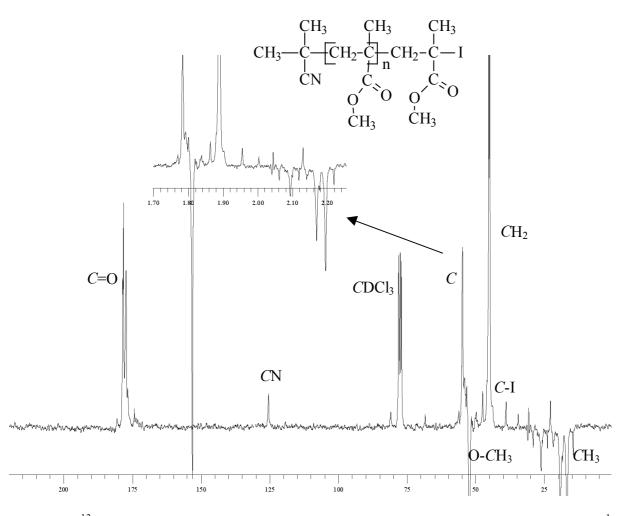
Time inhibition = 166 min. [AIBN]₀ = 0.20 M [AIBN]_{t, inh.} = 0.05 M ln([M]₀/[M]_t)=2 $k_p \times (f \times [AIBN]_{t,inh})^{1/2}/(k_d \times k_t)^{1/2} \times (1-\exp(-k_d \times \tau/2)),$ with $k_d = 1.331 \times 10^{-4} \text{s}^{-1}, f = 0.7, \tau = (t-t^{inh})$

Value of $k_p/k_{te}^{1/2} = 0.161 \text{ L}^{1/2} \text{ mol}^{-1/2} \text{ s}^{-1/2}$

Figure 5. Evolution of ln (M₀/M) *vs* (1-exp($-k_d \times \tau/2$)) for RITP of MMA performed with [AIBN] = 0.17 M at 80°C.

Experimental conditions [MMA]/[AIBN]/[I₂] = 50/1.7/1: 25.00 g (2.5 × 10⁻¹ mol) of MMA, 1.39 g (8.50 × 10⁻³ mol) of AIBN, 1.27 g (5.0 × 10⁻³ mol) of iodine (I₂) and 25 mL of toluene.

Determination of $k_p/k_{te}^{1/2}$:


Time inhibition $(t^{inh}) = 240$ min. [AIBN]₀ = 0.170 M [AIBN]_{t, inh.} = 0.025 M ln([M]₀/[M]_t)=2 $k_p \times (f \times [AIBN]_{t,inh})^{1/2}/(k_d \times k_t)^{1/2} \times (1-\exp(-k_d \times \tau/2)),$ with $k_d = 1.331 \times 10^{-4} s^{-1}, f = 0.7, \tau = (t - t^{inh})$

Value of $k_p/k_{te}^{1/2} = 0.194 L^{1/2} mol^{-1/2} s^{-1/2}$

[AIBN] (mol L ⁻¹)	0.25	0.20	0.17
$(L^{1/2} \text{ mol}^{-1/2} \text{ s}^{-1/2})$	0.141	0.161	0.194

Table 2. Summary of values $k_p/k_{te}^{1/2}$ (L^{1/2} mol^{-1/2} s^{-1/2}) for RITP of MMA performed at different concentrations of initiator (AIBN) at 80°C.

III. Characterization of a low molecular weight PMMA-I (M_n = 2 300 g mol⁻¹, M_w/M_n =1.4) by ¹³C-NMR (Figure 6), elemental analysis (Equation 5), and assessment of the theoretical iodine functionality F^{iodine} (Equation 6).

Figure 6. ¹³C NMR spectrum of a low molecular weight PMMA-I ($M_n = 2~300~{\rm g}~{\rm mol}^{-1}$, $M_w/M_n = 1.4$) in CDCl₃ (400 MHz).

This polymer ($M_n = 2\ 300\ \text{g mol}^{-1}$, $DP_{n,SEC} = 21$) was also analyzed by elemental analysis and the experimental values of 56.50% carbon, 27.80% oxygen, 7.60% hydrogen, 5.42% iodine, and 0.90% nitrogen, are close to the theoretical values of 57.00% carbon, 29.20% oxygen, 7.60% hydrogen, 5.50% iodine, and 0.60% nitrogen. Iodine can be in three different forms in the sample: molecular iodine (I₂), hydriodic acid (HI), or at the polymer chain-end (C-I).

The proportion of free iodine atom (i.e. iodine atom which is not linked to the polymer chains) was determined by two methods:

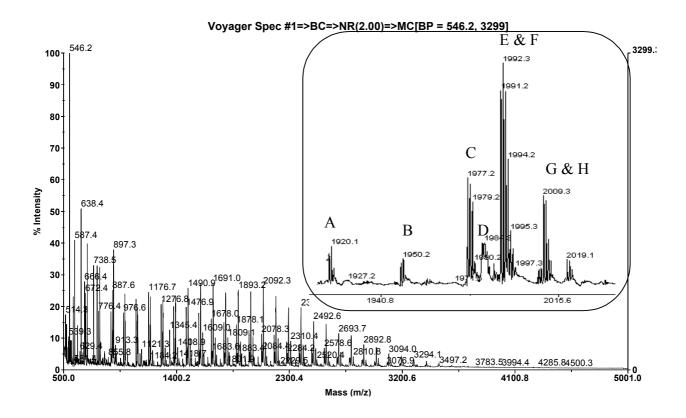
(i) volumetric analysis with thiols (titration of iodine I₂);

(ii) ionic chromatography in liquid phase (titration of iodine I₂ and hydriodic acid HI).

In the first case, the percentage of free iodine is less than 0.1 wt%, and in the second case, it is around 996 ppm. The negligible quantity of HI in the polymer sample is consistent with the ¹H and ¹³C NMR analyses which show the absence of double bond (no elimination of HI). From these results, it is possible to evaluate the iodine functionality F^{iodine} (Equation 5).

$$F^{\text{iodine}} = (wt\%_{\text{iodine,total}} - wt\%_{\text{iodine,free}})/(wt\%_{\text{iodine,theoretical}})$$
(Equation 5)

in which wt%_{iodine,total} is the total percentage of iodine in the sample, wt%_{iodine,free} is the percentage of free iodine in the sample (traces of HI and I₂), and wt%_{iodine,theoretical} is the theoretical percentage of iodine in the sample, calculated by wt%_{iodine,theoretical} = $M^{\text{iodine atom}} \times 100/M_n$, in which $M^{\text{iodine atom}} = 127$ g mol⁻¹ and M_n is the mean number average molecular weight of the sample.


The experimental values of F^{iodine} should be compared to the theoretical iodine functionality, F^{iodine} (theoretical), given by equation 6.

$$F^{\text{iodine}}(\text{theoretical}) = 2 \times [I_2]_0 / (2 \times [I_2]_0 + 2f \times \Delta \text{AIBN})$$
(Equation 6)

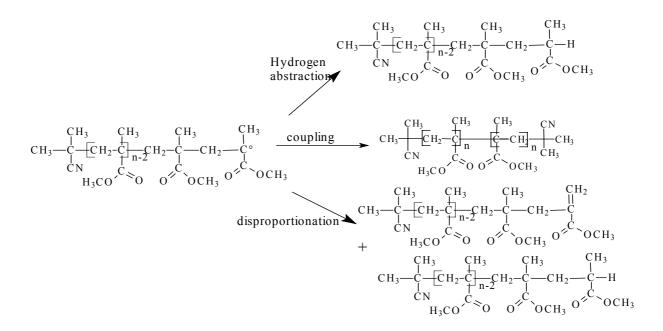
in which $\Delta AIBN$ is the excess amount of AIBN used to initiate and propagate the polymerization during the polymerization period ($\tau_{polym.}$) (after the inhibition period).

The value of Δ AIBN is evaluated by Δ AIBN = [AIBN]_{t, inh} × (1- exp (- $k_d \times \tau_{polym.}$)), with τ = (t- t^{inh}). As an example, for the sample of $M_n = 2$ 300 g mol⁻¹ (monomer conversion \approx 70%) synthesized with [AIBN]₀/[I₂]₀ = 1.7 and [I₂]₀ = 0.074 mol L⁻¹, the inhibition time is t^{inh} =240 min ([AIBN]_{t,inh} = 0.018 mol L⁻¹, with k_d = 1.331 × 10⁻⁴ s⁻¹ at 80 °C for AIBN²), and the polymerization time is τ_{polym} = 60 min (Δ AIBN = 0.007 mol L⁻¹) leading to the theoretical iodine functionality F^{iodine} = 94%. The experimental values of F^{iodine} (about 95%) determined by the different methods (¹H NMR, ¹³C NMR, and elemental analysis) are in good agreement with the calculated theoretical value (94%) (Table 3 of the manuscript).

IV. Characterization of a low molecular weight PMMA-I (M_n = 2 300 g mol⁻¹, M_w/M_n =1.4) by MALDI-TOF (Figure 7) (Table 3).

Figure 7. Mass-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of a low molecular weight poly(methyl methacrylate) prepared by Reverse Iodine Transfer Polymerization of methyl methacrylate (MMA) at 80°C in toluene initiated by 2,2'azobisbutyronitrile (AIBN) in the presence of iodine (I₂) with [MMA]/[AIBN]/[I₂]=60/1.7/1 (monomer conversion= 70%, $M_n = 2$ 300g mol⁻¹, $M_w/M_n = 1.4$) (Inset is an expanded spectrum showing several polymer series).

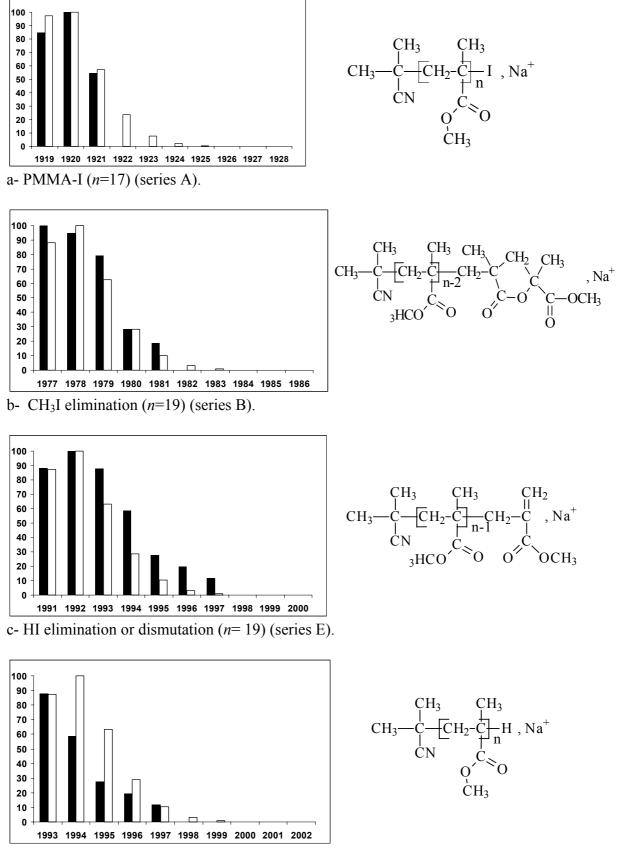
The chromatogram (Figure 7) shows a series of peaks separated by m/z=100 (corresponding to the molecular weight of the MMA monomer unit). By focusing on the zone from m/z = 1915 to 2030, eight different series (A, B, C, D, E, F, G, H) are distinguished and the possible corresponding structures are given in Table 3.


The expected A-M_n-I structure appears at m/z = 1919.01 with a weak intensity (Table 3, series A).

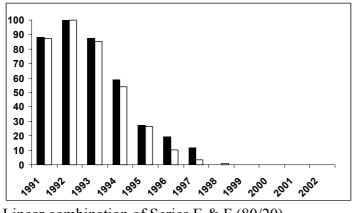
The distribution at m/z = 1977.23 can be ascribed to the elimination of CH₃I from the A-M_n-I polymer chains (lactone formation, Scheme 3 of the manuscript) (Table 3, series C). This loss of CH₃I can be achieved at high temperature (150 °C) or during MALDI-TOF analysis. This is consistent with various studies reported in the literature (polymers of PMMA terminated by a bromine atom³ or by a chlorine atom⁴⁻⁶).

The distribution at m/z = 1991.24 can be attributed to the vinyl terminated PMMA chains (Table 3, series E) (note: the distribution at m/z = 2008.23 corresponds to the same structure cationized with K⁺, Table 3, series G). These unsaturated chains might arise from termination by disproportionation (Scheme 1). The corresponding saturated polymer chains (A-M_n-H structure, cationized with Na⁺) would correspond to the signal at m/z=1993.25 (Table 5, series F) (the distribution at m/z=2009.25 corresponds to the same structure cationized with K⁺, Table 3, series H). However, since no double bond is detected by ¹H and ¹³C NMR, it is thought that the distribution at m/z = 1991.24 mainly comes from the elimination of HI from A-M_n-I polymer chains during the MALDI-TOF analysis (Scheme 3 of the manuscript). In the literature, this case was already observed for methacrylate or acrylate oligomers terminated by chlorine or bromine atoms^{5,7}. Nonaka et al.⁷ showed that this reaction of elimination of HCl for the PMMA-Cl is carried out during the laser irradiation. According to the power of the laser, the deshydrohalogenation is more or less significant.

The distributions with a weak intensity at m/z = 1983.47 (Table 3, series D) and at m/z = 1949.23 (Table 3, series B) could not be attributed.


In conclusion, the MALDI-TOF analysis is not sufficient to characterize the structure of the polymer chains because they undergo significant modifications during the analysis (elimination of CH₃I, elimination of HI).

Scheme 1. Formation of dead chains in radical polymerization of methyl methacrylate.


Table 3. Tentative assignment of peaks in the MALDI-TOF spectrum of a poly(methyl methacrylate sample ($M_n = 2~300~g~mol^{-1}$, $M_w/M_n = 1.4$) synthesized by Reverse Iodine Transfer Polymerization.

		m/z		
Series	<i>m/z</i> experimental	theoretical monoisotopic mass	п	Structures
A	1 919.01	1 918.83	17	$CH_{3} \xrightarrow{CH_{3}} CH_{3}$ $CH_{3} \xrightarrow{C} CH_{2} \xrightarrow{C} n I, Na^{+}$ $CN \xrightarrow{C} C \xrightarrow{O} O$ CH_{3}
В	1949.23	-	-	Not attributed
С	1 977.23	1 977.01	19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
D	1 983.47	-	-	Not attributed
E	1 991.24	1 991.02	19	$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} H_{3} \xrightarrow{C} H_{2} \xrightarrow{H_{2}} CH_{2} \xrightarrow{C} H_{2} \xrightarrow{H_{2}} CH_{2} \xrightarrow{H_{2}}$
F	1 993.25	1 993.04	19	$CH_{3} \xrightarrow{CH_{3}}_{I} \xrightarrow{CH_{3}}_{I} H_{2} \cdot \xrightarrow{CH_{3}}_{I} H_{2} \cdot \xrightarrow{CH_{3}}_{I} H_{2} \cdot \xrightarrow{CH_{3}}_{I} H_{3} \cdot \operatorname{Na}^{+}$
G	2008.23	2007.00	19	Idem series E, cationized K^+
Н	2 009.25	2 009.01	19	Idem series F, cationized K ⁺

d- Transfer reaction to solvent or dismutation (PMMA-H) (n=19) (series F).

Figure 8. Simulated (white) and experimental (black) MALDI-TOF distributions for various possible structures.

Linear combination of Series E & F (80/20)

Figure 9. Simulated (white) and experimental (black) MALDI-TOF distributions for a linear combination of Series E & F (80/20).

REFERENCES:

- Lacroix-Desmazes, P.; Severac, R.; Boutevin, B. *Macromolecules* 2005, *38*, 6299-6309.
- (2) Van Hook, J. P.; Tobolsky, A. V. J. Am. Chem. Soc. 1958, 80, 779-782.
- (3) McEwen, C. N.; Peacock, P. M.; Guan, Z. In *Proceeding of the 45th ASMS conference* on Mass Spectrometry and Allied Topics, 1997, June 1-5; p 409.
- Jackson, A. T.; Yates, H. T.; Scrivens, J. H.; R., G. M.; H., B. R. J. Am. Soc. Mass Spectrom 1997, 8, 1206-1213.
- (5) Coca, S.; Jasieczek, C. B.; Beers, K. L.; Matyjaszewski, K. J. Polym. Sci. Part A;
 Polym. Chem. 1998, 36, 1417-1424.
- (6) Borman, C. D.; Jackson, A. T.; Bunn, A.; Cutter, A. L.; Irvine, D. J. *Polymer* 2000, *41*, 6015-6020.
- (7) Nonaka, H.; Ouchi, M.; Kamingaito, M.; Sawamoto, M. *Macromolecules* 2001, *34*, 2083-2088.