Supporting Information

Design of Potent, Orally Available Antagonists of the Transient Receptor Potential Vanilloid 1 (TRPV1). Structure-Activity Relationships of 2-(Piperazin-1-yl)-1H-benzimidazoles

Vassil I. Ognyanov, Chenera Balan, Anthony W. Bannon, Yunxin Bo, Celia Dominguez, Christopher Fotsch, Vijay K. Gore, Lana Klionsky, Vu V. Ma, Yi-Xin Qian, Rami Tamir, Xianghong Wang, Ning Xi, Shimin Xu, Dawn Zhu, Narender R. Gavva, James J. S. Treanor, and Mark H. Norman

Contents

Combustion Analyses Results S2 - S8

Synthetic procedures for the intermediates, which were not included in the Experimental Section

S9 - S31

Combustion Analysis Data

6-(Trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazol-4-amine (32a). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}_{6}$: $\mathrm{C}, 50.24 ; \mathrm{H}, 3.75$; N , 19.53. Found: C, 50.06; H, 3.57; N, 19.44 .
N-(3,4,5-Trifluorobenzyl)-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-3H-benzo[d]imidazol-4-amine (32c). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~F}_{9} \mathrm{~N}_{6}$: C , 52.27; H, 3.33; N, 14.63. Found: C, 52.20; H, 3.41; N, 14.80.

1-(5-Chloro-6-(4-(5-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)piperazin-1-yl)pyridin-3-yl)ethanone (37b). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.65$; H, 4.33; N, 15.85; Found: C, 51.92; H, 4.01; N, 15.78.

6-(Trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1Hbenzo[d]imidazole (39). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{5}$: C, 52.05; H, 3.64; N, 16.86.

Found: C, 51.77; H, 3.59; N, 16.64.
1-Benzyl-5-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole (41). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{5} \cdot 0.2$ EtOAc: C, 59.24; H, 4.35;

N, 13.35. Found: C, 58.98; H, 4.24; N, 13.52.
6-Bromo-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-
benzo[d]imidazole (42). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrF}_{3} \mathrm{~N}_{5}$: $\mathrm{C}, 47.90 ; \mathrm{H}, 3.55 ; \mathrm{N}, 16.43$.
Found: C, 47.94; H, 3.55; N, 16.33.

4-Bromo-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole (44a). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrF}_{6} \mathrm{~N}_{5}$: $\mathrm{C}, 43.74 ; \mathrm{H}, 2.86$; N , 14.17. Found: C, $43.78 ; \mathrm{H}, 2.93 ; \mathrm{N}, 14.11$.

6-(Trifluoromethyl)-5-(4-(trifluoromethyl)phenyl)-2-(4-(3-
(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole, trifluoroacetic acid salt (46b). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{9} \mathrm{~N}_{5} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}: \mathrm{C}, 48.15 ; \mathrm{H}, 2.84 ; \mathrm{N}, 10.40$.

Found: C, 48.16; H, 2.61; N, 10.29.
(R)-5-Chloro-6-(4-(4-(4-fluorophenyl)-6-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)-3-methylpiperazin-1-yl)pyridin-3-amine (46e). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClF}_{4} \mathrm{~N}_{6} \cdot 0.5$ EtOAc $\cdot 0.05 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.79 ; \mathrm{H}, 4.60$; N, 15.28; Found: C, 56.45 ; H, 4.37; N, 15.65.

6-(Trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-4-(3,4,5-trifluorophenyl)-1H-benzo[d]imidazole (46m). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{9} \mathrm{~N}_{5}$: $\mathrm{C}, 52.85$; H, 2.94; N, 12.84. Found: C, 53.12; H, 3.04; N, 12.65.

4-(Thiazol-2-yl)-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole, trifluoroacetic acid salt (46n). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{~S} \cdot 0.11 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot 0.22 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.49 ; \mathrm{H}, 3.24 ; \mathrm{N}, 16.32$. Found: C, 49.85; H, 3.45; N, 16.01.

6-(Trifluoromethyl)-4-(4-(trifluoromethyl)phenyl)-2-(4-(3-
(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole (46q). Anal.
Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{9} \mathrm{~N}_{5}$: C, 53.67; H, 3.24; N, 12.52. Found: C, 53.63; H, 3.23; N, 12.27.
4-Phenyl-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-
1H-benzo[d]imidazole (46r). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{~N}_{5}$: C, 58.66; H, 3.90; F, 23.20;
N, 14.25. Found: C, 58.82; H, 3.86; N, 14.18.

4-(3-(Trifluoromethoxy)phenyl)-6-(trifluoromethyl)-2-(4-(3-
(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole, trifluoroacetic acid salt (46s). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{9} \mathrm{~N}_{5} \mathrm{O} \cdot 0.15 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}: \mathrm{C}, 51.28 ; \mathrm{H}, 3.09$; N , 11.82. Found: C, 51.62; H, 3.06; N, 11.48.

4-(4-tert-Butylphenyl)-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole (46t). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{~N}_{5}$: $\mathrm{C}, 61.42$;

H, 4.97; N, 12.79. Found: C, 61.68; H, 4.94; N, 12.81.
4-(Thiophen-2-yl)-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-
yl)piperazin-1-yl)-1H-benzo[d]imidazole, trifluoroacetic acid salt (46u). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{~S} \cdot 1.5 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}: \mathrm{C}, 44.92 ; \mathrm{H}, 2.79 ; \mathrm{N}, 10.48$. Found: C, 44.63; H, 2.78; N, 10.52.

4-(Pyridin-4-yl)-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole (46v). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{5} \mathrm{~N}_{6}$: C , 56.10; H, 3.68; N, 17.07. Found: C, 56.11; H, 3.65; N, 16.96.

4-(Pyrazin-2-yl)-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-
yl)piperazin-1-yl)-1H-benzo[d]imidazole (46w). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{~N}_{7}$: C, 53.55;
H, 3.47; N, 19.87. Found: C, 53.47; H, 3.51; N, 19.75.
4-(6-Methoxypyridin-3-yl)-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole, trifluoroacetic acid salt (46x). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{O} \cdot 0.95 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.04 ; \mathrm{H}, 3.39 ; \mathrm{N}, 13.25$. Found: C , 48.69; H, 3.30; N, 13.40.

4-(Benzo[b]thiophen-2-yl)-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-benzo[d]imidazole (46y). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{~S}$: C, 57.04; H, 3.50; N, 12.79. Found: C, 56.74; H, 3.38; N, 12.62.

4-(6-(Trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-3H-benzo[d]imidazol-4-yl)benzenamine (46z). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{6} \cdot 0.12$
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}: \mathrm{C}, 55.98 ; \mathrm{H}, 3.90 ; \mathrm{N}, 16.16$. Found: C, $56.24 ; \mathrm{H}, 3.73 ; \mathrm{N}, 16.02$.
(E)-4-Styryl-6-(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1$\mathbf{y l}$)-1H-benzo[d]imidazole (46ab). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{~N}_{5} \cdot 0.1 \mathrm{H}_{2} \mathrm{O} \cdot 0.3$ EtOAc: C , 60.40; H, 4.40; N, 12.95. Found: C, 60.79; H, 4.20; N, 13.27.
(R)-1-(5-Chloro-6-((R)-3-methyl-4-(6-(trifluoromethyl)-4-(3,4,5-trifluorophenyl)-1H-benzo[d]imidazol-2-yl)piperazin-1-yl)pyridin-3-yl)ethane-1,2-diol and (S)-1-(5-chloro-6-((R)-3-methyl-4-(6-(trifluoromethyl)-4-(3,4,5-trifluorophenyl)-1H-benzo[d]imidazol-2-yl)piperazin-1-yl)pyridin-3-yl)ethane-1,2-diol (46ad). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{ClN}_{5} \mathrm{~F}_{6} \mathrm{O}_{2} \cdot 0.8 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.02 ; \mathrm{H}, 3.96$; N, 11.67; Found: C, 51.89 ; H, 3.79; N, 11.48.

6-Methyl-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-
benzo[d]imidazole hydrochloride (47b). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{5} \cdot \mathrm{HCl}$: C, 54.34;
H, 4.81; N, 17.60; Found: C, 54.24; H, 4.49; N, 17.44.
6-Fluoro-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1Hbenzo[d]imidazole, trifluoroacetic acid salt (47c). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{~N}_{5} \cdot 1.3$
$\mathrm{CF}_{3} \mathrm{COOH}: \mathrm{C}, 45.84 ; \mathrm{H}, 3.20 ; \mathrm{N}, 13.64$. Found: C, $45.57 ; \mathrm{H}, 3.54 ; \mathrm{N}, 13.74$.

6-Chloro-2-[4-(3-trifluoromethylpyridin-2-yl)piperazin-1-yl]-1H-
benzo[d]imidazole (47d). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{5}$: $\mathrm{C}, 53.48$; $\mathrm{H}, 3.96$; $\mathrm{N}, 18.34$.
Found: C, 53.53; H, 3.94; N, 18.30.
2-(4-(3-(Trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-3H-benzo[d]imidazole-5carbonitrile, trifluoroacetic acid salt (47e). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{6} \cdot 1.4$
$\mathrm{CF}_{3} \mathrm{COOH}: ~ \mathrm{C}, 46.96$; H, 3.11; N, 15.80. Found: C, 46.71; H, 3.43; N, 16.15.
4,6-Bis(trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1H-
benzo[d]imidazole (48). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{5}$: C, 47.21; H, 2.92; $\mathrm{N}, 14.49$.
Found: C, 47.21; H, 2.86; N, 14.45.
(R)-2-(4-(3-Bromopyridin-2-yl)-2-methylpiperazin-1-yl)-6-(trifluoromethyl)-4-(3,4,5-trifluorophenyl)-1H-benzo[d]imidazole (51a). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrF}_{6} \mathrm{~N}_{5}$: C , 50.54; H, 3.18; N, 12.28. Found: C, 50.58; H, 3.17; N, 11.97.
(S)-2-(4-(3-Bromopyridin-2-yl)-2-methylpiperazin-1-yl)-6-(trifluoromethyl)-4-(3,4,5-trifluorophenyl)- $\mathbf{H} \boldsymbol{H}$-benzo[d]imidazole (51b). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{BrF}_{6} \mathrm{~N}_{5}$: C , 50.54; H, 3.18; N, 12.28. Found: C, 50.44; H, 3.23; N, 12.19.

2-(4-(Pyridin-2-yl)piperazin-1-yl)-6-(trifluoromethyl)-1H-benzo[d]imidazole (52a). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{5}$: C, 58.78; H, 4.64; N, 20.16. Found: C, 58.80; H, 4.64; N, 20.26.

6-(Trifluoromethyl)-2-(4-(4-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1Hbenzo[d]imidazole (52b). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{5}$: $\mathrm{C}, 52.05 ; \mathrm{H}, 3.64 ; \mathrm{N}, 16.86$.

Found: C, 51.84; H, 3.46; N, 16.58.

6-(Trifluoromethyl)-2-(4-(5-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1Hbenzo[d]imidazole (52c). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{5}$: C, 52.05; H, 3.64; $\mathrm{N}, 16.86$. Found: C, 52.10; H, 3.60; N, 16.72.

6-(Trifluoromethyl)-2-(4-(6-(trifluoromethyl)pyridin-2-yl)piperazin-1-yl)-1Hbenzo[d]imidazole (52d). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{5}: \mathrm{C}, 52.05 ; \mathrm{H}, 3.64 ; \mathrm{N}, 16.86$.

Found: C, 51.77; H, 3.67; N, 16.65.
2-(4-(3-Chloropyridin-2-yl)piperazin-1-yl)-6-(trifluoromethyl)-1H-
benzo[d]imidazole (52e). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{5} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 52.86 ; \mathrm{H}, 4.04$;
N, 18.13. Found: C, 52.88; H, 3.99; N, 17.99.
2-[4-(3-Iodopyridin-2-yl)piperazin-1-yl]-5-(trifluoromethyl)-1H-benzo[d]imidazole (52f). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{IN}_{5} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 42.82 ; \mathrm{H}, 3.26$; N, 14.69. Found: C, 43.16; H, 3.26; N, 14.39.

2-(4-(3-Methylpyridin-2-yl)piperazin-1-yl)-6-(trifluoromethyl)-1H-
benzo[d]imidazole, trifluoroacetic acid salt (52g). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{5} \cdot 2.3$
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.84 ; \mathrm{H}, 3.59 ; \mathrm{N}, 10.79$. Found: C, $41.81 ; \mathrm{H}, 3.59 ; \mathrm{N}, 10.74$.
Ethyl 2-(4-(6-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)piperazin-1-yl)nicotinate hydrochloride (52i). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 1 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.69 ; \mathrm{H}, 4.89 ; \mathrm{N}, 14.78$.

Found: C, 50.31; H, 4.89; N, 14.58.
(5-Chloro-6-(4-(6-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)piperazin-1-
yl)pyridin-3-yl)methanol (52j). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{5} \mathrm{~F}_{3} \mathrm{O}: \mathrm{C}, 52.50 ; \mathrm{H}, 4.16 ; \mathrm{N}$,
17.01; Found: C, 52.66; H, 4.31; N, 16.79.

5-Chloro-6-(4-(6-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)piperazin-1-
yl)nicotinamide (52k). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{6} \mathrm{~F}_{3} \mathrm{O} \cdot 0.4 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.04 ; \mathrm{H}, 3.92$; N, 19.45; Found: C, 50.36; H, 3.91; N, 19.13.

5-Chloro- N -methyl-6-(4-(6-(trifluoromethyl)-1H-benzo[d]imidazol-2-yl)piperazin-
1-yl)nicotinamide (52I). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClN}_{6} \mathrm{~F}_{3} \mathrm{O} \cdot 0.1 \mathrm{EtOAc}: \mathrm{C}, 52.24 ; \mathrm{H}, 4.25$;
N, 18.84. Found: C, 52.08; H, 4.29; N, 18.50.
6-(Trifluoromethyl)-2-(4-(2-(trifluoromethyl)phenyl)piperazin-1-yl)-1H-
benzo[d]imidazole (53a). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{~F}_{6}: \mathrm{C}, 55.08 ; \mathrm{H}, 3.89 ; \mathrm{N}, 13.52$;
Found: C, 54.90; H, 3.72; N, 13.30.
6-(Trifluoromethyl)-2-(4-(3-(trifluoromethyl)pyridin-4-yl)piperazin-1-yl)-1Hbenzo[d]imidazole (53b). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{~N}_{5}$: C, 52.05 ; H, 3.64; $\mathrm{N}, 16.86$.

Found: C, 52.29; H, 3.73; N, 16.69.
2-(4-(5-Chloropyrimidin-4-yl)piperazin-1-yl)-6-(trifluoromethyl)-1H-
benzo[d]imidazole (53f). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{6} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 48.43 ; \mathrm{H}, 3.97$; N ,
20.84. Found: C, 48.30; H, 3.86; N, 20.76.

Synthetic procedures for the intermediates, which were not included in the Experimental Section

(R)-2-Ethylpiperazine (7e). A mixture of 2-(((9H-fluoren-9-
yl)methoxy)carbonyl)butanoic acid ($4.66 \mathrm{~g}, 15 \mathrm{mmol}$), methyl 2-aminoacetate
hydrochloride ($1.88 \mathrm{~g}, 15 \mathrm{mmol}$), 1-hydroxy-7-azabenzotriazole ($2.04 \mathrm{~g}, 15 \mathrm{mmol}$), N, N diisopropylethylamine ($1.94 \mathrm{~g}, 15 \mathrm{mmol}$) and PS-carbodimide (10 g) in dichloromethane $(50 \mathrm{~mL})$ was stirred at room temperature for 16 h . The resin was filtered, washed with dichloromethane, and the filtrate was evaporated in vacuo. The residue was purified by silica gel column chromatography (gradient: $25-50 \% \mathrm{EtOAc} / \mathrm{hexane}$) to give 3.8 g (62%) of the amide 16a as a white solid. MS (ESI, pos. ion) m/e: $397(\mathrm{M}+1)$.

A mixture of the amide $\mathbf{1 6 a}$ from the previous step ($3.6 \mathrm{~g}, 9.1 \mathrm{mmol}$) and piperidine ($1.8 \mathrm{~mL}, 18 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was stirred at room temperature for 6 h . The reaction mixture was evaporated under reduced pressure and the solid residue was suspended in EtOAc. The suspension was filtered and the filter cake was washed with EtOAc, and dried in vacuo to give $1.15 \mathrm{~g}(89 \%)$ of the piperazine-2,5-dione $\mathbf{1 7 a}$ as a white amorphous solid. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.90(\mathrm{~m}, 2 \mathrm{H})$, 4.00-4.10 (m, 3 H), 6.1 (br s, 1 H$), 6.18$ (br s, 1 H).

To a solution of the piperazine-2,5-dione 17a from the previous step $(0.7 \mathrm{~g}, 5 \mathrm{mmol})$ in tetrahydrofuran (40 mL) was added $\mathrm{LiAlH}_{4}(20 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in tetrahydrofuran, 20
mmol) dropwise over a period of 10 min with stirring at $0^{\circ} \mathrm{C}$. After the addition, the reaction mixture was heated at $65^{\circ} \mathrm{C}$ for 16 h , cooled to room temperature, and carefully quenched by the addition of sodium sulfate decahydrate (3 g). The reaction mixture was filtered through Celite ${ }^{\circledR}$, and the filter cake was washed with ethyl acetate. The combined filtrate was evaporated under reduced pressure and the residue dried in vacuo to give 0.35 $\mathrm{g}(62 \%)$ of the title compound as a colorless oil. MS (ESI, pos. ion) m/e: $115(\mathrm{M}+1)$. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.30(\mathrm{~m}, 2 \mathrm{H}), 2.30-3.30(\mathrm{~m}, 7 \mathrm{H})$. (R)-2-Propylpiperazine (7f). Following the procedure described for compound 16a, (R)-2-(((9H-fluoren-9-yl)methoxy)carbonyl)pentanoic acid and methyl 2-aminoacetate hydrochloride provided the amide $\mathbf{1 6 b}$ (58\%) as a white amorphous solid. MS (ESI, pos. ion) $m / z: 411(\mathrm{M}+1)$.

Following the procedure described for compound 17a, the amide $\mathbf{1 6 b}$ from the previous step and piperidine provided the piperazine-2,5-dione $\mathbf{1 7 b}$ (53\%) as a white amorphous solid. ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}-d_{6}\right): \delta 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-140(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.65(\mathrm{~m}$, $4 \mathrm{H}), 3.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 8.0(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 8.2(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$.

Following the procedure described for compound $\mathbf{7 e}$, the piperazine-2,5-dione 17b from the previous step and LiAlH_{4} provided the title compound (44\%) as a colorless oil. MS (ESI, pos. ion) m/e: $129(\mathrm{M}+1)$.
tert-Butyl 4-(3-chloropyridin-2-yl)piperazine-1-carboxylate (8a). A mixture of 2chloropyridine $\mathbf{6 a}(10 \mathrm{~g}, 67.5 \mathrm{mmol})$, piperazine $7 \mathbf{d}(12.58 \mathrm{~g}, 67.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(9.33 \mathrm{~g}$, $67.5 \mathrm{mmol})$ and copper powder $(0.5 \mathrm{~g})$ in DMF (100 mL) was stirred at $130^{\circ} \mathrm{C}$ until TLC analysis confirmed the absence of starting materials. The mixture was left to reach room temperature, diluted with water (10 mL), and extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The
combined organic extracts were washed with water (5 mL) and brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was evaporated in vacuo and the residue was purified by silica gel chromatography ($15 \% \mathrm{EtOAc} /$ hexane) to provide $18 \mathrm{~g}(90 \%)$ of the title compound as an orange oil. MS (ESI, pos. ion) $m / z: 298(\mathrm{M}+1)$.

1-(3-Chloropyridin-2-yl)piperazine hydrochloride (8b). To a solution of compound
$\mathbf{8 a}(2.98 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added saturated solution of hydrogen chloride in EtOAc (50 mL) and the mixture stirred at room temperature for 4 h . The solvents were removed in vacuo and the residue was washed with EtOAc, and dried in the air to provide $2.02 \mathrm{~g}(66 \%)$ of the title compound as a light-yellow solid. MS (ESI, pos. ion) $m / z: 198(\mathrm{M}+1)$.

1-(3-Iodopyridin-2-yl)piperazine (8c). A mixture of 2-chloropyridine $\mathbf{6 c}(2.0 \mathrm{~g}, 9.0$ mmol), piperazine $7 \mathbf{7 a}(1.29 \mathrm{~g}, 15 \mathrm{mmol})$ and N, N-diisopropylethylamine ($2 \mathrm{~mL}, 11.6$ mmol) in dry N-methylpyrrolidone (2 mL) was heated in a microwave synthesizer at 240 ${ }^{\circ} \mathrm{C}$ for 60 min . The mixture was evaporated in vacuo and the residue was purified by silica gel chromatography $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give $1.0 \mathrm{~g}(38 \%)$ of the title compound as a light-yellow amorphous solid. MS (ESI, pos. ion) $m / z: 290(\mathrm{M}+1)$. tert-Butyl 4-(3-(ethoxycarbonyl)pyridin-2-yl)piperazine-1-carboxylate (8d).

Following the procedure described for compound 8a, ethyl 2-chloronicotinate ($\mathbf{6 f}$) and tert-butyl piperazine-1-carboxylate (7d) provided the title compound (99\%) as yellow oil. MS (ESI, pos. ion) $m / z: 336(\mathrm{M}+1)$.

Ethyl 2-(piperazin-1-yl)nicotinate hydrochloride (8e). Following the procedure described for compound $\mathbf{8 b}$, treatment of tert-butyl 4-(3-(ethoxycarbonyl)pyridin-2-yl)piperazine-1-carboxylate (8d) with saturated solution of hydrogen chloride in EtOAc
provided the title compound (98\%) as light-yellow solid. MS (ESI, neg. ion) m/z: 306 (M-1).

1-(6-(Trifluoromethyl)pyridin-2-yl)piperazine (8f). A mixture of 2-chloro-6-trifluoromethyl-pyridine ($0.84 \mathrm{~g}, 3 \mathrm{mmol}$), piperazine ($0.52 \mathrm{~g}, 6 \mathrm{mmol}$) and $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine (1 mL) was heated in a microwave synthesizer at $200{ }^{\circ} \mathrm{C}$ for 40 \min. The reaction mixture was evaporated under reduced pressure and the residue was purified by silica gel column chromatography ($30 \% \mathrm{MeOH} / \mathrm{DCM}$) to give $0.6 \mathrm{~g}(87 \%)$ of the title compound as a white amorphous solid. MS (ESI, pos. ion) $m / z: 232(\mathrm{M}+1) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.09-3.14(\mathrm{~m}, 4 \mathrm{H}), 3.65-3.78(\mathrm{~m}, 4 \mathrm{H}), 6.79(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$.

6-(4-(tert-Butoxycarbonyl)piperazin-1-yl)-5-chloronicotinic acid (8g). Following the procedure described for compound $\mathbf{8 a}, 5,6$-dichloronicotinic acid ($\mathbf{6 j}$) and tert-butyl piperazine-1-carboxylate (7d) provided the title compound (77\%) as yellow semi-solid. MS (ESI, neg. ion) $m / z: 340$ (M-1).
(5-Chloro-6-(piperazin-1-yl)pyridin-3-yl)methanol (8h). Following the procedure described for compound 8a, (5,6-dichloropyridin-3-yl)methanol ($\mathbf{6 g}$) and piperazine (7a) provided the title compound (46\%) as an amorphous solid. MS (ESI, pos. ion) $\mathrm{m} / \mathrm{z}: 228$ $(\mathrm{M}+1)$.
tert-Butyl 4-(3-chloro-5-(methoxy(methyl)carbamoyl)pyridin-2-yl)piperazine-1carboxylate (8i). A mixture of the acid $\mathbf{6 j}(7.0 \mathrm{~g}, 0.036 \mathrm{~mol}),(\mathrm{COCl})_{2}(50 \mathrm{~mL})$ and DMF (2 drops) was stirred at room temperature for 4 h . The solution was evaporated in vacuo to give $7.66 \mathrm{~g}(100 \%)$ of the chloride as an orange solid.

A solution of the chloride from the previous step $(3.24 \mathrm{~g}, 15.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20$ mL) was added dropwise to a mixture of O, N-dimethyl-hydroxylamine hydrochloride $(1.5 \mathrm{~g}, 15.4 \mathrm{mmol}), 10 \%$ aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and vigorously stirred at room temperature for 3 h . The organic phase was separated, washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography (EtOAc) to give $3.2 \mathrm{~g}(88 \%)$ of the amide 6m as a white solid. MS (ESI, pos. ion) $m / z: 257\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.

Following the procedure described for compound $\mathbf{8 a}$, the amide $\mathbf{6 m}$ from the previous step and tert-butyl piperazine-1-carboxylate (7d) provided the title compound (86\%) as a white solid. MS (ESI, pos. ion) $m / z: 385$ (M+1).

tert-Butyl 4-(3-chloro-5-((perfluorophenoxy)carbonyl)pyridin-2-yl)piperazine-1-

carboxylate ($\mathbf{8 j} \mathbf{)}$. To a solution of compound $\mathbf{8 g}(0.6 \mathrm{~g}, 1.7 \mathrm{mmol})$ and 2,3,4,5,6-
pentafluorophenol ($0.33 \mathrm{~g}, 1.76 \mathrm{mmol}$) in EtOAc (15 mL) was added 1,3-
dicyclohexylcarbodiimide $(0.351 \mathrm{~g} 1.7 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 16 h at room temperature, diluted with EtOAc $(50 \mathrm{~mL})$ and filtered through a Celite ${ }^{\circledR}$ pad. The filtrate was washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and brine (25 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuo to give $0.9 \mathrm{~g}(100 \%)$ of the title compound as a yellow wax. MS (ESI, pos. ion) $m / z: 508(\mathrm{M}+1)$.

tert-Butyl 4-(3-chloro-5-(methylcarbamoyl)pyridin-2-yl)piperazine-1-carboxylate

 ($\mathbf{8 k}$). A mixture of compound $\mathbf{8 j}(0.9 \mathrm{~g}, 1.77 \mathrm{mmol})$ and $2 \mathrm{M} \mathrm{MeNH}_{2}$ in THF $(9 \mathrm{~mL}, 18$ mmol) was stirred at room temperature for 6 h . The solution was concentrated in vacuo and the residue was purified by silica gel column chromatography (gradient: 30-50\%EtOAc in hexane) to give $0.31 \mathrm{~g}(49 \%)$ of the title compound as colorless oil. MS (ESI, pos. ion) $m / z: 355(\mathrm{M}+1)$.

5-Chloro- N-methyl-6-(piperazin-1-yl)nicotinamide hydrochloride (81). Following the procedure described for compound $\mathbf{8 b}$, treatment of compound $\mathbf{8 k}$ with saturated solution of hydrogen chloride in EtOAc provided the title compound (49\%) as colorless oil. MS (ESI, pos. ion) $m / z: 355(\mathrm{M}+1)$.
tert-Butyl 4-(5-acetyl-3-chloropyridin-2-yl)piperazine-1-carboxylate (8m). To a solution of compound $\mathbf{8 i}(1.0 \mathrm{~g}, 2.6 \mathrm{mmol})$ in anhydrous THF (20 mL) was added $\mathrm{MeMgBr}\left(2.6 \mathrm{~mL}, 3 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 7.8 \mathrm{mmol}\right)$ with stirring at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 4 h and poured into saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. After the addition of EtOAc (50 mL), the mixture was washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography ($70 \% \mathrm{EtOAc}$ in hexane) to give $0.86 \mathrm{~g}(97 \%)$ of the title compound as a white solid. MS (ESI, pos. ion) $m / z: 340$ (M+1).

1-(5-Chloro-6-(piperazin-1-yl)pyridin-3-yl)ethanone hydrochloride (8n). Following the procedure described for compound $\mathbf{8 b}$, treatment of compound $\mathbf{8 m}$ with saturated solution of hydrogen chloride in EtOAc provided the title compound (99\%) as a white solid. MS (ESI, pos. ion) $m / z: 240(\mathrm{M}+1)$.
tert-Butyl 4-(5-carbamoyl-3-chloropyridin-2-yl)piperazine-1-carboxylate (80). A mixture of 5,6-dichloro-nicotinic acid (7.0 g, 0.036 mol$),(\mathrm{COCl})_{2}(50 \mathrm{~mL})$ and DMF (2 drops) was stirred at room temperature for 4 h . The solution was evaporated in vacuo to give $7.66 \mathrm{~g}(100 \%)$ of the chloride as an orange solid.

A solution of the chloride from the previous step $(1.73 \mathrm{~g}, 8.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ mL) was added to a mixture of 28% aqueous solution of $\mathrm{NH}_{4} \mathrm{OH}(20 \mathrm{~mL})$, water (20 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the mixture was vigorously stirred at room temperature for 2 h . The organic phase was separated, washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated in vacuo to give $1.3 \mathrm{~g}(83 \%)$ of the amide $\mathbf{6 l}$ as a white solid. MS (ESI, pos. ion) $m / z: 191(\mathrm{M}+1)$.

Following the procedure described for compound 8a, the amide $\mathbf{6 1}$ from the previous step and tert-butyl piperazine-1-carboxylate (7d) provided the title compound (90\%) as a light-yellow solid. MS (ESI, pos. ion) $m / z: 341(\mathrm{M}+1)$.

5-Chloro-6-(piperazin-1-yl)nicotinamide, trifluoroacetic acid salt (8p). A mixture of compound $\mathbf{8 0}(0.8 \mathrm{~g}, 2.35 \mathrm{mmol})$ and $\mathrm{CF}_{3} \mathrm{COOH}(1.0 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was stirred at room temperature for 2 h . The solvent was removed in vacuo to give 1.1 g (99\%) of the title compound as an orange oil. MS (ESI, pos. ion) m/z: $241(\mathrm{M}+1)$.

(R)-1-(3-Bromopyridin-2-yl)-3-methylpiperazine (8q) and (R)-1-(3-Bromopyridin-

 2-yl)-2-methylpiperazine (9). Following the procedure described for compound 8c, pyridine $\mathbf{6 b}$ and $(R)-(-)-2$-methylpiperazine ($\mathbf{7 b}$) provided a mixture of the reaction products. The mixture was evaporated under reduced pressure, and the residue was purified by silica gel chromatography, eluting with $10 \% \mathrm{MeOH}$ in dichloromethane to give the title compound 9 (22\%) [MS (ESI, pos. ion) $m / z: 256(\mathrm{M}+1)$], and the title compound 8q (33\%) [MS (ESI, pos. ion) $m / z: 256(\mathrm{M}+1)]$.(S)-1-(3-Bromopyridin-2-yl)-3-methylpiperazine (8r). Following the procedure described for compound 8a, pyridine $\mathbf{6 b}$ and $(S)-(+)-2$-methylpiperazine (7c) provided the title compound (78\%) as a light-brown solid. MS (ESI, pos. ion) $m / z: 256(\mathrm{M}+1)$.
(R)-Methyl 5-chloro-6-(3-methylpiperazin-1-yl)nicotinate (8s). A solution of the acid $\mathbf{6 j}(1.92 \mathrm{~g}, 10 \mathrm{mmol})$ and p-toluenesulfonic acid monohydrate $(190 \mathrm{mg}, 1.0 \mathrm{mmol})$ in methanol (5 mL) was heated at reflux for 25 h . The reaction mixture was cooled to room temperature, the solvent was removed in vacuo and the residue was dissolved in EtOAc (50 mL). The solution was washed with satd. $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was evaporated in vacuo and the residue was purified by silica gel column chromatography, eluting with $30 \% \mathrm{EtOAc} /$ hexane to give $1.67 \mathrm{~g}(81 \%)$ of the ester $\mathbf{6 k}$ as a white solid. MS ESI, pos. ion) m/e: $205(\mathrm{M}+1)$.

Following the procedure described for compound 8a, the ester $\mathbf{6 k}$ from the previous step and piperazine 7b provided the title compound (57\%) as a white solid. MS (ESI, pos. ion) $m / z: 270(\mathrm{M}+1)$.
(R)-(5-Chloro-6-(3-methylpiperazin-1-yl)pyridin-3-yl)methanol (8t). Following the procedure described for compound $\mathbf{8 a}$, pyridine $\mathbf{6 g}$ and piperazine $\mathbf{7 b}$ provided the title compound (68%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 242(\mathrm{M}+1)$.
(R)-3-Methyl-1-(3-(trifluoromethyl)pyridin-2-yl)piperazine (8u). Following the procedure described for compound 8a, pyridine $\mathbf{6 d}$ and piperazine $\mathbf{7 b}$ provided the title compound (86\%) as an off-white solid. MS (ESI, pos. ion) $m / z: 246(\mathrm{M}+1)$.

(R)-tert-Butyl 2-methyl-4-(3-(trifluoromethyl)pyridin-2-yl)piperazine-1-

carboxylate ($\mathbf{8 v}$). To a mixture of compound $\mathbf{8 u}(7.38 \mathrm{~g}, 30 \mathrm{mmol})$ and $1 \mathrm{~N} \mathrm{NaOH}(60$ $\mathrm{mL})$ in THF (100 mL) was added di-tert-butyl dicarbonate ($7.86 \mathrm{~g}, 36 \mathrm{mmol}$) portionwise with stirring at room temperature. The mixture was stirred at room temperature for 30 min , diluted with water $(50 \mathrm{~mL})$ and extracted with $\operatorname{EtOAc}(2 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The
filtrate was evaporated in vacuo and the residue was purified by silica gel column chromatography, eluting with $20 \% \mathrm{EtOAc} /$ hexane to give $9.45 \mathrm{~g}(91 \%)$ of the title compound as a gum. MS (ESI, pos. ion) $m / z: 346(\mathrm{M}+1) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.28(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.89-3.01(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-$ $3.38(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 7.05$ (dd, $J=7.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$.

(R)-tert-Butyl 4-(5-bromo-3-(trifluoromethyl)pyridin-2-yl)-2-methylpiperazine-1-

 carboxylate (8w). Bromine ($1.52 \mathrm{~mL}, 29.7 \mathrm{mmol}$) was added dropwise over a period of 5 min to a solution of compound $\mathbf{8 v}(9.34 \mathrm{~g}, 27 \mathrm{mmol})$ in dichloromethane $(100 \mathrm{~mL})$ with stirring at room temperature. The mixture was stirred at room temperature for 30 min , the solvent was removed in vacuo and the residue was dissolved in EtOAc (200 mL). The solution was washed with saturated aqueous solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was evaporated in vacuo and the residue was purified by silica gel column chromatography, eluting with $10 \% \mathrm{EtOAc} / \mathrm{hexane}$ to give $8.72 \mathrm{~g}(76 \%)$ of the title compound as a gum. MS (ESI, pos. ion) m/e: $426(\mathrm{M}+1)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.88-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}$, $J=12.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.52(\mathrm{~m}, 1 \mathrm{H})$, $3.90(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1$ H).(R, E)-tert-Butyl 4-(5-(3-methoxy-3-oxoprop-1-enyl)-3-(trifluoromethyl)pyridin-2-yl)-2-methylpiperazine-1-carboxylate (8x). A mixture of compound $\mathbf{8 w}$ ($8.48 \mathrm{~g}, 20$ mmol), methyl acrylate ($1.9 \mathrm{~g}, 22 \mathrm{mmol}$), palladium acetate ($49 \mathrm{mg}, 2.0 \mathrm{mmol}$) and benzyltriethyl ammonium chloride ($456 \mathrm{mg}, 2.0 \mathrm{mmol}$) in DMF (20 mL) was stirred at 40
${ }^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was cooled to room temperature, diluted with water (50 mL) and extracted with EtOAc ($2 \times 80 \mathrm{~mL}$). The combined organic extracts were washed with brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was evaporated in vacuo and the residue was purified by silica gel column chromatography, eluting with 20% EtOAc/hexane to give $6.36 \mathrm{~g}(74 \%)$ of the title compound as a white solid. MS (ESI, pos. ion) m/e: $430(\mathrm{M}+1)$.

(R)-tert-Butyl 4-(5-formyl-3-(trifluoromethyl)pyridin-2-yl)-2-methylpiperazine-1-

 carboxylate ($\mathbf{8 y}$). A mixture of compound $\mathbf{8 x}(6.02 \mathrm{~g}, 14 \mathrm{mmol})$, OsO_{4} ($4.43 \mathrm{~mL}, 0.7$ mmol, 4% in $\mathrm{H}_{2} \mathrm{O}$) and N -methylmorpholine N -oxide ($1.96 \mathrm{~g}, 16.8 \mathrm{mmol}$) in acetone (16 mL) was stirred at room temperature for 5 h . To the mixture was added saturated aqueous solution of $\mathrm{NaHSO}_{3}(910 \mathrm{~mL})$ and the mixture was extracted with EtOAc (2 x 40 mL). The combined organic extracts were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was evaporated in vacuo and the residue was dissolved in dichloromethane (20 mL). To the solution was added $\mathrm{Pb}(\mathrm{OAc})_{4}(7.44 \mathrm{~g}, 16.8 \mathrm{mmol})$ in one portion and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was diluted with hexane (10 mL), filtered through a Celite ${ }^{\circledR}$ pad, and the filter cake was washed with 50% $\mathrm{EtOAc} / \mathrm{hexane}$. The filtrate was evaporated in vacuo and the residue was purified by silica gel column chromatography, eluting with $30 \% \mathrm{EtOAc} / \mathrm{hexane}$ to give $1.74 \mathrm{~g}(81 \%)$ of the title compound as a gum. MS (ESI, pos. ion) m/e: $374(\mathrm{M}+1)$.
(R)-tert-Butyl 4-(5-(hydroxymethyl)-3-(trifluoromethyl)pyridin-2-yl)-2-

methylpiperazine-1-carboxylate ($\mathbf{8 z}$). To a solution of compound $\mathbf{8 y}(4.48 \mathrm{~g}, 12 \mathrm{mmol})$ in methanol (30 mL) was added $\mathrm{NaBH}_{4}(542 \mathrm{mg}, 14.4 \mathrm{mmol})$ portionwise with stirring at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min and the solvent was removed in vacuo.

The residue was dissolved in EtOAc (60 mL), washed with water (20 mL) and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography, eluting with $50 \% \mathrm{EtOAc} / \mathrm{hexane}$ to give $4.01 \mathrm{~g}(89 \%)$ of the title compound as a gum. MS (ESI, pos. ion) m/e: $376(\mathrm{M}+1)$.

(R)-(6-(3-Methylpiperazin-1-yl)-5-(trifluoromethyl)pyridin-3-yl)methanol (8aa).

Following the procedure described for compound $\mathbf{8 p}$, the reaction of compound $\mathbf{8 z}$ with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the crude product as salt with trifluoroacetic acid. The salt was dissolved in EtOAc (100 mL), washed with saturated aqueous solution of NaHCO_{3} $(2 \times 30 \mathrm{~mL})$ and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was evaporated in vacuo and the residue was purified by silica gel column chromatography, eluting with 90:10:1 mixture of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ ammonium hydroxide to give 2.53 g (92%) of the title compound as a white solid. MS (ESI, pos. ion) m/e: $276(\mathrm{M}+1)$.
(R)-3-Ethyl-1-(3-(trifluoromethyl)pyridin-2-yl)piperazine (8ab). To a solution of 2chloropyridine $\mathbf{6 d}(0.18 \mathrm{~g}, 1.0 \mathrm{mmol})$ in 3-methyl-1-butanol $(2 \mathrm{~mL})$ was added the piperazine $7 \mathrm{e}(0.115 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.085 \mathrm{~g}, 1.0 \mathrm{mmol})$. The reaction mixture was heated in a microwave synthesizer at $150{ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was cooled to room temperature, filtered, and the filter cake was washed with methanol. The combined filtrate was evaporated in vacuo and the residue was purified by silica gel column chromatography (gradient: $2-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give $0.10 \mathrm{~g}(38 \%)$ of the title compound as a film. MS (ESI, pos. ion) m/e: $260(\mathrm{M}+1) .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 0.96(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.52(\mathrm{~m}, 2 \mathrm{H}), 2.6(\mathrm{dd}, J=12.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.78(\mathrm{~m}, 1 \mathrm{H})$, 2.85-3.05 (m, 2 H), 3.38-3.52 (m, 2 H$), 7.12(\mathrm{dd}, J=7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=7.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$.
(R)-3-Propyl-1-(3-(trifluoromethyl)pyridin-2-yl)piperazine (8ac). Following the procedure described for compound $\mathbf{8 a}, \mathbf{b}, 2$-chloropyridine $\mathbf{6 d}$ and piperazine $\mathbf{7 f}$ provided the title compound (36\%) as a colorless oil. MS (ESI, pos. ion) m/e: $274(\mathrm{M}+1) .{ }^{1} \mathrm{HNMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.46(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{t}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-$ $2.88(\mathrm{~m}, 1 \mathrm{H}), 2.90-3.04(\mathrm{~m}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H})$. (R)-1-(3-Chloro-5-nitropyridin-2-yl)-3-methylpiperazine (8ad). Following the procedure described for compound $\mathbf{8 c}$, pyridine $\mathbf{6 n}$ (prepared as described in Koch, V.; Schnatterer, S. Synthesis, 1990, 499-501) and piperazine (7b) provided the title compound (99%) as yellow amorphous solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.01(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.57-$ $3.00(\mathrm{~m}, 5 \mathrm{H}), 4.07-4.15(\mathrm{~m}, 2 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.84(\mathrm{~s}, 1 \mathrm{H})$. MS (ESI, pos. ion) m/z: $257(M+1)$.
(R)-1-(3-Chloropyridin-2-yl)-3-methylpiperazine (8ae). Following the procedure described for compound $\mathbf{8 c}$, pyridine $\mathbf{6 a}$ and piperazine $\mathbf{7 b}$ provided the title compound (90\%) as off-white solid. MS (ESI, pos. ion) m/z: 212 (M+1).
(R)-1-(5-Bromo-3-chloropyridin-2-yl)-3-methylpiperazine (8af). Following the procedure described for compound $\mathbf{8 w}$, the reaction of pyridine 8ae with bromine provided the title compound (71\%) as a light-yellow solid. MS (ESI, pos. ion.) m/z: 292 $(\mathrm{M}+1) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.80(\mathrm{dd}, J=13.3,10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99-3.10(m, 1 H$), 3.12-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.86$ (m, 2 H), $7.96(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$.
(1S)-1-[5-Chloro-6-[(3R)-3-methyl-piperazin-1-yl]-pyridin-3-yl]-ethanol and (1R)-1-[5-Chloro-6-[(3R)-3-methyl-piperazin-1-yl]-pyridin-3-yl]-ethanol (8ag). A mixture
of pyridine $6 \mathrm{~g}(1.78 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{MnO}_{2}(17.39 \mathrm{~g}, 200 \mathrm{mmol})$ in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane (10 mL) was stirred at room temperature for 1 h . The catalyst was filtered and washed with $50 \% \mathrm{EtOAc} /$ hexane. The filtrate was evaporated and the residue dried in vacuo to give $1.07 \mathrm{~g}(61 \%)$ of aldehyde $\mathbf{6 h}$, which was used in the next step without additional purification. MS (ESI, pos. ion) $m / z: 176(\mathrm{M}+1)$.

A solution of $\mathrm{MeMgBr}(2.5 \mathrm{~mL}, 7.5 \mathrm{mmol}, 3.0 \mathrm{M}$ in ether) was added dropwise to a solution of the aldehyde $\mathbf{6 h}$ from the previous step ($880 \mathrm{mg}, 5.0 \mathrm{mmol}$) in THF (20 mL) with stirring at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min , saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added, and the mixture was extracted with EtOAc (2 x 40 $\mathrm{mL})$. The combined organic extracts were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography, eluting with $40 \% \mathrm{EtOAc} /$ hexane to give 710 mg (74%)) of the alcohol 6i. MS (ESI, pos. ion) $m / z: 192(\mathrm{M}+1)$.

Following the procedure described for compound $\mathbf{8 b}$, the alcohol $\mathbf{6 i}$ from the previous step and piperazine 7b provided the title compound (45\%) as a mixture of diastereisomers. MS (ESI, pos. ion) m/z: 256 (M+1).
tert-Butyl 4-(3-chloropyridin-4-yl)piperazine-1-carboxylate (11a). Following the procedure described for compound $\mathbf{8 a}$, pyridine $\mathbf{1 0 a}$ and piperazine $\mathbf{7 d}$ provided the title compound (62\%) as an orange oil. MS (ESI, pos. ion) $m / z: 298(\mathrm{M}+1)$.

1-(3-Chloropyridin-4-yl)piperazine (11b). Following the procedure described for compound $\mathbf{8 p}$, the reaction of compound 11a with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the title compound (99\%) as an orange oil. MS (ESI, pos. ion) $m / z: 198(\mathrm{M}+1)$.
tert-Butyl 4-(3-(trifluoromethyl)pyridin-4-yl)piperazine-1-carboxylate (11c).
Following the procedure described for compound 8a, pyridine 10b and piperazine 7d provided the title compound (68\%) as a white solid. MS (ESI, pos. ion) $m / z: 332(\mathrm{M}+1)$.

1-(3-(Trifluoromethyl)pyridin-4-yl)piperazine hydrochloride (11d). Following the procedure described for compound $\mathbf{8 b}$, treatment of compound $\mathbf{1 1} \mathbf{c}$ with saturated solution of hydrogen chloride in EtOAc provided the title compound (90\%) as a white solid. MS (ESI, pos. ion) $m / z: 232(\mathrm{M}+1)$.
tert-Butyl 4-(5-chloropyrimidin-4-yl)piperazine-1-carboxylate (11e). Following the procedure described for compound $\mathbf{8 a}$, pyridine $\mathbf{1 0} \mathbf{c}$ and piperazine $\mathbf{7 d}$ provided the title compound (52\%) as an orange oil. MS (ESI, pos. ion) m/z: $299(\mathrm{M}+1)$.

5-Chloro-4-(piperazin-1-yl)pyrimidine, trifluoroacetic acid salt (11f). Following the procedure described for compound $\mathbf{8 p}$, the reaction of compound $\mathbf{1 1 e}$ with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ provided the title compound (99\%) as an orange oil. MS (ESI, pos. ion) $\mathrm{m} / \mathrm{z}: 199$ $(\mathrm{M}+1)$.

1-(2,6-Dichlorophenyl)piperazine (14). A mixture of 2,6-dichlorophenylaniline (810 $\mathrm{mg}, 5 \mathrm{mmol}$) and bis(2-chloroethyl)amine hydrochloride ($823 \mathrm{mg}, 5 \mathrm{mmol}$) was subjected to microwave irradiation at $200{ }^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was allowed to cool to room temperature, treated with $5 \mathrm{~N} \mathrm{NaOH}(5 \mathrm{~mL})$, and extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed in vacuo and the residue was purified by silica gel chromatography, eluting with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}+1 \%$ ammonia (30% in water) to give 254 mg (22%) of the title compound. MS (ESI, pos. ion) $\mathrm{m} / \mathrm{z}: 231$ ($\mathrm{M}+1$).

4-Bromo-5-(trifluoromethyl)benzene-1,2-diamine (18b). A mixture of 4-bromo-3(trifluoromethyl)phenylamine ($7.2 \mathrm{~g}, 30 \mathrm{mmol}$) and acetic anhydride (29 mL) was stirred at room temperature for 16 h . The reaction mixture was evaporated in vacuo to give 8.46 $\mathrm{g}(100 \%)$ of the acetamide 22 as a white solid, which was used in the next step without additional purification. MS (ESI, pos. ion) $m / z: 484(\mathrm{M}+1)$.

To a solution of the acetamide $\mathbf{2 2}$ from the previous step ($8.46 \mathrm{~g}, 30 \mathrm{mmol}$) in concentrated sulfuric acid (32.5 mL) was added dropwise $90 \% \mathrm{HNO}_{3}(4.1 \mathrm{~mL})$ with stirring at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at room temperature for 3 h and poured into crushed ice (80 mL). The mixture was carefully neutralized with solid NaHCO_{3} and extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic extracts were washed with water and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography ($25 \% \mathrm{EtOAc} /$ hexane) to give 7.2 g (73%) of the nitro derivative $\mathbf{2 3}$ as a yellow solid. MS (ESI, neg. ion) $m / z: 325$ (M-1).

To a solution of the compound $\mathbf{2 3}$ from the previous step ($4.5 \mathrm{~g}, 14 \mathrm{mmol}$) in MeOH (8 $\mathrm{mL})$ was added aqueous $3 \mathrm{~N} \mathrm{NaOH}(50 \mathrm{~mL})$ at room temperature. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 2 h , cooled to room temperature and extracted with EtOAc (4 x $50 \mathrm{~mL})$. The combined organic extracts were washed with 1% aqueous HCl and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography ($15 \% \mathrm{EtOAc} /$ hexane) to give 3.5 g (88%) of the aniline $\mathbf{2 4}$ as a yellow solid. MS (ESI, neg. ion) $m / z: 283$ (M-1).

To a solution of the aniline $\mathbf{2 4}$ from the previous step ($3.3 \mathrm{~g}, 10 \mathrm{mmol}$) in EtOAc (26 mL) and $\mathrm{EtOH}(13 \mathrm{~mL})$ was added tin (II) chloride dihydrate ($13.1 \mathrm{~g}, 45 \mathrm{mmol}$). The reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 1 h . The light-yellow reaction solution was
poured to crushed ice (50 mL) and carefully neutralized using saturated aqueous solution of NaHCO_{3}. The resulting suspension was extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4}, filtered, and the filtrate evaporated in vacuo to give 2.37 g (93%) of the title compound as a brown solid. MS (ESI, pos. ion) $m / z: 257(\mathrm{M}+1)$.

3-Nitro-5-(trifluoromethyl)benzene-1,2-diamine (18c). 4-Amino-3, 5dininitrobenzotrifluoride ($25 \mathrm{~g}, 100 \mathrm{mmol}$) was added to a suspension of $10 \% \mathrm{Pd} / \mathrm{C}(4 \mathrm{~g})$ in $\mathrm{EtOH}(150 \mathrm{~mL})$ under a hydrogen atmosphere. The reaction mixture was stirred at room temperature for 4 h , filtered through a pad of Celite ${ }^{\circledR}$, and the filtrate was evaporated under reduced pressure. The residue was purified by silica gel column chromatography, eluting with $45 \% \mathrm{EtOAc} /$ hexane to give $18 \mathrm{~g}(81 \%)$ of the title compound as a yellow solid. MS (ESI, pos. ion) $m / z: 222(\mathrm{M}+1)$.

5-Trifluoromethyl-pyridine-2,3-diamine (18d). To a $250-\mathrm{mL}$, round-bottomed flask was added 5-trifluoromethyl-pyridin-2-ylamine ($8.3 \mathrm{~g}, 51.2 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{SO}_{4}(49 \mathrm{~mL})$. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{HNO}_{3}(8.2 \mathrm{~mL})$ was added dropwise. The mixture was heated to $80^{\circ} \mathrm{C}$ for 48 h , cooled to room temperature and added dropwise into a vigorously stirred ice-water (500 mL). After the addition, the mixture was basified to pH 9 with 10 N NaOH and extracted with EtOAc ($2 \times 500 \mathrm{~mL}$). The combined organic extracts were dried over MgSO_{4} and filtered. The solvent was removed in vacuo and the residue was purified by silica gel column chromatography, eluting with EtOAc/hexane (1:2) to give 1.2 g (11\%) of the nitro derivative 27 as a yellow solid. MS (ESI, pos. ion) m/z: $208(\mathrm{M}+1)$.

A mixture of the nitro derivative 27 from the previous step ($1.2 \mathrm{~g}, 5.59 \mathrm{mmol}$) and tin (II) chloride dihydrate ($3.9 \mathrm{~g}, 17.3 \mathrm{mmol}$) in DMF (19 mL) was heated to $60^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was cooled to room temperature and $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ was added. The mixture was stirred for 0.5 h , diluted with EtOAc (300 mL), stirred for 0.5 h , and filtered. The organic layer was separated and the aqueous layer was extracted with EtOAc $(2 \times 300 \mathrm{~mL})$. The combined organic extracts were dried over MgSO_{4} and filtered. The solvent was removed in vacuo to give the title compound, which was used in the next step without additional purification. MS (ESI, pos. ion) m/z: $178(\mathrm{M}+1)$.

6-Trifluoromethyl-pyridine-2,3-diamine, trifluoroacetic acid salt (18e). A mixture of the 3-amino-2-chloro-6-(trifluoromethyl)pyridine ($416 \mathrm{mg}, 2.1 \mathrm{mmol}$), 4-methoxybenzylamine ($294 \mathrm{mg}, 2.1 \mathrm{mmol}$) and sodium bicarbonate ($265 \mathrm{mg}, 3.2 \mathrm{mmol}$) in isoamyl alcohol (0.6 mL) was heated at $220^{\circ} \mathrm{C}$ in a microwave synthesizer for 30 min . The reaction mixture was then cooled to room temperature, diluted with $\mathrm{MeOH}(5 \mathrm{~mL})$, filtered and the filtrate was evaporated in vacuo. The residue was purified by preparative HPLC (gradient 0.1% trifluoroacetic acid in acetonitrile) to give $100 \mathrm{mg}(16 \%)$ of N^{2}-(4-methoxy-benzyl)-6-trifluoromethyl-pyridine-2,3-diamine (29) as a yellow oil. MS (ESI, pos. ion) $m / z: 298(\mathrm{M}+1)$.

A solution of compound 29 from the previous step ($220 \mathrm{mg}, 0.7 \mathrm{mmol}$) in 1:1
TFA/DCM (4 mL) was stirred at room temperature for 90 min . The reaction mixture was evaporated under reduced pressure to yield a gummy residue, which was purified by preparative HPLC (gradient 0.1% trifluoroacetic acid in acetonitrile) to give 120 mg (91%) of the title compound as an amorphous solid. MS (ESI, pos. ion) $m / z: 178(\mathrm{M}+1)$.

6-tert-Butyl-2-chloro-1H-benzo[d]imidazole (20a). A mixture of benzene-1,2-diamine 18a ($5 \mathrm{~g}, 30.5 \mathrm{mmol}$) and $1,1^{\prime}$-carbonyldiimidazole ($5.44 \mathrm{~g}, 33.5 \mathrm{mmol}$) in THF (30 mL) was stirred at room temperature for 16 h . The solvent was removed in vacuo and the resididue was purified by silica gel chromatography, eluting with EtOAc to give 5.4 g (93\%) of 5-tert-butyl-1,3-dihydrobenzoimidazol-2-one (19a) as a white solid. MS (ESI, pos. ion) $m / z: 191(\mathrm{M}+1)$.

A solution of compound 19a from the previous step ($5.4 \mathrm{~g}, 28 \mathrm{mmol}$) in $\mathrm{POCl}_{3}(30 \mathrm{~mL})$ was heated at $95^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to room temperature, the solvent was removed in vacuo and the resulting oily residue subjected to azeotropic distillation with toluene ($3 \times 50 \mathrm{~mL}$) at $50^{\circ} \mathrm{C}$. The crude product was dissolved in EtOAc (50 mL), washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed in vacuo and the residue crystallized from $\mathrm{EtOAc} /$ hexane to give $5.2 \mathrm{~g}(89 \%)$ of the title compound as an off-white solid. MS (ESI, pos. ion) $m / z: 209(\mathrm{M}+1)$.

5-Bromo-2-chloro-6-(trifluoromethyl)-1H-benzo[d]imidazole (20b). Following the procedure described for compound 19a, compound 18b and 1,1'-carbonyldiimidazole provided the imidazolone 19b (97\%) as a light-yellow solid. MS (ESI, pos. ion) m/z: 283 $(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 19b from the previous step with POCl_{3} provided the title compound (89\%) as a white solid. MS (ESI, pos. ion) $m / z: 301,303(\mathrm{M}+1)$.

2-Chloro-4-nitro-6-(trifluoromethyl)-1H-benzo[d]imidazole (20c). Following the procedure described for compound 19a, compound 18c and 1,1'-carbonyldiimidazole
provided the imidazolone 19c (73\%) as a yellow solid. MS (ESI, pos. ion) $m / z: 248$ $(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 19c from the previous step with POCl_{3} provided the title compound (78\%) as a yellow solid. MS (ESI, pos. ion) $m / z: 266$ (M+1).

2-Chloro-6-(trifluoromethyl)-1H-benzo[d]imidazole hydrochloride (20d).

Following the procedure described for compound 19a, compound $\mathbf{1 8 d}$ and $1,1^{\prime}-$ carbonyldiimidazole provided the crude product, which was purified by preparative HPLC (gradient 0.1% trifluoroacetic acid in acetonitrile) to give the imidazolone 19d (65\%) as salt with trifluoroacetic acid. MS (ESI, pos. ion) $m / z: 204(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 19d from the previous step with POCl_{3} provided the title compound (26\%) as an amorphous solid.

2-Chloro-6-(trifluoromethyl)-1H-benzo[d]imidazole (20e). A mixture of compound 18e ($160 \mathrm{mg}, 0.9 \mathrm{mmol}$) and N, N^{\prime}-disuccinimidyl carbonate ($250 \mathrm{mg}, 0.9 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{~mL})$ was stirred at room temperature for 13 h . Additional amount of $N, N^{\prime}-$ disuccinimidyl carbonate ($125 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added, and the reaction mixture was heated at $75^{\circ} \mathrm{C}$ for 90 min . The reaction mixture was cooled to room temperature and diluted with dichloromethane (20 mL). The precipitate was filtered and dried in vacuo to give the imidazolone 19e, which was used in the next step without additional purification. MS (ESI, pos. ion) $m / z: 204(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 19e from the previous step with POCl_{3} provided the title compound (82%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 222(\mathrm{M}+1)$.

4-Bromo-2-chloro-6-(trifluoromethyl)-1H-benzo[d]imidazole (20f). Following the procedure described for compound 19a, compound $\mathbf{1 8 f}$ and 1,1 '-carbonyldiimidazole provided the imidazolone 19 f (68\%) as an amorphous solid. MS (ESI, pos. ion) $\mathrm{m} / \mathrm{z}: 281$ $(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 19f from the previous step with POCl_{3} provided the title compound (81%) as a white solid. MS (ESI, pos. ion) $m / z: 299(\mathrm{M}+1)$.

2-Chloro-5-fluoro-1H-benzo[d]imidazole (20g). Following the procedure described for compound 19a, compound 18g and 1,1'-carbonyldiimidazole provided the imidazolone 19g (79\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 153(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone $\mathbf{1 9 g}$ from the previous step with POCl_{3} provided the title compound (48\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 171(\mathrm{M}+1)$.

2-Chloro-1H-benzo[d]imidazole-5-carbonitrile (20h). Following the procedure described for compound 19a, compound 18h and 1,1'-carbonyldiimidazole provided the imidazolone 19h (98\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 160(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 19h from the previous step with POCl_{3} provided the title compound (32\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 178(\mathrm{M}+1)$.

2-Chloro-6-(trifluoromethyl)-4-(3,4,5-trifluorophenyl)-1H-benzo[d]imidazole (20i).

 A mixture of imidazolone $\mathbf{1 9 f}(1.12 \mathrm{~g}, 4 \mathrm{mmol})$, 3,4,5-trifluorophenylboronic acid (1.1 g, $6 \mathrm{mmol}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(35 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}$ monohydrate $(1 \mathrm{~g}, 8 \mathrm{mmol})$, dimethoxyethane (7 mL), $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and $\mathrm{EtOH}(2 \mathrm{~mL})$ was heated in a microwave synthesizer at $120^{\circ} \mathrm{C}$ for 10 min . Water (10 mL) was added and the mixture was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic phases were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated in vacuo, and the residue was purified by silica gel chromatography, eluting with $35 \% \mathrm{EtOAc} / \mathrm{hexane}$ to give 1.1 g (83\%) of 6-trifluoromethyl)-4-(3,4,5-trifluorophenyl)-1,3-dihydro-2H-benzimidazol-2-one 19i as a light-brown solid. MS (ESI, pos. ion) m/z: 333 (M+1).Following the procedure described for compound 20a, the reaction of the imidazolone 19i from the previous step with POCl_{3} provided the title compound (61\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 178(\mathrm{M}+1)$.

2,6-Dichloro-1H-benzo[d]imidazole (20j). Following the procedure described for compound 19a, compound $\mathbf{1 8 i}$ and $1,1^{\prime}$-carbonyldiimidazole provided the imidazolone 19j (68\%) as a red amorphous solid. MS (ESI, pos. ion) $m / z: 169(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 19j from the previous step with POCl_{3} provided the title compound (69\%) as a brown amorphous solid. MS (ESI, pos. ion) $m / z: 187(\mathrm{M}+1)$.

2-Chloro-6-methyl-1H-benzo[d]imidazole (20k). Following the procedure described for compound 19a, compound 18j and 1,1'-carbonyldiimidazole provided the imidazolone 19k (81%) as a off-white solid. MS (ESI, pos. ion) $m / z: 149(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 19k from the previous step with POCl_{3} provided the title compound (40\%) as a pink amorphous solid. MS (ESI, pos. ion) $m / z: 167(\mathrm{M}+1)$.

Methyl 2-chloro-1H-benzo[d]imidazole-5-carboxylate (201). Following the procedure described for compound $\mathbf{1 9 a}$, compound $\mathbf{1 8 k}$ and 1,1 '-carbonyldiimidazole provided the imidazolone 191 (86\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 193$ $(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 191 from the previous step with POCl_{3} provided the title compound (89%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 211(\mathrm{M}+1)$.

2-Chloro-4,6-bis(trifluoromethyl)-1H-benzo[d]imidazole (20m). Following the procedure described for compound 19a, compound $\mathbf{1 8 1}$ and 1,1 '-carbonyldiimidazole provided the imidazolone 19m (54\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 271$ $(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone $\mathbf{1 9 m}$ from the previous step with POCl_{3} provided the title compound (78\%) as an a white solid. MS (ESI, pos. ion) $m / z: 289$ (M+1).

2-Chloro-6-trifluoromethyl-1H-benzo[d]imidazole (20n). Following the procedure described for compound 19a, compound $\mathbf{1 8 m}$ and $1,1^{\prime}$-carbonyldiimidazole provided the imidazolone 19n (65\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 203$ (M+1).

Following the procedure described for compound 20a, the reaction of the imidazolone 19n from the previous step with POCl_{3} provided the title compound (67\%) as an amorphous solid. MS (ESI, pos. ion) $m / z: 221(\mathrm{M}+1)$.

6-Bromo-2-chloro-1H-benzo[d]imidazole (200). Following the procedure described for compound 19a, compound $\mathbf{1 8 n}$ and 1,1 '-carbonyldiimidazole provided the imidazolone 190 (85%) as a gray amorphous solid. MS (ESI, pos. ion) $m / z: 214(\mathrm{M}+1)$.

Following the procedure described for compound 20a, the reaction of the imidazolone 190 from the previous step with POCl_{3} provided the title compound (84\%) as a gray amorphous solid. MS (ESI, pos. ion) $m / z: 232(\mathrm{M}+1)$.

2-(Piperazin-1-yl)-6-(trifluoromethyl)-1H-benzo[d]imidazole (30a). A mixture of piperazine $7 \mathbf{7 a}(172 \mathrm{mg}, 2 \mathrm{mmol})$ and benzoimidazole $\mathbf{2 0 n}(221 \mathrm{mg}, 1 \mathrm{mmol})$ in DMSO (2 mL) was stirred at $80^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled down to room temperature, diluted with water (10 mL), and extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The combined organic phases were washed with water ($2 \times 5 \mathrm{~mL}$) and brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The solvent was removed in vacuo and the residue was purified by silica gel chromatography, eluting with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}+1 \%$ ammonia (30% in water) to give $235 \mathrm{mg}(87 \%)$ of the desired product. MS (ESI, pos. ion) $m / z: 271(\mathrm{M}+1)$.
(S)-2-(3-Methylpiperazin-1-yl)-5-(trifluoromethyl)-7-(3,4,5-trifluorophenyl)-1Hbenzo[d]imidazole (30b). A mixture of piperazine $7 \mathbf{c}$ (150 mg .1 .5 mmol), 2chlorobenzoimidazole $\mathbf{2 0 i}(350 \mathrm{mg}, 1 \mathrm{mmol})$ and N, N-diisopropylethylamine (0.28 mL , $1.6 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ was heated in a microwave synthesizer at $180^{\circ} \mathrm{C}$ for 30 min . The mixture was evaporated in vacuo and the residue was purified by silica gel column chromatography, eluting with $30 \% \mathrm{EtOAc} / \mathrm{hexane}$, to give $200 \mathrm{mg}(48 \%)$ of the title compound as a light-brown solid. MS (ESI, pos. ion) m/z: 415 (M+1).

