Enantioselective Synthesis of Ferrocenyl Nucleoside Analogs with Apoptosis-Inducing Activity

Philippe James ${ }^{\dagger}$, Jörg Neudörfl ${ }^{\dagger}$, Moritz Eißmann ${ }^{\ddagger}$, Patrick Jesse ${ }^{\ddagger}$, Aram Prokop ${ }^{\ddagger}$, and Hans-Günther Schmalz ${ }^{\dagger}$ *
${ }^{\dagger}$ Institute of Organic Chemistry, University of Cologne, Greinstr. 4, 50939 Köln, Germany
${ }^{\ddagger}$ Department of Pediatric Oncology/Hermatology, University Medical Center Charité, Campus Virchow, Humboldt University of Berlin, 13353 Berlin, Germany
schmalz@uni-koeln.de

Supporting Information

Contents: experimental procedures and full characterization of new compounds (6-11, 1318); X-ray crystallographic data for compounds 6 and $15 ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra.

I. General experimental conditions

Reactions were conducted in flame-dried glassware under an atmosphere of argon using freshly distilled anhydrous solvents. NMR spectra were recorded at 300 MHz for protons and at 75 MHz for carbons. Deuterated chloroform was used as solvent unless otherwise indicated. Proton shifts are reported in ppm (δ) downfield from TMS and were determined by reference to the residual solvent peaks $\left(\mathrm{CDCl}_{3}: 7.24 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}: 3.31 \mathrm{ppm}\right)$. Data are reported as follows: chemical shift (multiplicity [singlet (s), doublet (d), triplet (t), quartet (q), quintet (quint), hexet (hex) and multiplet (m)], coupling constants [Hz], integration, assignment). ${ }^{13} \mathrm{C}$ NMR spectra were recorded using an APT sequence with complete proton decoupling. Multiplicities ($\mathrm{C}, \mathrm{CH}_{2}$ or $\mathrm{CH}, \mathrm{CH}_{3}$) were deduced from these spectra. ${ }^{13} \mathrm{C}$ chemical shifts are reported in ppm (δ) relative to solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}: 77 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}: 49.05 \mathrm{ppm}\right)$. Melting points are not corrected. Optical rotations were recorded at the given wavelengths (path length 100 mm).

The TMS-protected nucleobases (TMS) $)_{2}$ cytosine and (TMS) $)_{2}$ uracil, respectively, were prepared from cytosine or uracil by treatment with an excess of HMDS and TMSCl at $80^{\circ} \mathrm{C}$ for 2 d and isolation of the product by distillation under reduced pressure (0.1 torr).

II. Synthetic procedures and characterization of the new products

II.1. Synthesis of ester 5 through diastereoselective ortho-deprotonation/alkylation.

To a cooled solution of $\mathbf{4}^{1}\left([\alpha]^{20}{ }_{\mathrm{D}}-32.4, c 0.70, \mathrm{CHCl}_{3},[\alpha]^{20}{ }_{\mathrm{D}(\mathrm{lit})}{ }^{1}-32.5 ; 4.03 \mathrm{~g}, 1\right.$ equiv., $12.75 \mathrm{mmol})$ in dry diethyl ether (65 mL) under argon atmosphere was added dropwise at $78^{\circ} \mathrm{C}$ a 1.5 M solution of t-BuLi in hexanes ($9.4 \mathrm{~mL}, 1.1$ equiv., 14.02 mmol). After 10 min . at this temperature, the cooling bath was removed and the temperature was allowed to warm to room temperature and stirred 1 h . The suspension was then cannulated to an other apparatus in an additional funnel which was fixed onto a three-necked round-bottom flask (with thermometer and line to argon/vacuum) containing an excess of methyl chloroformate $(9.9 \mathrm{~mL}, 10$ equiv., 128 mmol$)$ in ether $(10 \mathrm{~mL})$ maintained at a temperature of $-50^{\circ} \mathrm{C}$. The suspension was then added dropwise slowly to the stirred solution of electrophile. After the addition, the temperature was allowed to warm slowly to room temperature and was stirred overnight at this temperature. The mixture was then quenched with water and the layers were separated. The organic layer was washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography (cyclohexane/ethyl acetate 2:1) gave the desired ester 5^{1} as a brown oil $\left(3.27 \mathrm{~g}, 69 \% ;[\alpha]^{20}{ }_{\mathrm{D}}\right.$ $\left.+19.9, c 0.53, \mathrm{CHCl}_{3},[\alpha]^{20} \mathrm{D}(\text { (it. })^{1}+9.0\right)$.

II.2. Synthesis of ester 6 through Horner olefination.

The aldehyde \mathbf{A} was obtained from 5 through acidic acetal cleavage according to Kagan's procedure ${ }^{1}\left([\alpha]^{20}{ }_{\mathrm{D}}+935, c 0.355, \mathrm{EtOH}_{\mathrm{abs}},[\alpha]^{20}{ }_{\mathrm{D}(i i t .)}{ }^{1}+765,[\alpha]^{20}{ }_{\mathrm{D}(i i t .}\right)^{2}-759,(R)$-config.). Transformation of \mathbf{A} into the diester $\mathbf{6}$ was achieved as follow. To a suspension of $\mathrm{NaH}(60 \%$

[^0]in mineral oil, washed with dry hexane, 529 mg , 1.5 equiv., 13.21 mmol) in THF (37 mL) under argon atmosphere was added at $0^{\circ} \mathrm{C}$, triethylphosphonoacetate ($2.6 \mathrm{~mL}, 1.5$ equiv., 13.21 mmol) and the resulting mixture was allowed to warm to room temperature and stirred 1 h . After this period, the aldehyde $\mathbf{A}(2.4 \mathrm{~g}, 1$ equiv., 8.81 mmol$)$ dissolved in THF (16 mL) was added to the mixture. The reaction mixture was stirred at room temperature for another 30 min and the reaction was quenched with a solution of saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The layers were separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. Evaporation of the solvents and purification by flash chromatography (cyclohexane/ethyl acetate $3 / 1$) of the residue afforded a dark red oil which solidifies ($2.5 \mathrm{~g}, 83 \%$ yield). $\mathbf{M p}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)+84^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}+1297.0(c 0.41$, CHCl_{3}). IR (neat) $v 3095$ (w), 2978 (m), 2948 (m), 2902 (w), 1711 (C=Ost, s), 1694 (C=Ost,
 (s , $, 939(\mathrm{~m}), 857(\mathrm{~s}), 820(\mathrm{~s}), 776(\mathrm{~s}), 732(\mathrm{~m}), 678(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\delta 8.26(\mathrm{~d}, J=16.0$, $\left.1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 6.13\left(\mathrm{~d}, J=16.0,1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 4.97(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCp}), 4.77(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCp}), 4.56(\mathrm{t}, J=2.7,1 \mathrm{H}, \mathrm{CHCp}), 4.20\left(\mathrm{q}, J=7.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.17(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 1.31\left(\mathrm{t}, J=7.1,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}$ NMR $\delta 171.7(\mathrm{CpC}=\mathrm{O}), 166.8$ $(\mathrm{CH}=\mathrm{CHC}=\mathrm{O}), 143.7\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 117.4\left(\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Et}\right), 80.3(\mathrm{CCp}), 73.6(\mathrm{CHCp})$, $72.0(\mathrm{CHCp}), 71.4(\mathrm{Cp}), 71.2(\mathrm{CCp}), 69.3(\mathrm{CHCp}), 60.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 14.3$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 343\left([\mathrm{M}+1]^{+}, 5\right), 342\left([\mathrm{M}]^{+}, 30\right), 329$ (17), 328 (96), 297 (6), $277{\text { (}[\mathrm{M}-\mathrm{Cp}]^{+}, 3}^{2}$), 263 (13), 245 (12), 233 (16), 231 (67), 201 (20), 152 (23), 145 (78), 122 (60), 117 (85), 89 (100), 56 ([Fe] ${ }^{+}$, 45). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FeO}_{4}$ 342.0554. Found 342.055 .

II.3. Synthesis of 7 through conjugate cuprate addition

To a mixture of magnesium turnings ($988 \mathrm{mg}, 1.2$ equiv., 40.65 mmol) in dry THF (10 mL) was added under argon atmosphere a small iodine crystal. After activation, 1-bromo-2,2dimethylpropane ($4.3 \mathrm{~mL}, 1$ equiv., 33.88 mmol) in THF (24 mL) was added dropwise so as to maintain a gentle reflux and the mixture was stirred overnight at room temperature. The resulting 1 M solution of 2,2-dimethylpropanemagnesium bromide in THF (12.5 mL , 6
equiv., 12.5 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$ to a mixture of $\mathrm{CuBr} . \mathrm{Me}_{2} \mathrm{~S}(257 \mathrm{mg}, 0.6$ equiv., 1.25 mmol) in THF (3 mL) under argon atmosphere. The temperature was allowed to warm to $-30^{\circ} \mathrm{C}$ for 10 min to give a white slurry and was recooled to $-78^{\circ} \mathrm{C}$. $\mathrm{TMSCl}(530 \mu \mathrm{~L}$, 2 equiv., 4.15 mmol) and then the α, β-unsaturated ferrocenylester $\mathbf{6}(710 \mathrm{mg}, 1$ equiv., 2.07 mmol) in THF (9.1 mL) were added dropwise successively. The mixture was stirred for 1 h at low temperature (below $-60^{\circ} \mathrm{C}$) and allowed to warm slowly to $-30^{\circ} \mathrm{C}$, stirred 1 h at this temperature and finally warm to $0^{\circ} \mathrm{C}$. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added and the product was extracted with MTBE. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Flash chromatography (cyclohexane/ethyl acetate $10 / 1$ then $6 / 1$ and then $3 / 1$) gave 7 as a brown oil ($839 \mathrm{mg}, 2.03 \mathrm{mmol}, 98 \%$ yield). $[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}-24.5\left(c 0.375, \mathrm{CHCl}_{3}\right)$. IR (neat) $v 3095(\mathrm{w}), 2949(\mathrm{~m}), 2901(\mathrm{w}), 1731(\mathrm{C}=\mathrm{Ost}, \mathrm{s})$, 1713 (C=Ost, s), 1451 (m), 1365 (m), 1292 (m), 1210 (m), 1189 (m), 1147 (m), 1085 (m), $1033(\mathrm{~m}), 818(\mathrm{w}), 776(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\delta 4.64\left(\mathrm{dd}, J=2.6,1.5,1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 4.21$ $(\mathrm{t}, J=2.6,1 \mathrm{H}, \mathrm{CHCp}), 4.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCp}), 4.09\left(\mathrm{q}, J=7.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.04(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp})$, $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 3.04\left(\mathrm{dd}, J=15.8,4.4,1 \mathrm{H}, \mathrm{C} H \mathrm{HCO}_{2} \mathrm{Et}\right), 2.60(\mathrm{dd}, J=15.7,8.7,1 \mathrm{H}$, $\left.\mathrm{CH} H \mathrm{CO}_{2} \mathrm{Et}\right), 1.42\left(\mathrm{dd}, J=14.0,5.4,1 \mathrm{H}, \mathrm{C} H \mathrm{HC}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.20(\mathrm{t}$, $\left.J=7.1,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 0.66\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) .{ }^{13} \mathbf{C}$ NMR $\delta 172.8(\mathrm{C}=\mathrm{O}), 172.3(\mathrm{C}=\mathrm{O}), 99.9$ $(C \mathrm{CpC}=\mathrm{O}), 70.6(\mathrm{CHCp}), 70.1(\mathrm{Cp}), 69.4(\mathrm{CHCp}), 69.1(\mathrm{CHCp}), 68.5(\mathrm{CCpCH}), 60.3$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 52.2\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 51.3\left(\mathrm{CH}_{3} \mathrm{O}\right), 44.1\left(\mathrm{CH}_{2} t-\mathrm{Bu}\right), 31.1\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 30.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $29.1\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 14.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathbf{M S}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z}=415\left([\mathrm{M}+1]^{+}, 25\right), 414\left([\mathrm{M}]^{+}\right.$, 100), 343 ($\left.\left[\mathrm{M}-\left(\mathrm{CH}_{2} t-\mathrm{Bu}\right)\right]^{+}, 2\right), 297$ (8), 257 (11), 239 (8), 175 (13), 121 ($[\mathrm{FeCp}]^{+}, 22$), 105 (14), 91 (14), 57 (32). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{FeO}_{4} 414.1493$. Found 414.149.

II.4. Synthesis of ketone 8 by Dieckmann cyclization

General procedure: To a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, washed with dry hexane, 4 equiv.) in THF ($2.5 \mathrm{~mL} / \mathrm{mmol}$) under argon atmosphere was added the diester (1 equiv.) in THF ($25 \mathrm{~mL} / \mathrm{mmol}$) at room temperature. The orange mixture was then stirred under reflux for 7 h . The obtained dark red solution was cooled in an ice bath, MeOH was added slowly,
and then MTBE. The organic layer was washed with a 1 M aqueous solution of HCl then with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The crude product was directly used for the next step without further purification.

Following the general procedure described above, the diester $7(832 \mathrm{mg}, 2.01 \mathrm{mmol})$ and NaH ($321 \mathrm{mg}, 8.03 \mathrm{mmol}$) were reacted. The crude product (2.01 mmol) was dissolved in ethanol $(20 \mathrm{~mL})$ and a 1 M solution of $\mathrm{NaOH}(20 \mathrm{~mL})$ was added. The mixture was heated at $+80^{\circ} \mathrm{C}$ and stirred overnight at this temperature. After cooling to room temperature, MTBE was added and the layers were separated. The aqueous layer was extracted with MTBE and the organic layers were combined. After washing with brine, the solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum. Purification by flash chromatography (cyclohexane/ethyl acetate 3/1) afforded $\mathbf{8}$ as a red oil which then solidified ($393 \mathrm{mg}, 63 \%$ yield, 2 steps). Mp: $+82.2-82.8^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}+213.6\left(c \quad 0.355, \mathrm{CHCl}_{3}\right)$. IR (neat) v $3095(\mathrm{w})$, 2950 (m), 2906 (w), 2863 (w), 1699 (C=Ost, s), 1461 (m), 1363 (m), 1291 (m), 1196 (w), 1106 (m), 1073 (w), 1001 (w), 821 (m) cm ${ }^{-1} .{ }^{1} \mathbf{H}$ NMR $\delta 4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CpH}), 4.49(\mathrm{~m}, 1 \mathrm{H}$, CpH), $4.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CpH}), 4.18(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.00-2.80\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{C}=\mathrm{O}\right), 1.93(\mathrm{dd}, J=$ 13.7, 2.4, $1 \mathrm{H}, \mathrm{CH} H t-\mathrm{Bu}$), $1.60(\mathrm{dd}, J=14.0,8.5,1 \mathrm{H}, \mathrm{C} H \mathrm{H} t-\mathrm{Bu}), 0.95(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) .{ }^{13} \mathrm{C}$ NMR $\delta 207.2(\mathrm{C}=\mathrm{O})$, $111.3(\mathrm{CCpC}=\mathrm{O})$, $79.8(\mathrm{CCp}), 75.2(\mathrm{CHCp}), 70.1(\mathrm{Cp}), 65.2(\mathrm{CHCp})$, $61.0(\mathrm{CHCp}), 51.8\left(\mathrm{CH}_{2}\right)$, $50.8\left(\mathrm{CH}_{2}\right), 30.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 29.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.5(\mathrm{CH}) . \text { MS (EI, } 70}\right.$ $\mathrm{eV}) \mathrm{m} / \mathrm{z} 311\left([\mathrm{M}+1]^{+}, 22\right), 310\left([\mathrm{M}]^{+}, 100\right), 282\left([\mathrm{M}-(\mathrm{CO})]^{+}, 3\right), 267\left(\left[\mathrm{M}-(\mathrm{CO})-\left(\mathrm{CH}_{3}\right)\right]^{+}, 5\right)$, 253 ([M-(t-Bu) $\left.]^{+}, 9\right), 239$ ([(M- $\left.\left.(t-\mathrm{Bu})-\left(\mathrm{CH}_{2}\right)\right]^{+}, 35\right), 226(21), 225$ ([M-(CO)-($\left.\left.\left.t-\mathrm{Bu}\right)\right]^{+}, 43\right)$, 211 ([M-(CO)-($\left.\left.\left.\mathrm{CH}_{2} t-\mathrm{Bu}\right)\right]^{+}, 22\right), 186\left(\left[\mathrm{FeCp}_{2}\right]^{+}, 6\right), 153(17), 133(17), 121\left([\mathrm{FeCp}]^{+}, 58\right), 56$ ($[\mathrm{Fe}]^{+}, 32$). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FeO}$ 310.1020. Found 310.102. Elem. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{FeO}$ C 69.69, H 7.15. Found C 69.54, H 7.11.

II.5. Synthesis of 9 through reduction and acetylation

General Procedure: The α-ferrocenylketone (1 equiv.) was dissolved in a $4: 1$ mixture of ethanol:dioxane. NaBH_{4} (5 equiv.) was then added slowly in portions at room temperature. Conversion into the corresponding alcohol was easily observed by the change of the color of the solution, from red to yellow. An aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was then added at $0^{\circ} \mathrm{C}$ and the alcohol was extracted with MTBE. The organic layer was washed with brine, dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Crude products were pure enough to be directly used for the next step without further purification. The obtained α-ferrocenylalcohol (1 equiv.) was dissolved in dry pyridine ($6 \mathrm{~mL} / \mathrm{mmol}$) under argon atmosphere and acetic anhydride ($2.3 \mathrm{~mL} / \mathrm{mmol}$) was added dropwise. After stirring overnight at room temperature, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The acetate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was washed successively with saturated aqueous NaHCO_{3} and brine. The organic solution was then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Purification by flash chromatography afforded the corresponding acetate.

Following the general procedure described above, ketone $\mathbf{8}$ was converted into the acetate 9 using the following amounts of starting materials and reagents: ketone $\mathbf{8}$ ($105 \mathrm{mg}, 1$ equiv., 0.34 mmol), MeOH:dioxane ($2 \mathrm{~mL}: 500 \mu \mathrm{~L}$), $\mathrm{NaBH}_{4}(64 \mathrm{mg}, 5$ equiv., 1.70 mmol). After 30 min and classical work-up, the alcohol (96 mg , d.r $\geq 92: 8$) was used without further purification. It was then reacted in pyridine $(2 \mathrm{~mL})$ with acetic anhydride $(780 \mu \mathrm{~L}), 5 \mathrm{~h}$, rt. Purification by flash chromatography (cyclohexane/ethyl acetate $9 / 1$) afforded 9 as a yellow oil ($110 \mathrm{mg}, 0.31 \mathrm{mmol}, 90 \%$ over 2 steps) $[\alpha]^{20}{ }_{\mathrm{D}}-117.5,[\alpha]^{20}{ }_{365}-257.3,[\alpha]^{20}{ }_{546}-148.1(c$ $0.34, \mathrm{CHCl}_{3}$). IR (neat) $v 3093(\mathrm{w}), 2952(\mathrm{~m}), 2865(\mathrm{w}), 1737(\mathrm{C}=\mathrm{Ost}, \mathrm{s}), 1473(\mathrm{w}), 1365$ (m), 1237 (s), 1105 (m), 1037 (m), 816 (m) cm ${ }^{-1} .{ }^{1} \mathbf{H}$ NMR $\delta 5.44$ (t, $J=7.5,1 \mathrm{H}, \mathrm{CHOAc}$), 4.27 (s, 5H, Cp), 4.13 (m, 1H, CHCp), 4.02 (m, 1H, CHCp), 3.92 (m, 1H, CHCp), 2.85 (m, $1 \mathrm{H}, \mathrm{C} H \mathrm{HCHOAc}), 2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{t}-\mathrm{Bu}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.10(\mathrm{~m}, 1 \mathrm{H}$, CHHCHOAc), 1.88 (dd, $J=14.0,3.3,1 \mathrm{H}, \mathrm{C} H \mathrm{H} t-\mathrm{Bu}$), 1.58 (dd, $J=14.0,7.6,1 \mathrm{H}, \mathrm{CHHt}-\mathrm{Bu}$), $1.00(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) .{ }^{13} \mathbf{C}$ NMR $\delta 201.4(\mathrm{C}=\mathrm{O}), 102.6(\mathrm{CCp}), 92.2(\mathrm{CCp}), 73.0(\mathrm{CHOAc}), 69.9$ $(\mathrm{CHCp}), 68.6(\mathrm{Cp}), 60.3(\mathrm{CHCp}), 59.9(\mathrm{CHCp}), 50.1\left(\mathrm{CH}_{2} t-\mathrm{Bu}\right), 45.0\left(\mathrm{CH}_{2} \mathrm{CHOAc}\right), 31.5$ $\left(\mathrm{CHCH}_{2} t-\mathrm{Bu}\right)$, $30.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 30.0\left(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right) \text {, } 21.1\left(\mathrm{CH}_{3} \mathrm{CO}\right) \text {. MS }(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 355}\right.$ $\left([\mathrm{M}+1]^{+}, 5\right), 354\left([\mathrm{M}]^{+}, 25\right), 294(26), 237(43), 180(100), 121$ ([FeCp] $\left.]^{+}, 51\right), 103(26), 57$ (30). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{FeO}_{2}$ 354.1282. Found 354.129.

II.6. General procedure for the synthesis of nucleosides using silylated nucleobases:

To a solution of the α-ferrocenylacetate (1 equiv.) and TMS-protected nucleobase (4 equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon atmosphere was added dropwise at $0^{\circ} \mathrm{C}$ TMSOTf (6 equiv.). The yellow solution was stirred in an ice bath for $0.5-1.5 \mathrm{~h}$ and then treated with a saturated solution of NaHCO_{3}. The phases were separated and the aqueous phase washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were then washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under vacuum. Purification was achieved by flash chromatography.

II.7. Synthesis of the cytosine derivative 10.

The general procedure for nucleobase introduction was used (see II.6.). Amounts: acetate 9 (194 mg , 1 equiv., 0.63 mmol), (TMS) $)_{2}$ cytosine ($643 \mathrm{mg}, 4$ equiv., 2.50 mmol), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (14 mL), TMSOTf ($685 \mu \mathrm{~L}$, 6 equiv., 3.78 mmol), stirred for 1.5 h . Flash chromatography (ethyl acetate/methanol $95 / 5$) afforded $\mathbf{1 0}$ as a yellow powder ($205 \mathrm{mg}, 0.51 \mathrm{mmol}, 80 \%$ yield). Mp: decomposition starts at $\mathrm{T}>200^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}-203\left(c 0.29, \mathrm{CHCl}_{3}\right)$. IR (neat) $v 3345$ (NHst, m), 3201 (NHst, m), 3092 (w), 2949 (m), 2860 (w), 1643 (C=Ost, s), 1522 (m), 1484 (s), 1395 (m), $1275(\mathrm{~m}), 1105(\mathrm{w}), 1030(\mathrm{w}), 999(\mathrm{w}), 788(\mathrm{~m}), 751(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\delta 6.73(\mathrm{~d}, J=$ $7.0,1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHC}), 5.67(\mathrm{~d}, J=6.2,1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHC}), 5.60(\mathrm{~d}, J=6.6,1 \mathrm{H}$, CHcytosine $)$, $4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCp}), 4.17(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCp}), 4.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCp}), 2.61(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} H \mathrm{HCHcytosine}$), $2.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H C H H C H c y t o s i n e), 1.80(\mathrm{~d}, J=13.7,1 \mathrm{H}, \mathrm{C} H \mathrm{H} t-\mathrm{Bu})$, 1.45 (dd, $J=13.4,6.3,1 \mathrm{H}, \mathrm{CHHt}-\mathrm{Bu}), 0.91(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 406\left([\mathrm{M}+1]^{+}\right.$, 2), 405 ($\left.[\mathrm{M}]^{+}, 7\right), 295$ ([M-(cytosine) $]^{+}, 22$), 294 (100), 238 ($[\mathrm{M} \text {-(cytosine)- }(t-\mathrm{Bu})]^{+}, 19$), 237 (62), 232 (13), 231 (51), 172 (11), 137 (21), 121 ([FeCp] $]^{+}, 52$), 103 (18), 69 (12), 57 (16), 56 ($[\mathrm{Fe}]^{+}, 19$). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{FeN}_{3} \mathrm{O}$ 405.1503. Found 405.150.

II.8. Synthesis of the uracil derivative 11.

The general procedure for nucleobase introduction was used (see II.6.). Amounts: acetate 9 ($64 \mathrm{mg}, 0.21 \mathrm{mmol}$), (TMS) 2 uracil ($213 \mathrm{mg}, 0.83 \mathrm{mmol}$), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.7 \mathrm{~mL}$), TMSOTf (230 $\mu \mathrm{L}, 1.26 \mathrm{mmol}$), stirred for 0.5 h . Flash chromatography (ethyl acetate/methanol $1 / 1$) afforded 11 as a yellow-orange powder ($61 \mathrm{mg}, 0.15 \mathrm{mmol}, 72 \%$ yield). Mp: decomposition starts when $\mathrm{T}>220^{\circ} \mathrm{C} .[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}-179,[\alpha]^{20}{ }_{546}-242\left(c 0.38, \mathrm{CHCl}_{3}\right)$. IR (neat) $v 3263(\mathrm{NHst}, \mathrm{w}), 3094$
(w), 2951 (w), 2863 (w), 1692 (C=Ost, s), 1680 (C=Ost, s), 1462 (w), 1377 (w), 1364 (w), 1258 (m), 1213 (w), 1175 (w), 1105 (w), 1000 (w), 815 (w), 765 (w) cm ${ }^{-1} .{ }^{1}$ H NMR $\delta 9.40$ (br s, $1 \mathrm{H}, \mathrm{NH}$), 6.65 (d, $J=8.0,1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}), 5.63$, (d, $J=6.5,1 \mathrm{H}, \mathrm{CHN}), 5.49(\mathrm{~d}, J=$ $8.0,1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHCO}$), 4.23 (br s, 1H, CHCp), 4.19 (s, $5 \mathrm{H}, \mathrm{Cp}$), 4.13 (br s, 1H, CHCp), 4.07 (br s, 1H, CHCp), $2.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHCHN}), 2.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{2} t-\mathrm{Bu}\right), 2.43(\mathrm{~m}, 1 \mathrm{H}$, CHHCHN), 1.83 (dd, $J=13.9,2.5,1 \mathrm{H}, \mathrm{C} H \mathrm{H}-\mathrm{Bu}$), 1.50 (dd, $J=14.0,7.1,1 \mathrm{H}, \mathrm{CHHt}-\mathrm{Bu}$), $0.95(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu}) .{ }^{13} \mathbf{C}$ NMR $\delta 163.5(\mathrm{C}=\mathrm{O}), 151.0(\mathrm{NHC}=\mathrm{ON}), 140.9(\mathrm{NCH}=\mathrm{CHCO}), 103.3$ $(\mathrm{CCp}), 101.5(\mathrm{NCH}=C \mathrm{CHCO}), 86.9(\mathrm{CCp}), 71.5(\mathrm{CHCp}), 69.4(\mathrm{Cp}), 61.9(\mathrm{CHCp}), 61.7$ $(\mathrm{CHCp}), 57.3(\mathrm{CHN}), 50.0\left(\mathrm{CH}_{2} t-\mathrm{Bu}\right), 48.0\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 31.9\left(\mathrm{CHCH}_{2} t-\mathrm{Bu}\right), 30.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $30.1\left(\mathrm{CH}_{3}\right)$. MS (EI, 70 eV) $\mathrm{m} / \mathrm{z} 407\left([\mathrm{M}+1]^{+}, 13\right), 406\left([\mathrm{M}]^{+}, 47\right), 295$ ([M-(uracil) $]^{+}, 18$), 294 (64), 238 ([M-(uracil)-($t-\mathrm{Bu})]^{+}, 32$), 237 (72), 172 (21), 121 ([FeCp] ${ }^{+}, 100$), 103 (48), 57 (16). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{FeN}_{2} \mathrm{O}_{2}$ 406.1343. Found 406.134.

II.9. Synthesis of 13 and 14a through Mukaiyama-Michael addition.

To a solution of trifluoromethanesulfonic acid ($150 \mu \mathrm{~L}, 0.57$ equiv., 1.66 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(15.3 \mathrm{~mL}\right.$) under argon atmosphere was added dropwise at $-78^{\circ} \mathrm{C}$ a 2 M solution of AlMe_{3} in toluene ($290 \mu \mathrm{~L}, 0.20$ equiv., 0.58 mmol). After 5 min at this temperature, the mixture was stirred 30 min at room temperature. The mixture was then recooled to $-78^{\circ} \mathrm{C}$ and the ester $\mathbf{6}$ (1 g , 1 equiv., 2.92 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.5 \mathrm{~mL})$ was added dropwise, followed by the addition of the silylenolether $\mathbf{1 2}^{3}$ (930 mg , 1.57 equiv., 4.58 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.5 \mathrm{~mL})$. The solution was stirred for 2.5 h at $-78^{\circ} \mathrm{C}^{4}$ and MeOH was then added. After warming to $0^{\circ} \mathrm{C}$, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the layers were separated. The aqueous layer was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic layers were washed with brine, dried over MgSO_{4}, filtered and concentrated under vacuum. Purification by flash chromatography (cyclohexane/ethyl acetate $3 / 1$) afforded the addition product $\mathbf{1 3}$ as an orange oil ($635 \mathrm{mg}, 58 \%$) and the cyclized product $\mathbf{1 4 a}$ as a dark red oil ($397 \mathrm{mg}, 34 \%, 92 \%$ global yield). ${ }^{4}$

[^1]Data for addition product 13:
$[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}$-42.6, $[\alpha]^{20}{ }_{546}-52.4\left(c \quad 0.385, \mathrm{CHCl}_{3}\right.$). IR (neat) $v 3092(\mathrm{w}), 2977(\mathrm{~m}), 2948(\mathrm{~m}), 1731$ (C=Ost, s), 1711 (C=Ost, s), 1445 (m), 1370 (m), 1340 (w), 1293 (m), 1216 (m), 1158 (s), $1090(\mathrm{~m}), 818(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\delta 4.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCp}), 4.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CHCp}), 4.05(\mathrm{q}, J=$ $\left.7.1,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.02(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 3.80(\mathrm{q}, J=7.1$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right), 2.90(\mathrm{dd}, J=15.4,4.1,1 \mathrm{H}, \mathrm{CHCHHCO} 2 \mathrm{Et}), 2.78(\mathrm{dd}, J=$ 15.3, 9.7, 1H, CHCHHCO 2 Et$), 2.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 1.17\left(\mathrm{t}, J=7.1,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $0.99\left(\mathrm{t}, J=7.1,3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}$ NMR $\delta 172.0(\mathrm{C}=\mathrm{O}), 171.8(\mathrm{C}=\mathrm{O}), 171.3(\mathrm{C}=\mathrm{O}), 93.5$ $(\mathrm{CCp}), 70.5(\mathrm{CHCp}), 70.3(\mathrm{CHCp}), 69.9(\mathrm{Cp}), 69.0(\mathrm{CHCp}), 68.0(\mathrm{CCp}), 60.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 59.6$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 51.0\left(\mathrm{CH}_{3} \mathrm{O}\right), 39.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 37.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 30.8\left(\mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right)_{2}\right), 13.9$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 13.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 431\left([\mathrm{M}+1]^{+}, 25\right), 430\left([\mathrm{M}]^{+}, 100\right), 319(17)$, $121\left([\mathrm{FeCp}]^{+}, 24\right)$. HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FeO}_{6}$ 430.1078. Found 430.108.

Data for cyclization product 14a:
$[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}+309\left(c 0.085, \mathrm{CHCl}_{3}\right)$. IR (neat) $v 3105(\mathrm{w}), 2978(\mathrm{w}), 2928(\mathrm{w}), 1731(\mathrm{C}=\mathrm{Ost}, \mathrm{s})$, 1703 (C=Ost, s), 1462 (w), 1425 (w), 1369 (w), 1327 (w), 1255 (m), 1154 (m), 1106 (w), 1026 (m), $822(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\delta 4.64$ (br s, $1 \mathrm{H}, \mathrm{CHCp}$), 4.55 (br s, $1 \mathrm{H}, \mathrm{CHCp}$), 4.41 (br s, $1 \mathrm{H}, \mathrm{CHCp}), 4.19(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.15\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.73(\mathrm{~d}, J=6.2,1 \mathrm{H}, \mathrm{CHCO}), 3.66(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCHCO}$), 2.90 (dd, $J=15.6,6.9,1 \mathrm{H}, \mathrm{C} H \mathrm{HCHCHCO}$), 2.82 (dd, $J=15.8,7.7,1 \mathrm{H}$, CHHCHCHCO), $1.23\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}$ NMR $\delta 199.0(\mathrm{C}=\mathrm{O}), 171.4(\mathrm{C}=\mathrm{O}), 168.9$ $(\mathrm{C}=\mathrm{O}), 106.5(\mathrm{CCp}), 78.9(\mathrm{CCp}), 76.3(\mathrm{CHCp}), 70.5(\mathrm{Cp}), 66.2(\mathrm{CHCp}), 65.1\left(\mathrm{CHCO}_{2} \mathrm{Et}\right)$, $61.9(\mathrm{CHCp}), 61.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 60.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 40.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 34.0\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Et}\right), 14.2$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$. MS (EI, 70 eV$) \mathrm{m} / \mathrm{z} 399\left([\mathrm{M}+1]^{+}, 15\right), 398\left([\mathrm{M}]^{+}, 68\right), 353$ (21), 352 (45), 325 (12), 324 (39), 252 (20), 121 ([FeCp] $]^{+}, 100$), 103 (36), 89 (62), 56 ([Fe] ${ }^{+}, 58$). HRMS (EI, 70 $\mathrm{eV})$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FeO}_{5}$ 398.0816. Found 398.082.

II.10. Synthesis of 14 a and 14b through group-selective Dieckmann cyclization.

Procedure A using LDA: To a solution of triester 13 ($1.3 \mathrm{~g}, 1$ equiv., 3.03 mmol) in THF (10 mL) under argon atmosphere was added dropwise at $-78^{\circ} \mathrm{C}$ a solution of LDA in THF (prepared by a dropwise addition at $-78^{\circ} \mathrm{C}$ of a 1.6 M solution of $n-\mathrm{BuLi}$ ($2.1 \mathrm{~mL}, 1.1$ equiv., 3.33 mmol) onto DIPA ($515 \mu \mathrm{~L}, 1.2$ equiv., 3.64 mmol) in THF (33 mL). The solution was then allowed to warm to $0^{\circ} \mathrm{C}$ for 15 min and used directly.). After the addition, the temperature was allowed to warm slowly to $-60^{\circ} \mathrm{C}$ and was stirred overnight at this temperature. The reaction mixture was quenched at $0^{\circ} \mathrm{C}$ in an ice bath with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The two phases were separated and the aqueous layer was washed with MTBE. The combined organic layers were then washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents were removed under vacuum. Purification by flash chromatography (cyclohexane/ethyl acetate 3/1) gave a $1: 1$ mixture of the two cyclized diastereoisomers 14a and $\mathbf{1 4 b}$ as a red oils ($1.18 \mathrm{~g}, 2.97 \mathrm{mmol}, 98 \%$).

Procedure B using KH: To a mixture of KH (30% in oil, washed with dry hexane, $770 \mathrm{mg}, 4$ equiv., 5.75 mmol) in THF (10 mL) under argon atmosphere was added the diester 13 (620 mg , 1 equiv., 1.44 mmol) in THF (36 mL). The reaction mixture was refluxed for 1 h . The red solution was then cooled to $0^{\circ} \mathrm{C}$ and water was added slowly and then a 1.0 M solution of aqueous HCl . The layers were separated and the aqueous layer was washed with MTBE. The combined organic layers was washed with NaHCO_{3}, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Purification by flash chromatography (cyclohexane/ethyl acetate 3/1) gave a $89: 11$ mixture of the two cyclized diastereoisomers $\mathbf{1 4 a}$ and $\mathbf{1 4 b}(462 \mathrm{mg}, 1.16$ mmol, 81\%).

II.11. Synthesis of diol 15 from 14a.

Under argon atmosphere, the diester $\mathbf{1 4 a}(257 \mathrm{mg}, 0.65 \mathrm{mmol})$ was dissolved in ethanol (10 mL) and to this solution was added at room temperature a 1 M aqueous solution of $\mathrm{NaOH}(10$ mL). The mixture was then heated at $+80^{\circ} \mathrm{C}$ overnight. After cooling, MTBE was added and the phases separated. The organic layer was washed with a 1.0 M solution of NaOH (3x). The combined aqueous layers were then acidified with a 2.0 M solution of HCl and the carboxylic
acid extracted with MTBE (3x). The combined MTBE extracts were finally washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to afford the intermediate monocarboxylic acid. MS (EI, 70 eV) m/z $299\left([\mathrm{M}+1]^{+}, 15\right), 298\left([\mathrm{M}]^{+}, 100\right), 121\left([\mathrm{FeCp}]^{+}, 23\right)$, $56\left([\mathrm{Fe}]^{+}, 25\right)$. HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{FeO}_{3}$ 298.0292. Found 298.029. The crude carboxylic acid (173 mg , 1 equiv., 0.58 mmol) was dissolved in THF (5 mL) under argon atmosphere and the solution was cooled at $0^{\circ} \mathrm{C}$. A 1 M solution of LiAlH_{4} in ether $(1.74$ $\mathrm{mL}, 3$ equiv., 1.74 mmol) was added dropwise. Temperature was allowed to warm slowly to room temperature and the mixture was stirred overnight at room temperature. An aqueous solution of NaOH 1 N was then added carefully. The mixture was then filtered through a pad of celite, rinced many times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the filtrate was concentrated under vacuum. Purification by flash chromatography (cyclohexane/ethyl acetate $1 / 1$) afforded a yellow oil which solidifies ($68 \mathrm{mg}, 0.24 \mathrm{mmol}, 41 \%$ for 2 steps). An analytical sample of $\mathbf{1 5}$ could be prepared by recristallization in 1,2-dichloroethane. $\mathbf{M p}\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right):+115-117^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}}$ $+16.5,[\alpha]^{20}{ }_{546}+21.6,\left(c 0.43, \mathrm{CHCl}_{3}\right)$. IR (neat) $v 3327$ (OHst, m), 3090 (w), 2922 (m), 2851 (m), 1725 (w), 1673 (w), 1447 (m), 1410 (m), 1327 (m), 1260 (s), 1104 (s), 1079 (s), 1040 (s), 1007 (s), 997 (s), 884 (m), 804 (s$), 734(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\delta 4.52(\mathrm{q}, J=7.0,1 \mathrm{H}, \mathrm{CHOH})$, 4.28 (s, 5H, Cp), 4.13 (br t, 1H, CHCp), 4.02 (d, $J=2.0,1 \mathrm{H}, \mathrm{CHCp}), 3.97$ (d, $J=2.0,1 \mathrm{H}$, CHCp), 3.77 (t, $J=6.8,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 2.73 (dt, $\left.J=12.1,6.8,1 \mathrm{H}, \mathrm{C} H \mathrm{HCHOH}\right), 2.44(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 2.04 (hex, $J=6.8,1 \mathrm{H}, \mathrm{CHHCH} \mathrm{H}_{2} \mathrm{OH}$), $1.86(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH} H \mathrm{CHOH}+$ $\mathrm{CHHCH} \mathrm{H}_{2} \mathrm{OH}+\mathrm{OH}$), $1.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathbf{C}$ NMR $\delta 100.3(\mathrm{CCp}), 98.3(\mathrm{CCp}), 70.0(\mathrm{CHCp})$, $69.3(\mathrm{CHOH}), 68.3(\mathrm{Cp}), 61.8\left(\mathrm{CH}_{2} \mathrm{OH}\right), 60.7(\mathrm{CHCp}), 58.9(\mathrm{CHCp}), 47.1\left(\mathrm{CH}_{2} \mathrm{CHOH}\right), 38.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 32.2\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) . \mathbf{M S}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 313\left([\mathrm{M}+1]^{+}, 17\right), 312\left([\mathrm{M}]^{+}, 91\right)$, 284 (10), 247 ([M-(Cp) $\left.]^{+}, 23\right), 239$ ($\left.\left[\mathrm{M}-\left(\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right)\right]^{+}, 18\right), 215$ (24), 188 ([M-(Cp)$\left.\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right]^{+}, 7$), 175 (19), 121 ([FeCp] ${ }^{+}, 100$), 103 (31), 56 ([Fe] ${ }^{+}, 98$).

II.12. Synthesis of $\mathbf{1 6}$ via selective mono-protection of $\mathbf{1 5}$.

To a solution of diol 15 ($80 \mathrm{mg}, 1$ equiv., 0.28 mmol) and DMAP (3.6 mg , 0.1 equiv., 0.03 $\mathrm{mmol})$ in pyridine (2.8 mL) was added dropwise $\mathrm{TDSCl}(56 \mu \mathrm{~L}, 1$ equiv., 0.28 mmol$)$ under argon atmosphere. After 2 h at room temperature, water and then 1 NHCl were added successively. The product was extracted with MTBE and the organic phase was washed with
brine, dried over MgSO_{4}, filtered and concentrated under vacuum. The crude alcohol was dissolved in dry pyridine (1.7 mL) under argon atmosphere and acetic anhydride ($640 \mu \mathrm{~L}$) was added dropwise. After stirring overnight at room temperature, a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added. The acetate was extracted with MTBE and the organic layer was washed successively with saturated aqueous NaHCO_{3} and brine. The organic solution was then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Purification by flash chromatography (cyclohexane/ethyl acetate 4/1) afforded 16 as a yellow oil ($113 \mathrm{mg}, 0.24$ $\mathrm{mmol}, 86 \%$ for 2 steps). $[\boldsymbol{\alpha}]^{\mathbf{2 0}}{ }_{\mathbf{D}} \mathbf{- 8 7 . 4},[\alpha]^{20}{ }_{546}-115.2,[\alpha]^{20}{ }_{365}-156.4$ (c 0.385, CHCl_{3}). IR (neat) $v 2955$ (m), 2860 (w), 1734 (C=Ost, s), 1463 (w), 1367 (w), 1237 (s), 1094 (s), 1036 (m), $816(\mathrm{~s}), 776(\mathrm{~m}), 613(\mathrm{w}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR $\delta 5.44(\mathrm{t}, J=7.3,1 \mathrm{H}, \mathrm{CHOAc}), 4.22(\mathrm{~s}, 5 \mathrm{H}$, Cp), 4.09 (t, $J=2.2,1 \mathrm{H}, \mathrm{CHCp}), 3.95(\mathrm{~d}, J=2.2,1 \mathrm{H}, \mathrm{CHCp}), 3.74$ (d, $J=2.1,1 \mathrm{H}, \mathrm{CHCp})$, 3.72 ($\mathrm{t}, J=6.6,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 2.74 (dt, $\left.J=12.2,7.0,1 \mathrm{H}, \mathrm{C} H \mathrm{HCHOAc}\right), 2.53(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHHCHOAc}+\mathrm{CHHCH} 2 \mathrm{O}), 1.85(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CHHCH} 2 \mathrm{O}), 1.63\left(\right.$ hep, $\left.J=6.8,1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.88\left(\mathrm{~d}, J=6.9,6 \mathrm{H},(\mathrm{CH})_{2} \mathrm{CH}\right), 0.85(\mathrm{~s}, 6 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 0.11\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right) .{ }^{13} \mathbf{C}$ NMR $\delta 170.9(\mathrm{C}=\mathrm{O}), 101.1(\mathrm{CCp}), 93.0(\mathrm{CCp}), 72.6$ (CHOAc), $69.9(\mathrm{CHCp}), 68.5(\mathrm{Cp}), 61.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 60.4(\mathrm{CHCp}), 60.2(\mathrm{CHCp}), 42.3$ $\left(\mathrm{CH}_{2} \mathrm{CHOAc}\right), 38.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 34.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $31.8\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right)$, $25.1\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 21.0}\right.$ $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 20.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 18.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right),-3.34\left(\mathrm{CH}_{3} \mathrm{Si}\right),-3.37\left(\mathrm{CH}_{3} \mathrm{Si}\right)$. MS $(\mathrm{EI}, 70 \mathrm{eV})$ $m / z 470$ ($[\mathrm{M}]^{+}, 26$), 410 (100), 250 (39), 133 (20). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{FeO}_{3} \mathrm{Si}^{470.1940 \text {. Found 470.194. }}$

II.13. Synthesis of the cytosine derivative 17.

The general procedure for nucleobase introduction was used (see II.6.). Amounts: acetate 16 (85 mg , 1 equiv., 0.18 mmol), (TMS) $)_{2}$ cytosine (186 mg , 4 equiv., 0.72 mmol), in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL), TMSOTf ($195 \mu \mathrm{~L}, 6$ equiv., 1.08 mmol), stirred for 0.5 h . Flash chromatography (ethyl acetate/methanol 4/1) afforded the deprotected alcohol 17 as a major product, yellow solid (48 $\mathrm{mg}, 0.13 \mathrm{mmol}, 75 \%$) and a little amount of the TDS-protected ferrocenyl nucleoside analog

18, yellow solid ($3 \mathrm{mg}, 0.006 \mathrm{mmol}, 3 \%$). Mp: decomposition at $240^{\circ} \mathrm{C}$. $[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}-196,[\alpha]^{20}{ }_{546}$ -275 (c 0.255, EtOH). IR (neat) v3328 (OHst, m), 3180 (NHst, m), 2924 (w), 2860 (w), 1635 (C=Ost, s), 1602 (s), 1521 (m), 1482 (s), 1395 (m), 1276 (s), 1184 (w), 1105 (w), 1051 (w), $999(\mathrm{w}), 787(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathbf{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta 6.86(\mathrm{~d}, J=7.4,1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHC}), 5.70(\mathrm{~d}, J=$ $7.4,1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHC}), 5.66(\mathrm{~d}, J=6.4,1 \mathrm{H}, \mathrm{CHN}), 4.29(\mathrm{t}, J=2.2,1 \mathrm{H}, \mathrm{CHCp}), 4.25(\mathrm{~s}, 5 \mathrm{H}$, $\mathrm{Cp}), 4.20(\mathrm{~d}, J=2.2,1 \mathrm{H}, \mathrm{CHCp}), 4.18(\mathrm{~d}, J=2.2,1 \mathrm{H}, \mathrm{CHCp}), 3.73$ (br t, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 2.72 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHHCHN}+\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $2.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{CHN}$), 2.13 (hex, $J=6.6,1 \mathrm{H}$, $\mathrm{CHHCH} \mathrm{H}_{2} \mathrm{OH}$), 1.91 (hex, $\left.J=6.8,1 \mathrm{H}, \mathrm{CH} H \mathrm{CH}_{2} \mathrm{OH}\right) .{ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 167.2\left(\mathrm{NH}_{2}-\right.$ $\mathrm{C}=\mathrm{N}), 159.0(\mathrm{C}=\mathrm{O}), 143.3(\mathrm{NCH}=\mathrm{CHC}), 103.1(\mathrm{CCp}), 95.7(\mathrm{NCH}=C H C), 90.0(\mathrm{CCp}), 76.6$ $(\mathrm{CHCp}), 70.4(\mathrm{Cp}), 63.1(\mathrm{CHCp}), 62.8(\mathrm{CHCp}), 61.8\left(\mathrm{CH}_{2} \mathrm{OH}\right), 59.0(\mathrm{CHN}), 46.5$ $\left(\mathrm{CH}_{2} \mathrm{CHN}\right), 39.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 33.5\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) . \mathbf{M S}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 379\left([\mathrm{M}]^{+}, 8\right)$, 314 ([M-(Cp) $\left.]^{+}, 2\right), 269$ ([M-(cytosine) $]^{+.}$and/or $\left.\left[\mathrm{M}-(\mathrm{Cp})-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)\right]^{+}, 21\right), 268$ ([M-(cytosine)-1] ${ }^{+}$and/or $\left.\left[\mathrm{M}-(\mathrm{Cp})-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)-1\right]^{+}, 100\right), 231$ (27), 210 (17), 172 (19), 137 (18), 121 ($[\mathrm{FeCp}]^{+}, 43$), 56 ($[\mathrm{Fe}]^{+}, 29$). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{FeN}_{3} \mathrm{O}_{2}$ 379.0983. Found 379.098.

II.14. Synthesis of the cytosine derivative 18.

17

18

Under argon atmosphere, the alcohol 17 (32 mg , 1 equiv., 0.084 mmol), imidazole (14 mg , 2.4 equiv., 0.20 mmol) and DMAP ($0.9 \mathrm{mg}, 0.09$ equiv., 0.008 mmol) were dissolved in dry DMF $(800 \mu \mathrm{~L})$. TDSCl ($20 \mu \mathrm{~L}, 1.2$ equiv., 0.100 mmol$)$ was added dropwise and the mixture was stirred overnight at room temperature. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was then added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. Purification by flash chromatography (ethyl acetate then ethyl acetate/methanol 95/5) afforded $\mathbf{1 8}$ as a yellow powder ($40 \mathrm{mg}, 0.077$ mmol, 92%). Mp: decomposition starts when $\mathrm{T}>200^{\circ} \mathrm{C} \cdot[\alpha]^{\mathbf{2 0}}{ }_{\mathbf{D}}-174,[\alpha]^{20}{ }_{546}-241$ (c 0.30 , CHCl_{3}). IR (neat) v 3349 (w), 3146 (w), 3092 (w), 2953 (m), 2860 (m), 1643 (s), 1624 (s), 1517 (m), 1484 (s), 1392 (m), 1277 (m), 1249 (m), 1105 (m), 829 (m), 776 (m) cm ${ }^{-1} .{ }^{\mathbf{1}} \mathbf{H}$

NMR $\delta 6.68(\mathrm{~d}, J=7.7,1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHC}), 6.60-5.80\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.69(\mathrm{~d}, J=6.5,1 \mathrm{H}$, CHN), 5.52 (d, $J=7.3,1 \mathrm{H}, \mathrm{NCH}=\mathrm{CHC}$), $4.20(\mathrm{t}, J=2.3,1 \mathrm{H}, \mathrm{CHCp}), 4.17(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Cp}), 4.08$ (d, $J=2.2,1 \mathrm{H}, \mathrm{CHCp}), 4.05(\mathrm{~d}, J=2.2,1 \mathrm{H}, \mathrm{CHCp}), 3.68\left(\mathrm{t}, J=6.7,2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.61(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CHHCHN}+\mathrm{CHCH}_{2} \mathrm{CHN}$), 2.34 (dd, $J=12.3,5.7,1 \mathrm{H}, \mathrm{CHHCHN}$), 2.00 (hex, $J=6.6$, $1 \mathrm{H}, \mathrm{CHHCH} \mathrm{H}_{2} \mathrm{O}$), 1.82 (hex, $J=6.6,1 \mathrm{H}, \mathrm{CH} H \mathrm{CH}_{2} \mathrm{O}$), $1.58\left(\mathrm{sep}, J=7.0,1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.83$ (d, $\left.J=6.8,6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 0.81\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 0.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Si}\right)$. ${ }^{13} \mathbf{C}$ NMR $\delta 165.3\left(\mathrm{NH}_{2}-\mathrm{C}=\mathrm{N}\right), 156.6(\mathrm{C}=\mathrm{O}), 142.0(\mathrm{NCH}=\mathrm{CHC}), 101.8(\mathrm{CCp}), 93.4$ $(\mathrm{NCH}=\mathrm{CHC}), 88.8(\mathrm{CCp}), 71.1(\mathrm{CHCp}), 69.2(\mathrm{Cp}), 61.7(2 \times \mathrm{CHCp}), 61.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 57.2$ $(\mathrm{CHN}), 45.4\left(\mathrm{CH}_{2} \mathrm{CHN}\right)$, $38.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 34.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 32.0\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\right), 25.1$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 20.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 18.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right),-3.4\left(\mathrm{CH}_{3} \mathrm{Si}\right) . \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV}) \mathrm{m} / \mathrm{z} 521\left([\mathrm{M}]^{+}\right.$, 5), 411 ([M-(cytosine) $]^{+}$and/or $\left.\left[\mathrm{M}-(\mathrm{Cp})-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)\right]^{+}, 32\right), 410$ ([M-(cytosine)-1] ${ }^{+}$and/or $\left.\left[\mathrm{M}-(\mathrm{Cp})-\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)-1\right]^{+}, 100\right), 250(100), 231$ (97), 168 (37), 121 ($[\mathrm{FeCp}]^{+}, 79$), 73 (82). HRMS (EI, 70 eV) calcd. for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{FeN}_{3} \mathrm{O}_{2} \mathrm{Si} 521.2161$. Found 521.216.

X-ray Crystallographic Data for Compound 6

6

Table 1. Crystal data and structure refinement for $\mathbf{6}$.

Identification code	z_pj193
Empirical formula	C17 H18 Fe O4
Formula weight	342.16
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P21
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=9.7914(6) \mathrm{A} \quad \text { alpha }=90 \text { deg. } \\ & \mathrm{b}=8.0967(3) \mathrm{A} \quad \text { beta }=114.960(2) \text { deg. } \\ & \mathrm{c}=10.6853(7) \mathrm{A} \quad \text { gamma }=90 \text { deg. } \end{aligned}$
Volume	767.99(7) A^3
Z, Calculated density	$2,1.480 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$0.997 \mathrm{~mm}^{\wedge}$-1
F(000)	356
Crystal size	$3 \times .2 \times .2 \mathrm{~mm}$
Theta range for data collection	2.10 to 26.99 deg.
Limiting indices	$-10<=\mathrm{h}<=12,-8<=\mathrm{k}<=10,-11<=1<=13$
Reflections collected / unique	$3908 / 3053[\mathrm{R}(\mathrm{int})=0.0270]$
Reflection observed [I>2sigma(I)] 2640	
Completeness to theta $=26.99$	99.6 \%
Absorption correction	None
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	3053 / 1/249
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	0.967
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0365, \mathrm{wR} 2=0.0669$
R indices (all data)	$\mathrm{R} 1=0.0465, \mathrm{wR} 2=0.0694$
Absolute structure parameter	0.004(17)
Largest diff. peak and hole	0.268 and -0.310 e.A^-3

Table 2. Atomic coordinates ($\times 10^{\wedge} 4$) and equivalent isotropic displacement parameters $\left(\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3\right)$ for 6 .
$\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Fe}(1)$	$7111(1)$	$904(1)$	$2796(1)$	$18(1)$
$\mathrm{C}(1)$	$1232(3)$	$736(4)$	$33(3)$	$17(1)$
$\mathrm{O}(3)$	$793(2)$	$409(2)$	$906(2)$	$22(1)$
$\mathrm{O}(4)$	$331(2)$	$1316(2)$	$-1236(2)$	$20(1)$
$\mathrm{O}(5)$	$7519(3)$	$-2996(3)$	$4651(2)$	$26(1)$
$\mathrm{C}(6)$	$5377(4)$	$-520(3)$	$1511(3)$	$16(1)$
$\mathrm{C}(7)$	$3820(4)$	$-233(3)$	$1266(3)$	$16(1)$
$\mathrm{C}(8)$	$6472(4)$	$-1484(4)$	$2603(4)$	$17(1)$
$\mathrm{C}(9)$	$6225(4)$	$-2403(4)$	$3692(3)$	$20(1)$
$\mathrm{C}(10)$	$2788(3)$	$554(4)$	$190(3)$	$19(1)$
$\mathrm{C}(11)$	$7889(4)$	$-1347(4)$	$2510(4)$	$21(1)$
$\mathrm{O}(12)$	$5024(3)$	$-2606(3)$	$3727(2)$	$32(1)$
$\mathrm{C}(13)$	$7674(4)$	$-307(4)$	$1382(4)$	$23(1)$
$\mathrm{C}(14)$	$6152(4)$	$195(4)$	$770(3)$	$20(1)$
$\mathrm{C}(15)$	$7416(4)$	$-3924(5)$	$5762(3)$	$31(1)$
$\mathrm{C}(16)$	$-1263(4)$	$1475(4)$	$-1547(4)$	$19(1)$
$\mathrm{C}(1 \mathrm{~A})$	$-2054(4)$	$-159(4)$	$-1997(4)$	$29(1)$
$\mathrm{C}(2 \mathrm{~A})$	$6207(5)$	$2757(4)$	$3499(4)$	$31(1)$
$\mathrm{C}(3 \mathrm{~A})$	$8594(5)$	$1803(5)$	$4660(5)$	$45(1)$
$\mathrm{C}(4 \mathrm{~A})$	$7128(5)$	$1785(4)$	$4585(4)$	$34(1)$
$\mathrm{C}(5 \mathrm{~A})$	$8551(6)$	$2825(6)$	$3577(6)$	$55(2)$
$\mathrm{C}(6 \mathrm{~A})$	$7079(6)$	$3422(5)$	$2869(5)$	$42(1)$

Table 3. Anisotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for 6 .
The anisotropic displacement factor exponent takes the form:
$-2 \mathrm{pi}^{\wedge} 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{* \wedge} 2 \mathrm{U} 11+\ldots+2 \mathrm{hk} \mathrm{a} \mathrm{a}^{*} \mathrm{U} 12\right]$

U11 U22 U33 U23 U13 U12

$\mathrm{Fe}(1)$	$16(1)$	$19(1)$	$19(1)$	$-2(1)$	$9(1)$	$-1(1)$
$\mathrm{C}(1)$	$16(1)$	$13(2)$	$21(2)$	$-3(2)$	$7(1)$	$-2(2)$
$\mathrm{O}(3)$	$18(1)$	$30(2)$	$21(1)$	$3(1)$	$10(1)$	$2(1)$
$\mathrm{O}(4)$	$16(1)$	$25(1)$	$20(1)$	$6(1)$	$7(1)$	$2(1)$
$\mathrm{O}(5)$	$28(1)$	$25(1)$	$22(1)$	$8(1)$	$8(1)$	$4(1)$
$\mathrm{C}(6)$	$17(2)$	$19(2)$	$13(2)$	$-4(1)$	$7(1)$	$-4(1)$
$\mathrm{C}(7)$	$17(2)$	$19(2)$	$14(2)$	$-3(1)$	$8(2)$	$-4(1)$
$\mathrm{C}(8)$	$13(2)$	$19(2)$	$18(2)$	$-1(1)$	$4(2)$	$2(1)$
$\mathrm{C}(9)$	$23(2)$	$15(2)$	$21(2)$	$-2(1)$	$9(2)$	$0(1)$
$\mathrm{C}(10)$	$19(2)$	$22(2)$	$18(2)$	$1(1)$	$9(1)$	$-1(1)$
$\mathrm{C}(11)$	$18(2)$	$23(2)$	$23(2)$	$-1(1)$	$10(2)$	$4(2)$
$\mathrm{O}(12)$	$23(1)$	$40(1)$	$33(2)$	$12(1)$	$12(1)$	$-2(1)$
$\mathrm{C}(13)$	$20(2)$	$30(2)$	$24(2)$	$-4(2)$	$16(2)$	$0(1)$
$\mathrm{C}(14)$	$21(2)$	$25(2)$	$17(2)$	$-1(2)$	$11(2)$	$-1(1)$
$\mathrm{C}(15)$	$43(2)$	$26(2)$	$20(2)$	$3(2)$	$10(2)$	$2(2)$
$\mathrm{C}(16)$	$13(2)$	$21(2)$	$22(2)$	$4(1)$	$6(2)$	$3(1)$
$\mathrm{C}(1 \mathrm{~A})$	$24(2)$	$25(2)$	$28(2)$	$1(2)$	$1(2)$	$-3(2)$
$\mathrm{C}(2 \mathrm{~A})$	$28(2)$	$27(2)$	$38(2)$	$-13(2)$	$12(2)$	$3(2)$
$\mathrm{C}(3 \mathrm{~A})$	$34(3)$	$35(2)$	$41(3)$	$-19(2)$	$-10(2)$	$5(2)$
$\mathrm{C}(4 \mathrm{~A})$	$54(3)$	$24(2)$	$26(2)$	$-8(2)$	$20(2)$	$-6(2)$
$\mathrm{C}(5 \mathrm{~A})$	$47(3)$	$49(3)$	$89(4)$	$-42(3)$	$49(3)$	$-33(2)$
$\mathrm{C}(6 \mathrm{~A})$	$77(4)$	$15(2)$	$31(3)$	$-1(2)$	$20(3)$	$-6(2)$

Table 4. Hydrogen coordinates (x $10^{\wedge} 4$) and isotropic displacement parameters $\left(\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3\right)$ for 6 .

x		y	z	$\mathrm{U}(\mathrm{eq})$
H(15A)	7112	-3187	6327	46
$\mathrm{H}(15 \mathrm{~B})$	8399	-4412	6336	46
H(15C)	6667	-4804	5377	46
H(1A1)	-1874	-594	-2770	44
H(1A2)	-3138	-7	-2289	44
H(1A3)	-1664	-940	-1225	44
H(1)	$2990(30)$	$980(50)$	$-520(30)$	$24(7)$
H(2)	$5750(30)$	$880(50)$	$-20(30)$	$21(7)$
H(3)	$8850(40)$	$-1850(40)$	$3120(30)$	$24(9)$
H(4)	$-1400(30)$	$1810(30)$	$-760(30)$	$15(8)$
H(5)	$8440(40)$	$-100(40)$	$1140(30)$	$33(10)$
H(6)	$3590(40)$	$-670(40)$	$1900(30)$	$19(8)$
H(7)	$9510(50)$	$1070(70)$	$5290(40)$	$80(14)$
H(9)	$-1650(30)$	$2360(40)$	$-2320(30)$	$12(8)$
H(3A)	$5050(50)$	$2920(50)$	$3100(40)$	$64(13)$
H(7A)	$6810(50)$	$4130(60)$	$2090(40)$	$69(14)$
H(5A)	$6860(40)$	$1230(50)$	$5240(40)$	$46(11)$
H(9A)	$9240(60)$	$3050(60)$	$3400(50)$	$81(19)$

X-ray Crystallographic Data for Compound 15

15

Table 5. Crystal data and structure refinement for $\mathbf{1 5}$.

Identification code	pj213
Empirical formula	C15 H18 Fe O2
Formula weight	286.14
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P212121
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=7.8262(5) \mathrm{A} \quad \text { alpha }=90 \text { deg. } \\ & \mathrm{b}=12.4546(10) \mathrm{A} \quad \text { beta }=90 \text { deg. } . \\ & \mathrm{c}=26.589(2) \mathrm{A} \quad \text { gamma }=90 \text { deg. } \end{aligned}$
Volume	2591.7(3) A^3
Z, Calculated density	$8,1.467 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$1.154 \mathrm{~mm}^{\wedge}-1$
F(000)	1200
Crystal size	. $3 \times .1 \times .1 \mathrm{~mm}$
Theta range for data collection	2.24 to 26.99 deg.
Limiting indices	$-9<=\mathrm{h}<=6,-15<=\mathrm{k}<=14,-15<=\mathrm{l}<=33$
Reflections collected / unique	$8433 / 5113[\mathrm{R}(\mathrm{int})=0.0522]$
Reflection observed [I>2sigma(I)] 2996	
Completeness to theta $=26.99$	96.5 \%
Absorption correction	None
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	5113 / 0 / 329
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	0.894
Final R indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0460, \mathrm{wR} 2=0.0759$
R indices (all data)	$\mathrm{R} 1=0.1063, \mathrm{wR} 2=0.0881$
Absolute structure parameter	0.007(19)
Largest diff. peak and hole	0.536 and -0.460 e. $\mathrm{A}^{\wedge}-3$

Table 6. Atomic coordinates ($\times 10^{\wedge} 4$) and equivalent isotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for $\mathbf{1 5}$.
$U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	y					z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Fe}(2)$	$9034(1)$	$7602(1)$	$2028(1)$	$37(1)$			
$\mathrm{O}(1)$	$7350(4)$	$8359(3)$	$3254(1)$	$38(1)$			
$\mathrm{C}(2)$	$6782(5)$	$7627(4)$	$2411(2)$	$33(1)$			
$\mathrm{C}(4)$	$7321(6)$	$6560(4)$	$2336(2)$	$40(1)$			
$\mathrm{C}(9)$	$5881(5)$	$9249(3)$	$1989(2)$	$35(1)$			
$\mathrm{C}(11)$	$11262(6)$	$7244(4)$	$2380(2)$	$51(2)$			
$\mathrm{C}(12)$	$10856(6)$	$8326(4)$	$2457(2)$	$43(1)$			
$\mathrm{C}(18)$	$6540(5)$	$8126(4)$	$1936(2)$	$37(1)$			
$\mathrm{C}(19)$	$6251(6)$	$8388(4)$	$2818(2)$	$35(1)$			
$\mathrm{C}(21)$	$5969(6)$	$1194(4)$	$1670(2)$	$43(1)$			
$\mathrm{C}(22)$	$10749(5)$	$8856(4)$	$1988(2)$	$46(1)$			
$\mathrm{O}(25)$	$6896(3)$	$11922(3)$	$1356(1)$	$46(1)$			
$\mathrm{C}(30)$	$6982(5)$	$7372(4)$	$1558(2)$	$41(1)$			
$\mathrm{C}(31)$	$7458(6)$	$6401(4)$	$1801(2)$	$44(1)$			
$\mathrm{C}(32)$	$6295(5)$	$9493(4)$	$2553(2)$	$37(1)$			
$\mathrm{C}(34)$	$11447(6)$	$7080(5)$	$1850(2)$	$56(2)$			
$\mathrm{C}(38)$	$11120(6)$	$8064(5)$	$1621(2)$	$54(2)$			
$\mathrm{C}(42)$	$6622(6)$	$10048(4)$	$1614(2)$	$42(1)$			
$\mathrm{Fe}(1)$	$2509(1)$	$5462(1)$	$352(1)$	$36(1)$			
$\mathrm{C}(3)$	$222(6)$	$5495(5)$	$-13(2)$	$50(2)$			
$\mathrm{C}(5)$	$4944(5)$	$5520(4)$	$62(2)$	$33(1)$			
$\mathrm{O}(6)$	$5443(3)$	$3317(3)$	$-1490(1)$	$44(1)$			
$\mathrm{C}(10)$	$4186(6)$	$6139(4)$	$846(2)$	$53(2)$			
$\mathrm{C}(13)$	$4979(5)$	$5285(4)$	$585(2)$	$37(1)$			
$\mathrm{C}(14)$	$4118(6)$	$6518(4)$	$-3(2)$	$50(1)$			
$\mathrm{C}(15)$	$5932(5)$	$4700(4)$	$-238(2)$	$34(1)$			
$\mathrm{C}(16)$	$985(5)$	$4474(4)$	$-70(2)$	$42(1)$			

$\mathrm{C}(17)$	$624(5)$	$4779(4)$	$770(2)$	$44(1)$
$\mathrm{O}(20)$	$5031(3)$	$3563(3)$	$1016(1)$	$55(1)$
$\mathrm{C}(23)$	$-10(5)$	$5676(4)$	$512(2)$	$48(2)$
$\mathrm{C}(24)$	$3622(6)$	$6899(4)$	$484(2)$	$64(2)$
$\mathrm{C}(26)$	$6344(5)$	$3787(4)$	$-1074(2)$	$41(1)$
$\mathrm{C}(29)$	$5107(5)$	$4351(4)$	$-728(2)$	$39(1)$
$\mathrm{C}(35)$	$1228(5)$	$4037(3)$	$417(2)$	$41(1)$
$\mathrm{C}(36)$	$5904(6)$	$4264(4)$	$681(2)$	$42(1)$
$\mathrm{C}(1 \mathrm{~A})$	$6126(6)$	$3774(4)$	$152(2)$	$38(1)$

Table 7. Anisotropic displacement parameters ($\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3$) for $\mathbf{1 5}$.
The anisotropic displacement factor exponent takes the form:
-2 pi^2 [h^2 a*^2 U11 + ... +2 hka* b* U12]

U11		U22	U33	U23	U13	U12
$\mathrm{Fe}(2)$	$39(1)$	$48(1)$	$25(1)$	$-3(1)$	$2(1)$	$2(1)$
$\mathrm{O}(1)$	$39(2)$	$56(2)$	$19(2)$	$-2(2)$	$0(2)$	$8(2)$
$\mathrm{C}(2)$	$41(3)$	$34(3)$	$25(3)$	$-1(3)$	$2(2)$	$-5(2)$
$\mathrm{C}(4)$	$50(3)$	$40(3)$	$31(3)$	$3(3)$	$3(3)$	$-10(3)$
$\mathrm{C}(9)$	$36(2)$	$43(3)$	$27(3)$	$4(3)$	$2(2)$	$1(2)$
$\mathrm{C}(11)$	$40(3)$	$63(4)$	$49(4)$	$4(3)$	$-9(2)$	$11(3)$
$\mathrm{C}(12)$	$37(3)$	$58(4)$	$34(3)$	$-6(3)$	$6(2)$	$-3(3)$
$\mathrm{C}(18)$	$35(3)$	$50(3)$	$25(3)$	$-3(3)$	$-1(2)$	$-7(2)$
$\mathrm{C}(19)$	$38(3)$	$42(3)$	$25(3)$	$0(2)$	$5(2)$	$2(2)$
$\mathrm{C}(21)$	$37(3)$	$53(3)$	$38(3)$	$8(3)$	$-2(2)$	$-8(3)$
$\mathrm{C}(22)$	$32(3)$	$56(3)$	$50(3)$	$3(4)$	$-1(3)$	$-11(2)$
$\mathrm{O}(25)$	$43(2)$	$53(2)$	$42(2)$	$12(2)$	$2(2)$	$6(2)$
$\mathrm{C}(30)$	$43(3)$	$53(3)$	$26(3)$	$-8(3)$	$-2(2)$	$-4(3)$
$\mathrm{C}(31)$	$56(3)$	$41(3)$	$35(3)$	$-11(3)$	$7(3)$	$1(3)$
$\mathrm{C}(32)$	$41(3)$	$39(3)$	$31(3)$	$-2(3)$	$-4(2)$	$6(2)$
$\mathrm{C}(34)$	$42(3)$	$73(5)$	$53(4)$	$-9(3)$	$10(3)$	$7(3)$
$\mathrm{C}(38)$	$42(3)$	$89(5)$	$29(3)$	$-1(3)$	$4(3)$	$-9(3)$

$\mathrm{C}(42)$	$42(3)$	$52(3)$	$31(3)$	$-2(3)$	$-4(2)$	$0(2)$
$\mathrm{Fe}(1)$	$37(1)$	$33(1)$	$39(1)$	$0(1)$	$5(1)$	$-2(1)$
$\mathrm{C}(3)$	$47(3)$	$49(4)$	$55(4)$	$11(4)$	$-7(3)$	$-3(3)$
$\mathrm{C}(5)$	$37(3)$	$30(3)$	$33(3)$	$-2(3)$	$4(2)$	$-9(3)$
$\mathrm{O}(6)$	$48(2)$	$60(3)$	$25(2)$	$-9(2)$	$0(2)$	$14(2)$
$\mathrm{C}(10)$	$41(3)$	$61(4)$	$55(4)$	$-21(3)$	$13(3)$	$-10(3)$
$\mathrm{C}(13)$	$33(3)$	$45(4)$	$33(3)$	$-12(3)$	$4(2)$	$-4(2)$
$\mathrm{C}(14)$	$53(3)$	$39(3)$	$60(4)$	$11(3)$	$23(3)$	$-1(3)$
$\mathrm{C}(15)$	$34(3)$	$38(3)$	$31(3)$	$2(2)$	$2(2)$	$6(2)$
$\mathrm{C}(16)$	$37(3)$	$50(3)$	$39(3)$	$4(3)$	$-4(2)$	$-14(3)$
$\mathrm{C}(17)$	$36(3)$	$47(4)$	$47(3)$	$5(3)$	$1(2)$	$-4(2)$
$\mathrm{O}(20)$	$42(2)$	$85(3)$	$37(2)$	$28(2)$	$11(2)$	$8(2)$
$\mathrm{C}(23)$	$38(3)$	$37(3)$	$69(4)$	$6(3)$	$10(3)$	$9(2)$
$\mathrm{C}(24)$	$60(4)$	$29(3)$	$102(5)$	$-13(4)$	$28(3)$	$-9(3)$
$\mathrm{C}(26)$	$45(3)$	$54(3)$	$24(3)$	$4(3)$	$2(2)$	$3(3)$
$\mathrm{C}(29)$	$36(3)$	$61(4)$	$20(3)$	$-5(3)$	$1(2)$	$8(2)$
$\mathrm{C}(35)$	$42(3)$	$26(3)$	$56(4)$	$6(3)$	$5(3)$	$3(2)$
$\mathrm{C}(36)$	$34(3)$	$70(4)$	$22(3)$	$7(3)$	$4(2)$	$-6(3)$
$\mathrm{C}(1 \mathrm{~A})$	$41(3)$	$35(3)$	$37(3)$	$3(2)$	$1(2)$	$7(2)$

Table 8. Hydrogen coordinates ($\mathrm{x} 10^{\wedge} 4$) and isotropic displacement parameters $\left(\mathrm{A}^{\wedge} 2 \times 10^{\wedge} 3\right)$ for 15.

x		y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{H}(1)$	6765	8461	3514	57
$\mathrm{H}(4)$	7551	6043	2590	48
$\mathrm{H}(9)$	4612	9236	1947	42
$\mathrm{H}(11)$	11393	6714	2634	61
$\mathrm{H}(12)$	10679	8653	2775	51
$\mathrm{H}(19)$	5052	8223	2922	42
$\mathrm{H}(21 \mathrm{~A})$	4742	11218	1580	51
$\mathrm{H}(21 B)$	6082	11420	2025	51

H(22)	10483	9590	1931	55
H(25)	7932	11918	1439	69
H(30)	6964	7494	1206	49
H(31)	7807	5758	1638	53
H(32A)	7437	9827	2586	45
H(32B)	5431	9982	2699	45
H(34)	11736	6427	1687	68
H(38)	11143	8187	1269	64
H(42A)	7881	10053	1650	50
H(42B)	6357	9796	1269	50
H(3)	-80	5973	-276	60
H(6)	6040	2828	-1617	66
H(10)	4053	6194	1200	63
H(14)	3925	6873	-314	61
H(15)	7091	4997	-313	41
H(16)	1282	4140	-379	51
H(17)	641	4690	1125	52
H(20)	5696	3072	1109	82
H(23)	-506	6296	661	58
H(24)	3022	7545	553	76
H(26A)	7198	4307	-1201	49
H(26B)	6958	3219	-887	49
H(29A)	4142	3863	-653	47
H(29B)	4640	4990	-901	47
H(35)	1716	3357	491	49
H(36)	7056	4432	823	50
H(1A1)	5247	3216	92	45
H(1A2)	7268	3438	121	45

[^0]: ${ }^{1}$ Riant, O.; Samuel, O.; Flessner, T.; Taudien, S .; Kagan, H. B. J. Org. Chem. 1997, 62, 6733.
 ${ }^{2}$ Rapic, V.; Schlögl, K.; Steinitz, B. Monatsh. Chem. 1977, 108, 767.

[^1]: ${ }^{3}$ Kita, Y.; Segawa, J.; Haruta, J.-i.; Yasuda, H.; Tamura, Y. J. Chem. Soc., Prekin Trans. 1 1982, 1099.
 ${ }^{4}$ When the temperature was allowed to warm slowly to room temperature after 30 min . and stirred overnight at r.t., 43% of $\mathbf{1 4 a}$ was isolated as a single diastereomer besides 47% of $\mathbf{1 3}$ (90% global yield).

