Selective Synthesis of Epolactaene Featuring Efficient Construction of Methyl (Z)-2-Iodo-2-butenoate and (2*R*,3*S*,4*S*)-2-Trimethylsilyl-2,3-epoxy-4-methyl-γ-

butyrolactone

Ze Tan and Ei-ichi Negishi

Supplemental Information

General Procedures. All reactions were run under a dry Ar atmosphere. Reactions were monitored by GC analysis of reaction aliquots. GC analysis was performed on an HP6890 Gas Chromatograph using an HP-5 capillary column (30 m x 0.32 mm, 0.5 μM film) packed with SE-30 on Chromosorb W. Column chromatography was carried out on 230-400 mesh silica gel. ¹H and ¹³C NMR spectra were recorded on a Varian-Inova-300 spectrometer. THF was distilled from sodium/benzophenone. ZnBr₂ was flame-dried under vacuum. The starting materials were purchased from commercial sources and used as received. Optical rotations were measured on an Autopol III polarimeter.

(*S*)-4-Trimethylsilyl-3-butyn-2-ol.^a To a mixture of (*S*)-3-butyn-2-ol (3.91 mL, 50 mmol) in THF (250 mL) at -78 °C was added dropwise *n*-butyllithium (2.5 M in hexanes, 40 mL, 100 mmol). After stirring for 1 h at -78 °C, TMSCl (15.8 mL, 125 mmol) was added via syringe. The reaction mixture was slowly warmed to room temperature and stirred overnight. The reaction mixture was concentrated via vacua to around 50 mL, then 50 mL of 3 N HCl was added. The mixture was stirred for 1 h and extracted with ether. The combined organic layers were washed with NaHCO₃, brine,

dried over MgSO₄, filtered and concentrated. Vacuum distillation gave 7.1 g of the desired product in 85% yield: b.p. 75 °C (15 mmHg),

(2R,3S,4S)-2-Trimethylsilyl-2,3-epoxy-4-methyl- γ -butyrolactone (4).^b To a mixture of *i*-BuMgCl (2.0 M in Ether, 50 mL, 100 mmol) in ether (50 mL) was added Cp₂TiCl₂ (0.5 g, 2.0 mmol) at 0 °C. The mixture was stirred for 15 min and (*S*)-4-trimethylsilyl-3-butyn-2-ol (5.68 g, 40 mmol) was added slowly. The reaction mixture was warmed up to room temperature and stirred overnight. Then CO₂ was vigorously bubbled though the reaction mixture until the whole reaction mixture turned into a gel. 3 N HCl (40 mL) was added carefully and the mixture was stirred at room temperature for 2 h. The mixture was extracted with ether and the ether layers were combined. The combined ether layers were washed with NaHCO₃, brine, dried over MgSO₄, filtered and concentrated. Vacuum distillation gave 5.03 g of the desired product in 71% yield:

To a mixture of the lactone obtained above (1.31 g, 7.7 mmol) in pyridine (30 mL) at 0 °C was added NaOCl (10-13%, 16.2 mL, 23 mmol). After 12 h at 0 °C, aqueous NaHCO₃ (1 M, 12 mL) was added and the resultant solution was extracted with ether. The organic layers were washed several times with 6 N HCl until all the pyridine was neutralized (checking with pH-paper). It was washed with NaHCO₃, brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel (90:10 hexanes:ethyl acetate) gave 730 mg the desired product as a low-melting solid in 51% yield: $[\alpha]_D^{23}$ -52° (c 1.1 CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 0.22 (s, 9 H), 1.35 (d, *J* = 6.7 Hz, 3 H), 3.75 (s, 1 H), 4.69 (q, *J* = 6.7 Hz, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ -3.61

(3C), 18.32, 51.99, 63.68, 75.43, 173.68. ppm; IR 2962, 2904, 1767, 1450, 1383, 1333, 1254 cm⁻¹; HRMS for C₈H₁₄O₃Si (M⁺) calcd. 186.0712, found 186.0713.

Methyl (*Z*)-2-Iodo-2-butenoate (3). To a mixture of CuI (19 g, 100 mmol) in 150 mL of ether, TMEDA (20 mL) under Ar at -45 °C was added 62.5 mL of Methyllithium (1.6 M in ether). After 3.5 h at -45 °C, the mixture was cooled to -78 °C and methyl propiolate (8.4 g, 100 mmol) was added slowly. The mixture was stirred and kept at -78 °C for 12 h until a solution of I₂ (30.5 g, 120 mmol) in THF was added via canula. After 3 h, the reaction mixture was quenched with saturated NH₄Cl. The reaction mixture was extracted with ether and the combined organic layers were washed with Na₂S₂O₃, brine, dried over MgSO₄, filtered and concentrated. The residue was purified through column chromatography (silica gel, 2% EA/Hexanes) to give 14 g of the desired product in 62% yield as a colorless liquid. The compound is stable in freezer for several months, however, decomposition slowly took place: ¹H NMR (CDCl₃, 300 MHz) δ 1.95 (d, *J* = 6.7 Hz, 3 H), 3.82 (s, 3 H), 7.32 (q, *J* = 6.7 Hz, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ 22.90, 53.40, 95.92, 148.75, 163.28 ppm.

но

(*E*)-3-Iodo-2-methyl-2-propen-1-ol (5).^d To a mixture of Me₃Al (25 mL, 250 mmol) and Cp₂ZrCl₂ (29.2 g, 100 mmol) in CH₂Cl₂ (100 mL) at 0 °C was added dropwise a solution of propargyl alcohol (5.68 g, 100 mmol) in CH₂Cl₂ (20 mL). After stirring for 14 h at rt, the reaction mixture was treated with a solution of I₂ (30.5 g, 120 mmol) in THF (50 mL) at -78 °C, warmed to 23 °C, and quenched with 3 N HCl. The mixture was extracted with ether, washed with NaHCO₃, Na₂S₂O₃, brine, dried over MgSO₄, filtered

and concentrated. The residue was distilled under vacuum to afford 11 g of the desired product (55%): b.p. 82-85 °C (2.5 mmHg); ¹H NMR (CDCl₃, 300 MHz) δ 1.83 (s, 3 H), 2.15 (bs, 1 H), 4.10 (s, 2 H), 6.26 (s, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.30, 67.00, 77.28, 147.10 ppm.

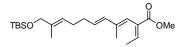
(E)-2-Methyl-hepta-2-en-6-yn-1-ol. In a flame-dried round-bottom flask was placed Mg turnings (0.72 g, 30 mmol) in THF (10 mL). The Mg turnings were activated with an I_2 crystal and dibromoethane (0.1 mL). To this mixture was added a solution of 4bromo-1-trimethylsilyl-1-butyne (3.05 g, 15 mmol) and anhydrous ZnBr₂ (3.35 g, 15 mmol) in THF (40 mL). After the addition was completed, the reaction mixture was placed in an oil bath and heated at 55 °C for 6 h until GLC analysis indicated the complete consumption of the homopropargyl bromide. In another reaction flask was placed 3-iodo-2-methyl-1-propenol (1.98 g, 10 mmol) in THF (10 mL). It was treated with 1 equivalent of EtZnBr generated in situ from EtMgBr (10 mL, 10 mmol, 1 M in THF) and anhydrous ZnBr₂. After the mixture was stirred for 30 min at room temperature, Pd(dppf)Cl₂ (400 mg, 0.55 mmol) and anhydrous DMF (20 mL) was added followed by the homopropargylzinc bromide generated above. The reaction mixture was stirred overnight and quenched with saturated NH₄Cl. After extracting the mixture with ether, the combined organic layers were dried over MgSO₄, filtered and concentrated. The crude product was treated with K₂CO₃ in MeOH until GC analysis showed the complete disappearance of crude product. The reaction mixture was diluted with saturated NH₄Cl and extracted with ether. The combined organic layers were dried over MgSO₄, filtered and concentrated. Flash colum chromatopraphy on silica gel (90:10 hexanes:ethyl actate) gave 0.92 g of the desired product in 74% over two steps: ¹H NMR (CDCl₃, 300 MHz) δ 1.59 (s, 3 H), 1.91 (t, *J* = 2.4 Hz, 1 H), 2.1-2.3 (m, 4 H), 2.45 (bs, 1 H), 4.0 (s, 2 H), 5.42 (t, *J* = 6.9 Hz, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.77, 18.62, 26.71, 68.46, 68.50, 84.22, 123.67, 136.46 ppm; LRMS (CI) for C₈H₁₂O (M⁺) calcd. 124, found 125 (M⁺+H).

но

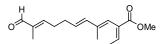
(*E,E*)-7-Iodo-2-methy-2,6-heptadien-1-ol. In a flame-dried flask under Ar was placed the alcohol obtained above (268 mg, 2.0 mmol) in THF (2 mL). DIBAL-H (0.36 mL, 2 mmol) was added via syringe slowly at 0 °C and the mixture was warmed to room temperature and stirred for 1 h. In another flame-dried flask covered with aluminum foil under Ar was placed Cp₂ZrCl₂ (700 mg, 2.4 mmol) in THF (3 mL). To this mixture was added dropwise DIBAL-H (0.43 mL, 2.4 mmol) at 0 °C. After 30 min, the pretreated alcohol mixture was transfered via canula into the second reaction flask and the resultant mixture was stirred at room temperature for 2 h until all the solid dissolved. Then, it was treated with a solution of I₂ (762 mg, 3.0 mmol) in THF (5 mL) at -78 °C. After stirring at 0 °C for 1 h, the reaction mixture was extracted with ether and quenched with saturated NH₄Cl. The reaction mixture was extracted with ether and the combined organic layers were washed sequentially with Na₂S₂O₃, brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel (90:10 hexanes:ethyl acetate) gave 370 mg of the desired product in 73% yield.

2-Methyl-2,6-nonadien-8-yn-1-ol. To a mixture of $ZnBr_2$ (2.25 g, 10 mmol) in THF (20 mL) was added dropwise ethynylmagnesium bromide (20 mL, 10 mmol, 0.5 M in THF) via syringe. After 30 min, (*E*,*E*)-7-Iodo-2-methy-2,6-heptadien-1-ol (2.0 g, 8.0

mmol), which was pretreated with one equivalent of EtZnBr (10 mmol), DMF (10 mL) and Pd(PPh₃)₄ (200 mg) were added sequentially. The reaction mixture was stirred for 5 h at room temperature and quenched with saturated NH₄Cl. After extracting the mixture with ether, the organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel (90:10 hexanes:ethyl acetate) afforded 1.0 g of the desired product in 84% yield: ¹H NMR (CDCl₃, 300 MHz) δ 1.66 (s, 3 H), 2.1-2.25 (m, 4 H), 2.79 (d, *J* = 2.1 Hz, 1 H), 4.0 (s, 2 H), 5.35-5.55 (m, 2 H), 6.2-6.35 (m, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.74, 26.65, 32.83, 68.72, 75.91, 82.42, 109.03, 124.51, 135.83, 145.96 ppm.

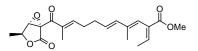

HO

(*E,E,E*)-2,8-Dimethyl-9-iodo-2,6,8-nonatrien-1-ol. To a mixture of Cp₂ZrCl₂ (584 mg, 2.0 mmol), Me₃Al (0.6 mL, 6 mmol) in CH₂Cl₂ (8 mL) was added at 0 °C the conjugated enyne obtained above (320 mg, 2.0 mmol). The mixture was warmed to room temperature and stirred overnight. The reaction mixture was cooled down to -78 °C and treated with a solution of I₂ (762 mg, 3.0 mmol) in THF (5 mL). The reaction vessel was placed in an ice-water bath and stirred for 1 h. The reaction was quenched with 3 N HCl and extracted with ether. The ether layers were combined and washed successively with Na₂S₂O₃, brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel (90:10 hexanes:ethyl acetate) gave 408 mg of the desired product in 70% yield: ¹H NMR (CDCl₃, 300 MHz) δ 1.39 (bs, 1 H), 1.67 (s, 3 H), 1.94 (s, 3 H), 2.1-2.2 (m, 4 H), 4.0 (s, 2 H), 5.4 (bs, 1 H), 5.76 (dt, *J* = 6.4, 15.6 Hz, 1 H), 6.16 (d, *J* = 15.6 Hz, 1 H), 6.20 (s, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ 13.74, 20.17, 27.29, 32.60, 68.82, 81.40, 125.05, 130.75, 131.52, 135.46, 145.12 ppm.

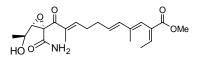

TBSO

(*E*,*E*,*E*)-9-*tert*-Butyldimethylsiloxyl-1-iodo-2,8-dimethyl-1,3,7-nonatriene (2).

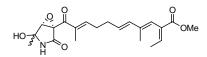
To a mixture of the alcohol obtained above (292 mg, 1.0 mmol) in DMF (3 mL) were added imidazole (102 mg, 1.5 mmol) and TBSCl (180 mg, 1.2 mmol). The reaction mixture was stirred for 3 h, diluted with ether, and quenched with saturated NH₄Cl. After extracting the mixture with ether, the combined organic layers were washed with water, brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel (hexanes) gave 365 mg of the desired product in 90% yield; ¹H NMR (CDCl₃, 300 MHz) δ 0.03 (s, 6 H), 0.89 (s, 9 H), 1.57 (s, 3 H), 1.91 (s, 3 H), 2.1-2.2 (m, 4 H), 3.99 (s, 2 H), 5.3-5.45 (m, 1 H), 5.7-5.8 (m, 1 H), 6.13 (d, *J* = 15.9 Hz, 1 H), 6.16 (s, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ -5.27 (2C), 13.49, 18.41, 20.14, 25.94 (3C), 27.18, 32.70, 68.43, 81.19, 123.34, 131.01, 131.41, 135.04, 145.16 ppm.


Methyl (2*E*,3*E*,5*E*,9*E*)-2-Ethylidene-4,10-dimethyl-11-*tert*butyldimethylsilyloxy-3,5,9-undecatrienoate (10). To a mixture of the vinyliodide obtained above (406 mg, 1.0 mmol) in THF (3 mL) at -78 °C under Ar was added dropwise *t*-BuLi (1.7 M in pentane, 1.2 mL, 2.1 mmol). The mixture was stirred at -78 °C for 1 h, then a solution of anhydrous $ZnBr_2$ (225 mg, 1.0 mmol) in THF (1 mL) was added via canula. The mixture was warmed to room temperature and stirred for 30 min. The volatiles were removed via vacuum and anhydrous DMF (4 mL) was added. In another flask were placed Pd₂(dba)₃ (23 mg, 0.025 mmol), TFP (23 mg, 0.1 mmol) in anhydrous DMF (2 mL). The mixture was stirred for 10 min until it turned clear. To this green solution were added methyl (*Z*)-2-iodo-2-butenoate (249 mg, 1.1 mmol) followed by the organozinc reagent generated above. The reaction was stirred for 3 h and quenched with saturated NH₄Cl. After extracting the mixture with ether, the organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel (95:5 hexanes:ethyl acetate) gave 282 mg of the desired product in 74% yield: ¹H NMR (CDCl₃, 300 MHz) δ 0.05 (s, 6 H), 0.94 (s, 9 H), 1.65 (s, 3 H), 1.66 (s, 3 H), 1.75 (dd, *J* =1.2, 7.1 Hz, 3 H), 2.1-2.3 (m, 4 H), 3.76 (s, 3 H), 4.05 (bs, 2 H), 5.4-5.5 (m, 1 H), 5.78 (dt, *J* = 6.7, 15.6 Hz, 1 H), 5.97 (s, 1 H), 6.25 (d, *J* =15.6 Hz, 1 H), 6.96 (q, *J* = 7.1 Hz, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ -5.29 (2C), 13.46, 14.34, 15.77, 18.39, 25.93 (3C), 27.46, 32.82, 51.77, 68.49, 122.08, 123.69, 130.16, 130.66, 134.17, 134.82, 139.04, 139.40, 167.95 ppm; HRMS for C₂₂H₃₈O₃Si (M⁺) calcd. 378.2590, found 378.2588.

Methyl (2E,3E,5E,9E)-2-Ethylidene-4,10-dimethyl-11-oxo-3,5,9undecatrienoate (9).^b To a solution of the compound obtained above (512 mg, 1.2 mmol) in THF (5 mL) was added TBAF (1 M in THF, 1.5 mL, 1.5 mmol) and AcOH (1.5 mmol). The reaction mixture was stirred at room temperature for 20 h and quenched with saturated NH₄Cl. After extracting the mixture with ether, the organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. Flash column chromatography on silica gel (95:5 hexanes:ethyl acetate) gave 310 mg of the desired product in 87% yield.


To a solution of the compound obtained above (255 mg, 0.96 mmol) in hexanes (5 mL) was added activated MnO_2 (1.26 g 14.5 mmol). The mixture was vigorously stirred until TLC analysis showed the complete disappearance of the starting material. The

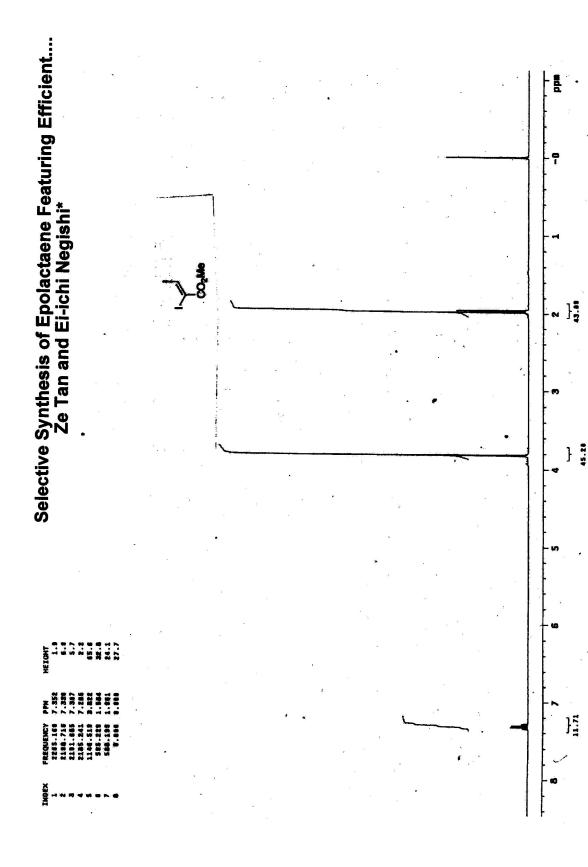
mixture was filtered and concentrated. Flash column chromatography on silica gel (95:5 hexanes:ethyl acetate) gave 210 mg of the desired product in 83% yield: ¹H NMR (CDCl₃, 300 MHz) δ 1.64 (d, *J* = 1.2 Hz, 3 H), 1.72 (dd, *J* = 1.2, 7.0 Hz, 3 H), 1.76 (s, 3 H), 2.3-2.45 (m, 2 H), 2.45-2.6 (m, 2 H), 3.73 (m, 3 H), 5.72 (dt, *J* = 6.5, 15.8 Hz, 1 H), 5.98 (s, 1 H), 6.26 (d, J = 15.8 1 H), 6.54 (dt, *J* = 1.1, 7.7 Hz, 1 H), 6.95 (q, *J* = 7.0 Hz, 1 H), 9.42 (s, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ 8.89, 14.03, 15.46, 28.49, 31.18, 51.43, 122.68, 127.98, 130.14, 134.86 (2C), 137.27, 153.19, 167.31, 194.71 ppm; IR 2983, 2849, 2850, 1716, 1687, 1641, 1435 cm⁻¹; HRMS for C₁₆H₂₂O₃ (M⁺) calcd. 262.1569, found 262.1568.

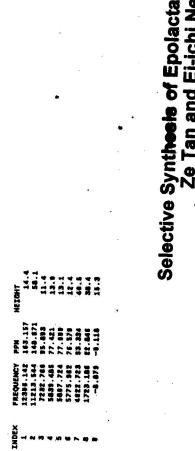


(1R,4S,5R)-4-methyl-1-[(2E,6E,8E,10E)-2,8-dimethyl-10-methoxycarbonyl-1oxododeca-2,6,10-trienyl]-3,6-dioxa-bicyclo[3.1.0]hexan-2-one (11):^b To a solution of 9 (132 mg, 0.5 mmol), TBAF (0.08 mmol, 15 mol%, pretreated with dry MS4A (1g/mmol)) and activated MS4A (0.5 g) in THF/hexane (1:1, 1 mL) at room temperature was added a solution of **4** (186 mg, 1.0 mmol) in THF (1.5 mL) slowly using a syringe pump in 12 h. After 36 h, the reaction mixture was diluted with EtOAc, filtered through a celite pad and concentrated. The crude product was treated with 3% HF in 3 mL of CH₃CN for 30 min. After the mixture was quenched with NaHCO₃, extracted with EtOAc, The combined organic layers were dried over MgSO₄, filtered and concentrated. The residue was purified via column chromatography (silica gel, 20-30% EtOAc:hexanes) and the reaction was repeated by using the recovered **9**. The combined amount of the desired aldol adduct isolated is 81 mg.

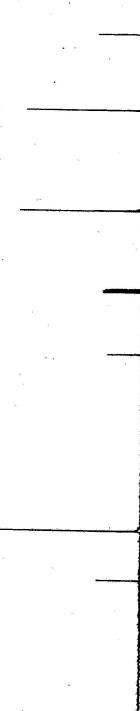
To a solution of DMSO (101 µl, 0.65 mmol) in CH₂Cl₂ (1 mL) was added TFAA (93 µL, 0.13 mmol) at -78 °C. After 30 min, a solution of the compound obtained above in CH₂Cl₂ (1 mL) was added via canula. After 3 h at -78 °C, Et₃N (0.31 mL, 2.2 mmol) was added and the mixture was warmed to rt and stirred for 1 h. The reaction mixture was quenched with water and extracted with CH₂Cl₂. the combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated. The residue was purified via column chromatography (silica gel, 2:1 ethyl actate:hexane) to give 11 (72 mg, 39% overall) as a pale yellow oil: $\left[\alpha\right]_{D}^{23} - 2.4^{\circ}$ (c 1.2 CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 1.50 (d, J = 7.0 Hz, 3 H), 1.62 (d, J = 1.2 Hz, 3 H), 1.73 (dd, J = 1.2, 7.0 Hz, 3 H), 1.87 (s, 3 H), 2.3-2.4 (m, 2 H), 2.45-2.55 (m, 2 H), 3.73 (s, 3 H), 4.09 (s, 1 H), 4.71 (q, J = 7.0 Hz, 1 H), 5.72 (dt, J = 6.5 Hz, 15.8 Hz, 1 H), 5.97 (s, 1 H), 6.26 (d, J = 15.8, 1 H)H), 6.88 (t, J = 5.8 Hz, 1 H), 6.94 (q, J = 7.0 Hz, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ 11.14, 14.28, 15.77, 17.77, 29.22, 31.30, 51.76, 60.24, 64.03, 75.48, 123.04, 127.98, 130.34, 135.42, 135.98, 137.55, 139.69, 149.37, 167.73, 168.27, 188.20 ppm; IR 2852, 1782, 1713, 1680, 1637, 1435 cm⁻¹; HRMS for $C_{21}H_{26}O_6$ (M⁺) calcd. 374.1729, found 374.1732.

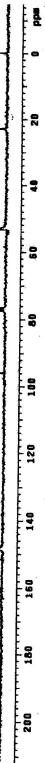
Methyl (3E,5E,9E,12R,13R,14S)-12-carbamoyl-12,13-epoxy-2-[(*E*)ethylidene]-4,10-dimethyl-14-hydroxy-11-oxopentadeca-3,5,9-trienoate. To a solution of compound 11 obtained above (38 mg, 0.1 mmol) in 0.5 mL of methanol at 0 °C was added NH₃ (2 mL, 8 M in methanol). After 30 min, the volatile was removed via vacua and the residue was purified through column chromatography (silica gel, 60:40, ethyl acetate:hexanes) to give 34 mg of the desired product in 87% yield: $[α]_D^{23}$ -55° (c 0.6 CHCl₃); ¹H NMR (CDCl₃, 300 MHz) δ 1.37 (d, *J* = 6.5 Hz, 3 H), 1.62 (s, 3 H), 1.73 (d, *J* = 7.0 Hz, 3 H), 1.80 (s, 3 H), 2.3-2.5 (m, 4 H), 3.18 (d, *J* = 7.6 Hz, 1 H), 3.67 (bs, 1 H), 3.73 (bs, 4 H), 5.72 (dt, *J* = 6.5, 15.8 Hz, 1 H), 5.95 (s, 1 H), 6.24 (d, *J* = 15.8 Hz, 1 H), 6.62 (bs, 2 H), 6.95 (q, *J* = 7.0 Hz, 1 H), 7.09 (t, *J* = 7.0 Hz, 1 H); ¹³C NMR (CDCl₃, 75 MHz) δ 11.20, 14.23, 15.77, 20.24, 28.94, 31.30, 51.87, 65.04, 65.40, 65.99, 122.76, 128.32, 130.28, 134.92, 135.37, 138.06, 139.86, 149.74, 167.59, 167.87, 192.92 ppm; IR 3460, 3344, 2978, 2951, 2929, 2854, 1689, 1635, 1599 cm⁻¹; HRMS for C₂₁H₂₉NO₆ (M⁺) calcd. 391.1995, found 391.1997.

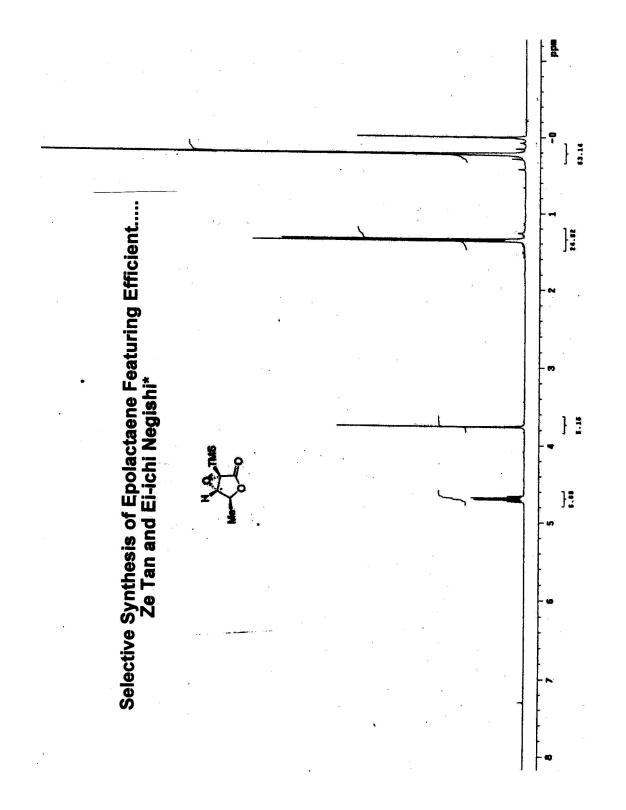


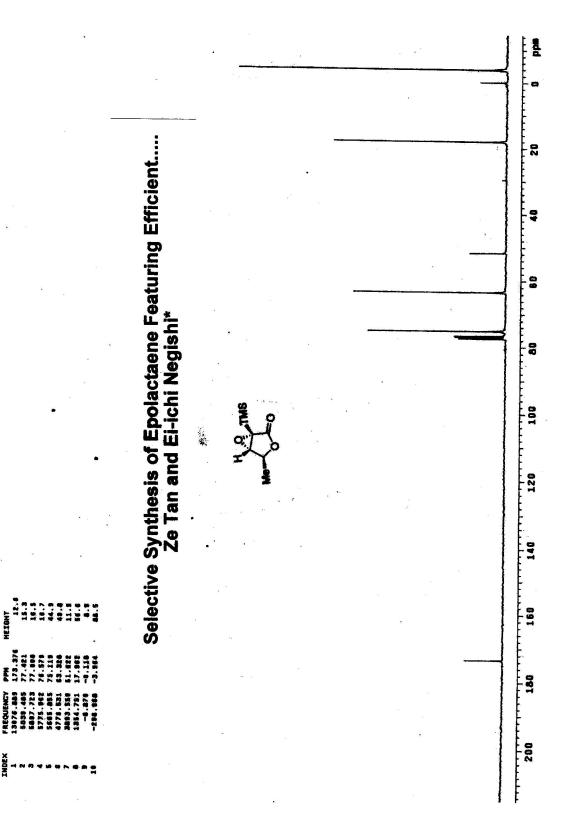

(+)-**Epolactaene** (1):^{b.c} To 110 mg (0.25 mmol) of Dess-Martin reagent in 2 mL of CH₂Cl₂ was added 0.5 mL of pyridine. After 0.5 h, 27 mg (0.07 mmol) of the compound obtained above in CH₂Cl₂ (0.5 mL) was added and the reaction was stirred until TLC showed the consumption of the starting material (2 h). After diluting the mixture with ether, a saturated solution of Na₂S₂O₃ was added and the mixture was stirred for 0.5 h. The layers were separated, and the aqueous phase was extracted with EtOAc. The combined organic phases were dried over MgSO₄, concentrated, and purified by column chromatography (30:70, hexanes:EtOAc) to give 19 mg (70%) of the desired aldehyde: dr = 1.8/1; $[\alpha]_D^{23} + 36.3^\circ$ (c 0.38 MeOH) lit.¹ $[\alpha]_D^{22} + 32^\circ$ (c 0.1 MeOH)]; ¹H NMR (CD₃OD, 300 MHz) δ 1.60 (s, 2 H), [minor isomer 1.64 (s, 1 H)], 1.69 (s, 3 H), 1.80 (d, *J* = 7.0 Hz, 3 H), 1.91 (s, 3 H), 2.35-2.5 (m, 2 H), 2.5-2.7 (m, 2 H), 3.79 (s, 2 H), [minor isomer 3.80 (s, 1 H)], 4.06 (s, 0.66 H), [minor isomer 4.14 (s, 0.33 H)], 4.92 (s, 1

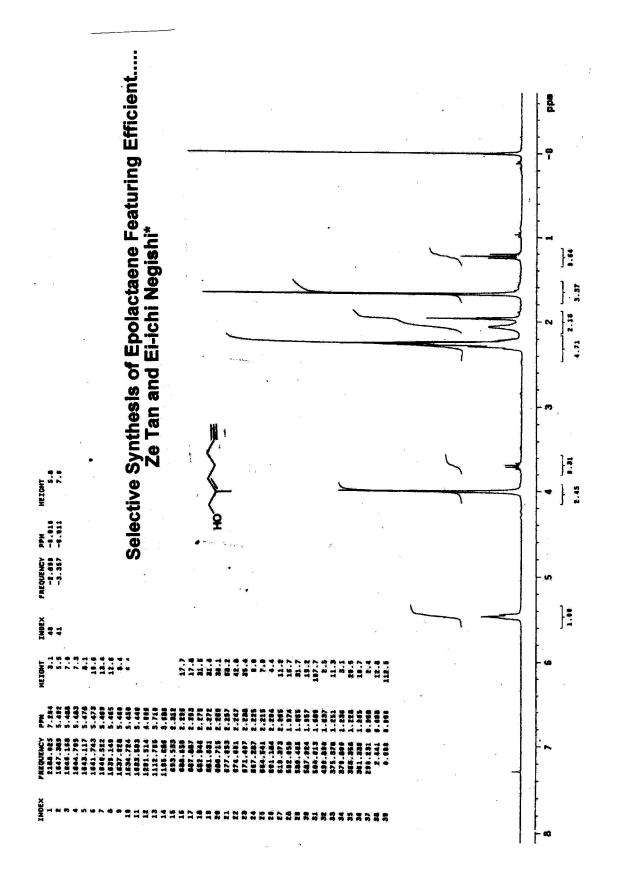
H), 5.86 (dt, J = 6.4, 15.8 Hz, 1 H), 6.03 (s, 1 H), 6.36 (d, J = 15.8 Hz, 0.66 H), [minor isomer 6.33 (d, J = 15.8 hz, 0.33 H)], 6.9-7.1 (m, 1 H), 7.10 (dt, J = 1.1, 7.0 Hz, 0.66 H), [minor isomer 6.80 (t, J = 6.7 Hz, 0.33 H) ppm; ¹³C NMR (CD₃OD, 75 MHz) δ 11.29, 14.75, 16.15, 22.38, 25.64, 29.82, 30.30, 31.06, 32.70, 52.53, 64.10, 64.86, 65.34 , 66.21, 84.20, 84.87, 123.81, 124.18, 129.85, 131.90, 132.01, 136.73, 136.84, 137.40, 13 9.53, 139.76, 140.99, 141.16, 149.22, 150.20, 169.57, 169.68, 170.38, 172.32, 191.86, 19 2.22 ppm; IR 3440, 3315, 2950, 2925, 1720, 1682, 1633 cm⁻¹; HRMS for C₂₁H₂₇NO₆ (M⁺) calcd. 389.1838, found 389.1844.

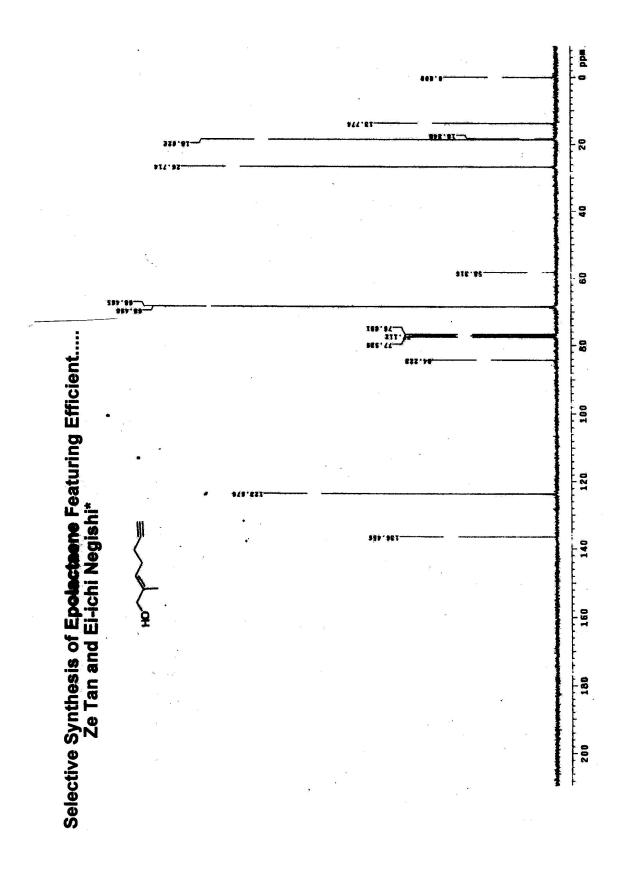

Reference

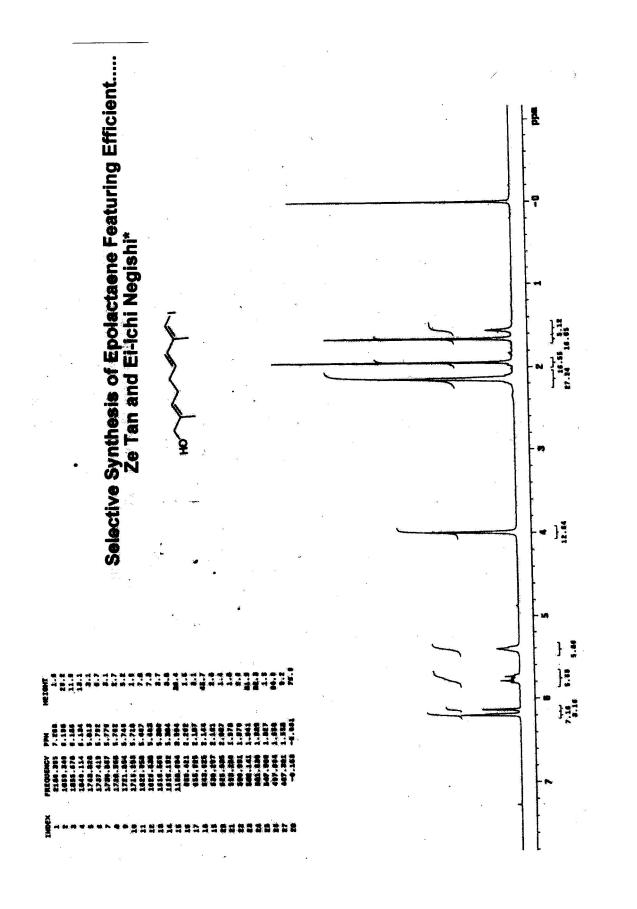

- (a) Sato, F.; Ishikawa, H.; Watanabe, H.; Miyake, T.; Sato, M. J. Chem. Soc., Chem. Commun. 1981, 718.
- (b) Kuramochi, K.; Nagata, S.; Itaya, H.; Takao, K.; Kobayashi, S. *Tetrahedron Lett.* 1999, 40, 7367. (b) Kuramochi, K.; Nagata, S.; Itaya, H.; Takao, K.; Kobayashi, S. *Tetrahedron Lett.* 1999, 40, 7371.
 (c) Kuramochi, K.; Nagata, H.; Matsubara, Y.; Sunoki, T.; Uchiro, H.; Takao, K.; Kobayashi, S. *Tetrahedron* 2003, 59, 9743.
- (c) (a) Hayashi, Y.; Narasaka, K. Chem. Lett. 1998, 313. (b) Hayashi, Y.;
 Kanayama, J.; Yamaguchi, J.; Shoji, M. J. Org. Chem. 2002, 67, 9443.
- (d) Liu, F.; Negishi, E. J. Org. Chem., **1997**, 62, 8591.

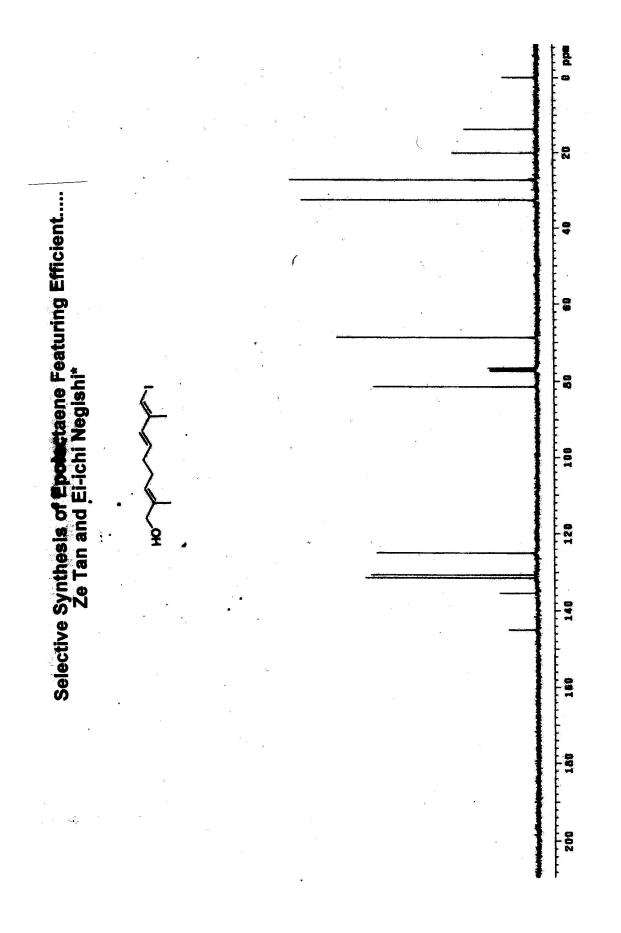


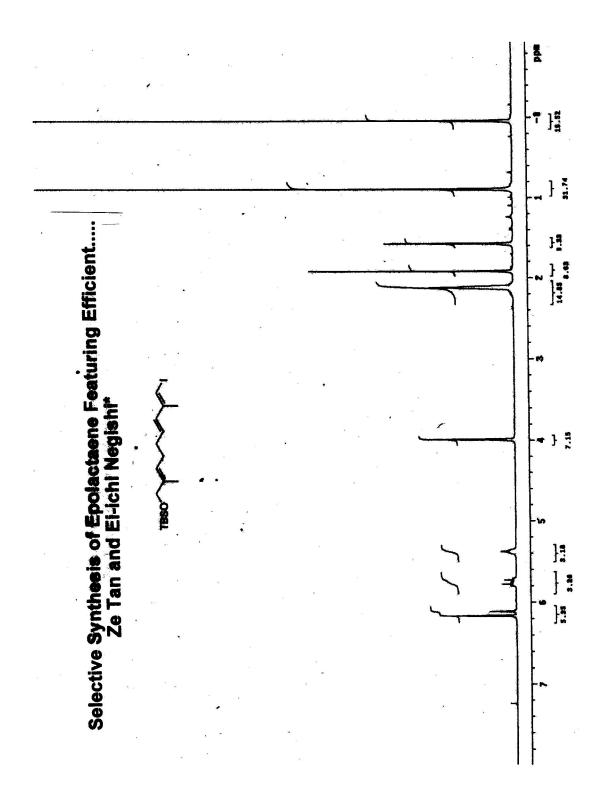


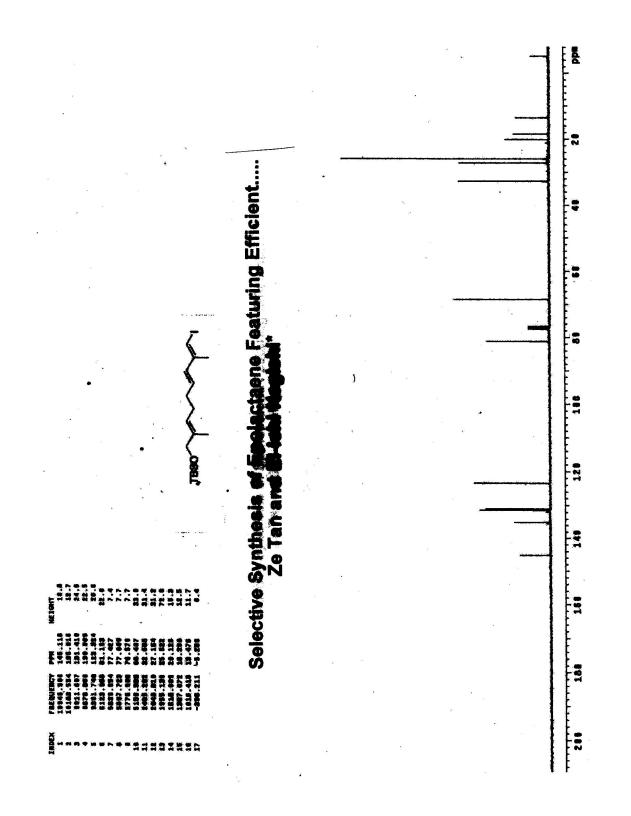


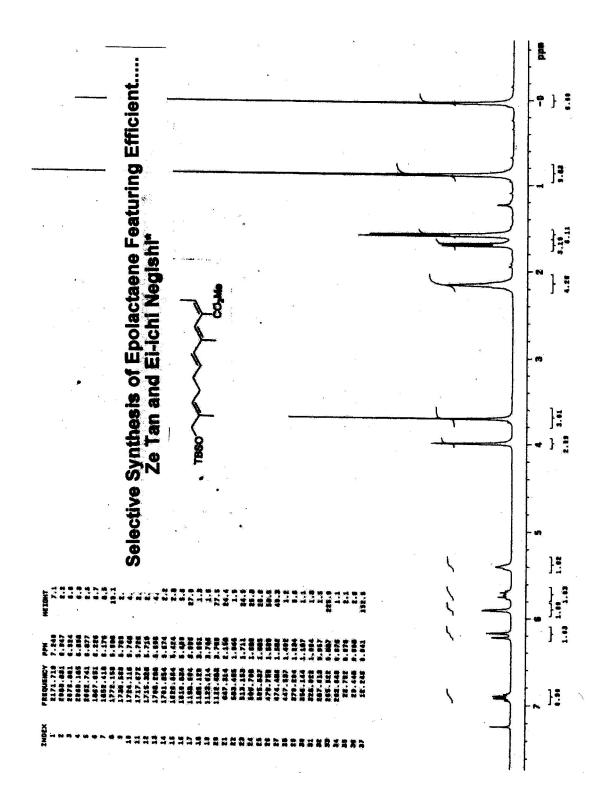

HEIGHT

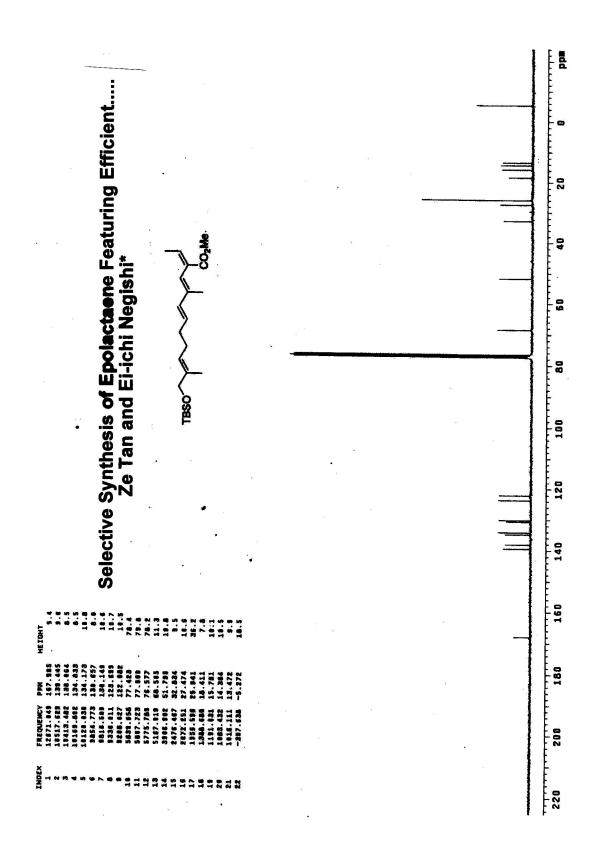

REQUENCY

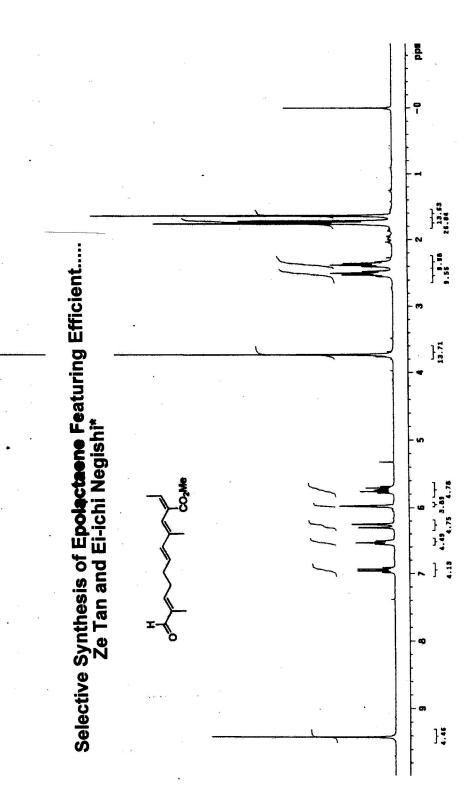

INDEX

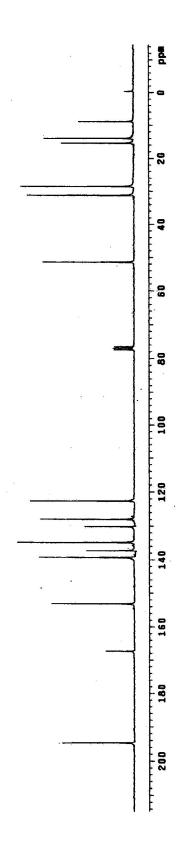


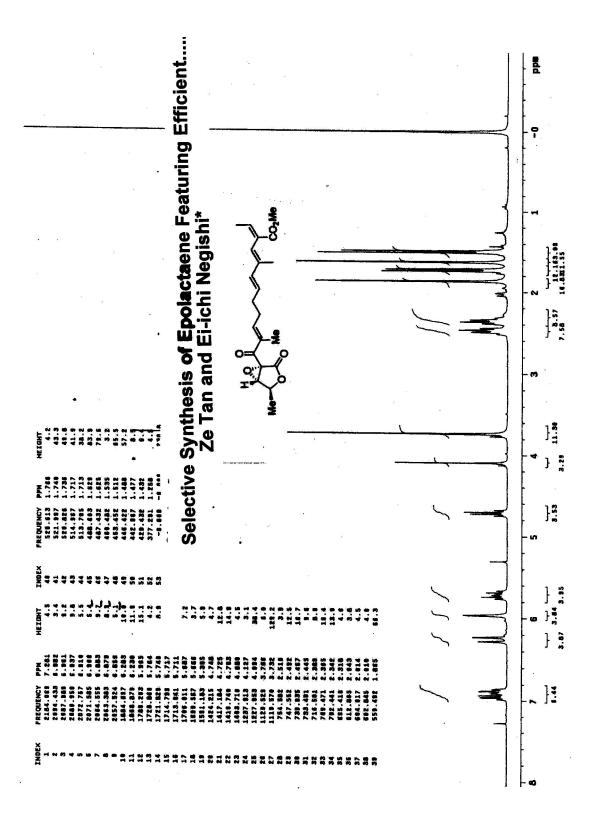


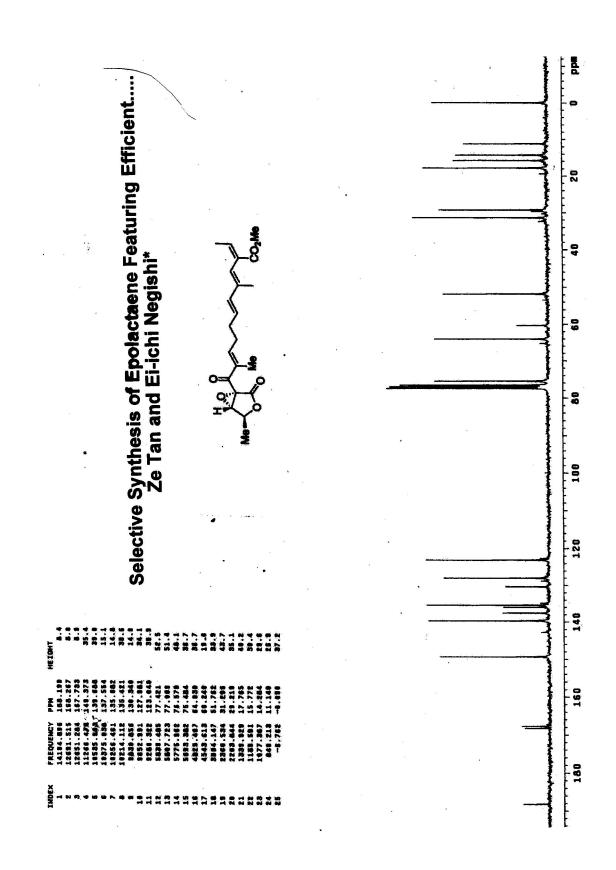


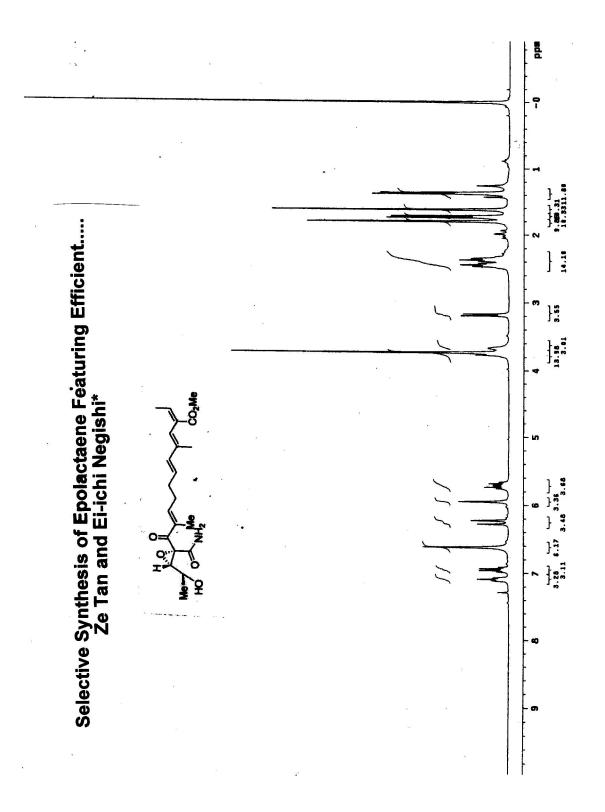


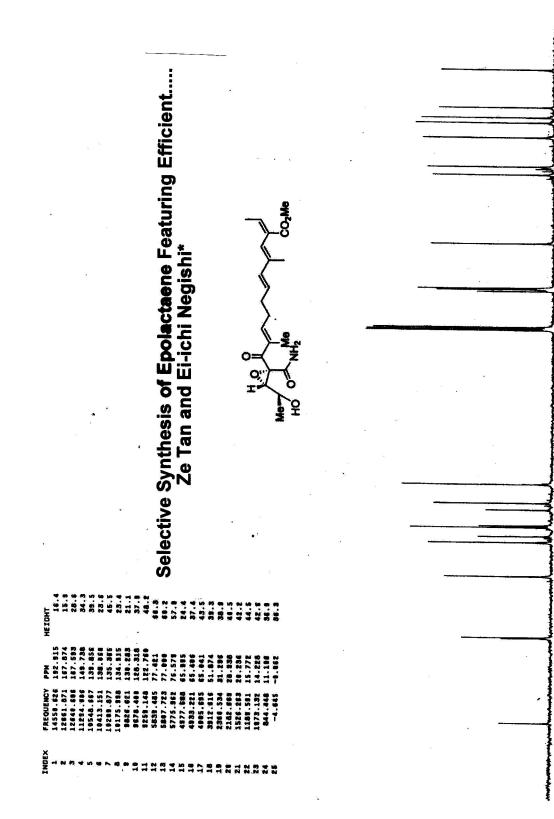


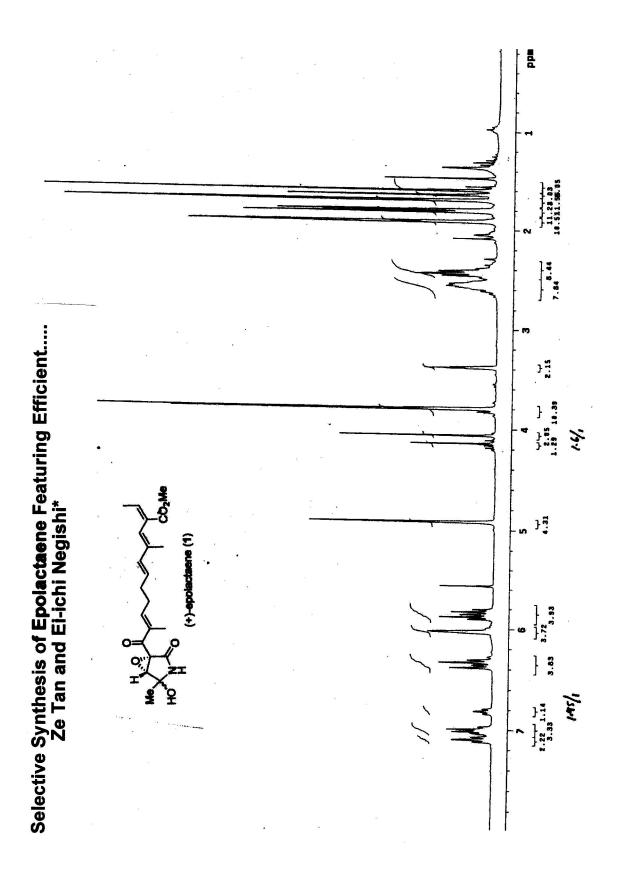


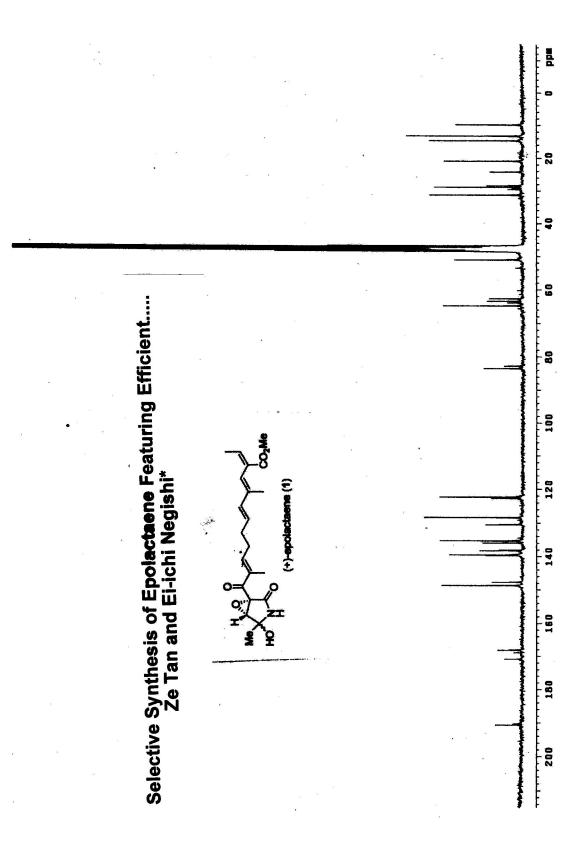



FREQUENCY	Ndd	HEIGHT
14808-140	134./12	6°22
025 8T421	210-101	
:	787.007	4.12
19504.202	133.241	31.2
18553.854	137.274	15.8
18171.765	134.853	36.2
9616.635	130.143	16.3
3652.332	127.961	30.7
3252.796	122.675	34.0
5839.488	77.421	6.6
5887.724	100.77	8.8
5775.963	76.579	5.4
3876.236	51.425	29.7
2352.465	31.164	8. 10
2148.781	28.459	37.8
1165.3951	15.463	23.6
1958.311	14.031	29.3
878-819	B. 884	18.1









- 8

120 100

