Supporting Information

Lipophilic Pyrylium Salts in the Synthesis of Efficient Pyridinium-based Cationic Lipids, Gemini Surfactants, and Lipophilic Oligomers for Gene Delivery

Marc Antoniu Ilies, William A. Seitz, Betty H. Johnson, Edward L. Ezell, Aaron L. Miller, E. Brad Thompson, and Alexandru T. Balaban^{*}

Summary:

- 1. Complete characterization of the investigated compounds;
- 2. Elemental analysis data for the compounds described in the paper

1. Characterization of the investigated compounds

4,6-Dimethyl-2-decylpyrylium hexafluorophosphate 14a: mp 67.6 °C; Yield 27%; ¹H-NMR (CDCl₃), δ, ppm: 7.70 (d, J = 1.7 Hz, 1H, H-5 pyrylium), 7.62 (d, J = 1.7 Hz, 1H, H-3 pyrylium), 3.07 (t, J = 7.8 Hz, 2H, Cα-<u>CH₂</u>), 2.86 (s, 3H, CH₃ α-pyrylium), 2.69 (s, 3H, CH₃ γ-pyrylium), 1.82 (quin, J = 7.7 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.40 (m, J = 7.7 Hz, 2H, Cα-CH₂CH₂CH₂), 1.25 (m, 12H, 6 CH₂ from n-alkyl chain), 0.88 (t, J = 6.7 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 181.0 (C-2 pyrylium), 177.7 (C-6 pyrylium), 174.7 (C-4 pyrylium), 123.8 (C-5 pyrylium), 122.5 (C-3 pyrylium), 34.7 (Cα-<u>C</u>H₂-), 31.8, 29.4, 29.3, 29.2, 29.0 (2C), 27.0 (all from n-alkyl chain), 23.5 (CH₃ γ-pyrylium), 22.6 (n-alkyl chain), 21.1 (CH₃ α-pyrylium), 14.0 (CH₃ from n-alkyl chain). Anal. (C₁₇H₂₉O⁺ PF₆⁻), C, H.

4,6-Dimethyl-2-undecylpyrylium hexafluorophosphate 14b: mp 62.8 °C; Yield 21%; ¹H-NMR (CDCl₃), δ, ppm: 7.70 (d, J = 1.8 Hz, 1H, H-5 pyrylium), 7.62 (d, J = 1.8 Hz, 1H, H-3 pyrylium), 3.06 (t, J = 7.8 Hz, 2H, Cα-<u>CH₂</u>), 2.85 (s, 3H, CH₃ α-pyrylium), 2.68 (s, 3H, CH₃ γ-pyrylium), 1.83 (quin, J = 7.7 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.40 (m, J = 7.7 Hz, 2H, Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 14H, 7 CH₂ from n-alkyl chain), 0.87 (t, J = 6.7 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 180.9 (C-2 pyrylium), 177.7 (C-6 pyrylium), 174.7 (C-4 pyrylium), 123.8 (C-5 pyrylium), 122.5 (C-3 pyrylium), 34.6 (Cα-<u>CH₂-), 31.8, 29.5, 29.3, 29.2, 29.0 (2C), 27.0 (all from n-alkyl chain), 23.4 (CH₃ γpyrylium), 22.6 (n-alkyl chain), 21.0 (CH₃ α-pyrylium), 14.0 (CH₃ from n-alkyl chain). Anal. (C₁₈H₃₁O⁺ PF₆⁻), C, H.</u>

4,6-Dimethyl-2-dodecylpyrylium hexafluorophosphate 14c: mp 78.7 °C; Yield 31%; ¹H-NMR (CDCl₃), δ, ppm: 7.69 (d, J = 1.8 Hz, 1H, H-5 pyrylium), 7.61 (d, J = 1.8 Hz, 1H, H-3 pyrylium), 3.05 (t, J = 7.8 Hz, 2H, Cα-<u>CH₂</u>), 2.85 (s, 3H, CH₃ α-pyrylium), 2.68 (s, 3H, CH₃ γ-pyrylium), 1.80 (quin, J = 7.7 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.40 (m, J = 7.7 Hz, 2H, Cα-CH₂CH₂CH₂), 1.25 (m, 16H, 8 CH₂ from n-alkyl chain), 0.87 (t, J = 6.7 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 180.9 (C-2 pyrylium), 177.7 (C- 6 pyrylium), 174.7 (C-4 pyrylium), 123.8 (C-5 pyrylium), 122.5 (C-3 pyrylium), 34.6 (Cα-<u>C</u>H₂-), 31.8, 29.6, 29.5, 29.3, 29.3, 29.0 (2C), 27.0 (all from n-alkyl chain), 23.5 (CH₃ γ-pyrylium), 22.6 (n-alkyl chain), 21.2 (CH₃ α-pyrylium), 14.1 (CH₃ from n-alkyl chain). Anal. (C₁₉H₃₃O⁺ PF₆⁻), C, H.

4,6-Dimethyl-2-tridecylpyrylium hexafluorophosphate 14d: mp 73.3 °C; Yield 19%; ¹H-NMR (CDCl₃), δ, ppm: 7.69 (s, 1H, H-5 pyrylium), 7.61 (s, 1H, H-3 pyrylium), 3.05 (t, *J* = 7.8 Hz, 2H, Cα-<u>CH₂</u>), 2.84 (s, 3H, CH₃ α-pyrylium), 2.67 (s, 3H, CH₃ γ-pyrylium), 1.80 (quin, *J* = 7.7 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.39 (m, *J* = 7.7 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.25 (m, 18H, 9 CH₂ from n-alkyl chain), 0.87 (t, *J* = 6.7 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 180.8 (C-2 pyrylium), 177.6 (C-6 pyrylium), 174.6 (C-4 pyrylium), 123.7 (C-5 pyrylium), 122.4 (C-3 pyrylium), 34.5 (Cα-<u>CH₂-</u>), 31.8, 29.6, 29.5, 29.5, 29.3, 29.2, 29.0 (2C), 26.9 (all from n-alkyl chain), 23.3 (CH₃ γ-pyrylium), 22.6 (n-alkyl chain), 20.9 (CH₃ α-pyrylium), 14.0 (CH₃ from n-alkyl chain). Anal. (C₂₀H₃₅O⁺ PF₆⁻), C, H.

4,6-Dimethyl-2-tetradecylpyrylium hexafluorophosphate 14e: mp 85.2 °C; Yield 32%; ¹H-NMR (CDCl₃), δ, ppm: 7.70 (s, 1H, H-5 pyrylium), 7.61 (s, 1H, H-3 pyrylium), 3.06 (t, J = 7.6 Hz, 2H, Cα-<u>CH₂</u>), 2.86 (s, 3H, CH₃ α-pyrylium), 2.69 (s, 3H, CH₃ γ-pyrylium), 1.80 (quin, J = 7.6 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.40 (m, J = 7.7 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.25 (m, 20H, 10 CH₂ from n-alkyl chain), 0.87 (t, J = 6.8 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 180.9 (C-2 pyrylium), 177.7 (C-6 pyrylium), 174.7 (C-4 pyrylium), 123.8 (C-5 pyrylium), 122.5 (C-3 pyrylium), 34.7 (Cα-<u>CH₂-</u>), 31.9, 29.6 (4C), 29.5, 29.3 (2C), 29.0 (2C), 27.0 (all from n-alkyl chain), 23.5 (CH₃ γ-pyrylium), 22.6 (n-alkyl chain), 21.1 (CH₃ α-pyrylium), 14.0 (CH₃ from n-alkyl chain). Anal. (C₂₁H₃₇O⁺ PF₆⁻), C, H.

4,6-Dimethyl-2-pentadecylpyrylium hexafluorophosphate 14f: mp 79.8 °C; Yield 25%; ¹H-NMR (CDCl₃), δ , ppm: 7.70 (s, 1H, H-5 pyrylium), 7.62 (s, 1H, H-3 pyrylium), 3.06 (t, J = 7.6 Hz, 2H, C α -<u>CH₂</u>), 2.86 (s, 3H, CH₃ α -pyrylium), 2.69 (s, 3H, CH₃ γ -pyrylium), 1.81 (quin, J = 7.6 Hz, 2H, C α -CH₂<u>CH₂</u>), 1.40 (m, J = 7.7 Hz, 2H, C α -CH₂CH₂CH₂), 1.25 (m, 22H, 11 CH₂ from n-alkyl chain), 0.88 (t, J = 6.8 Hz, 3H, CH₃

from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 180.9 (C-2 pyrylium), 177.7 (C-6 pyrylium), 174.7 (C-4 pyrylium), 123.7 (C-5 pyrylium), 122.5 (C-3 pyrylium), 34.6 (Cα-<u>C</u>H₂-), 31.8, 29.7, 29.6, 29.5, 29.3, 29.0 (2C), 27.0 (all from n-alkyl chain), 23.4 (CH₃ γ-pyrylium), 22.6 (n-alkyl chain), 21.1 (CH₃ α-pyrylium), 14.0 (CH₃ from n-alkyl chain). Anal. (C₂₂H₃₉O⁺ PF₆⁻), C, H.

4,6-Dimethyl-2-hexadecylpyrylium hexafluorophosphate 14g: mp 88.1 °C; Yield 26%; ¹H-NMR (CDCl₃), δ, ppm: 7.70 (s, 1H, H-5 pyrylium), 7.61 (s, 1H, H-3 pyrylium), 3.06 (t, J = 7.6 Hz, 2H, Cα-<u>CH₂</u>), 2.86 (s, 3H, CH₃ α-pyrylium), 2.69 (s, 3H, CH₃ γ-pyrylium), 1.81 (quin, J = 7.0 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.40 (m, 2H, Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 24H, 12 CH₂ from n-alkyl chain), 0.87 (t, J = 6.7 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 180.9 (C-2 pyrylium), 177.7 (C-6 pyrylium), 174.7 (C-4 pyrylium), 123.8 (C-5 pyrylium), 122.5 (C-3 pyrylium), 34.6 (Cα-<u>CH₂-</u>), 31.9, 29.7, 29.6, 29.5, 29.3, 29.3, 29.1 (2C), 27.0 (all from n-alkyl chain), 23.5 (CH₃ γ-pyrylium), 22.6 (n-alkyl chain), 21.1 (CH₃ α-pyrylium), 14.1 (CH₃ from n-alkyl chain). Anal. (C₂₃H₄IO⁺ PF₆⁻), C, H.

4,6-Dimethyl-2-heptadecylpyrylium hexafluorophosphate 14h: mp 81.8 °C; Yield 20%; ¹H-NMR (CDCl₃), δ, ppm: 7.71 (s, 1H, H-5 pyrylium), 7.61 (s, 1H, H-3 pyrylium), 3.07 (t, J = 7.8 Hz, 2H, Cα-<u>CH₂</u>), 2.86 (s, 3H, CH₃ α-pyrylium), 2.69 (s, 3H, CH₃ γ-pyrylium), 1.81 (quin, J = 7.6 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.40 (m, J = 7.7 Hz, 2H, Cα-CH₂CH₂CH₂), 1.25 (m, 26H, 13 CH₂ from n-alkyl chain), 0.88 (t, J = 6.6 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 180.9 (C-2 pyrylium), 177.7 (C-6 pyrylium), 174.7 (C-4 pyrylium), 123.8 (C-5 pyrylium), 122.5 (C-3 pyrylium), 34.7 (Cα-<u>C</u>H₂-), 31.9, 29.7, 29.6, 29.5, 29.3, 29.3, 29.1 (2C), 27.0 (all from n-alkyl chain), 23.5 (CH₃ γ-pyrylium), 22.6 (n-alkyl chain), 21.1 (CH₃ α-pyrylium), 14.1 (CH₃ from n-alkyl chain). Anal. (C₂₄H₄₃O⁺ PF₆⁻), C, H.

4,6-Dimethyl-1,2-didecylpyridinium hexafluorophosphate 15: $T_c = 46.9$ °C; Yield 65%; ¹H-NMR (CDCl₃), δ , ppm: 7.47 (s, 1H, H-5 pyridinium), 7.40 (s, 1H, H-3 pyridinium), 4.35 (t, J = 8.6 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H, C α -<u>CH₂</u>), 2.78 (s, 3H, CH₃ α -pyridinium), 2.52 (s, 3H, CH₃ γ -pyridinium), 1.76 (m, 4H, N- and C α -

CH₂<u>CH</u>₂), 1.46 (m, 4H, N- and Cα-CH₂CH₂<u>CH</u>₂), 1.25 (m, 24H, 12 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ , ppm: 157.9 (C-4 pyridinium), 157.2 (C-2 pyridinium), 154.0 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>C</u>H₂-), 33.0 (Cα-<u>C</u>H₂-), 31.8, 31.8, 29.5, 29.4 (2C), 29.4, 29.3 (2C), 29.2, 29.2, 29.1, 28.9, 28.7, 26.6, 22.6 (2C), (all from n-alkyl chains), 21.5 (CH₃ γ -pyridinium), 20.9 (CH₃ α -pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₂₇H₅₀N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-dodecyl-2-decylpyridinium hexafluorophosphate 16: T_c = 56.7 °C; Yield 71%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (s, 1H, H-5 pyridinium), 7.40 (s, 1H, H-3 pyridinium), 4.35 (t, J = 8.4 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.78 (s, 3H, CH₃ α-pyridinium), 2.51 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.46 (m, 4H, N- and Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 28H, 14 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.9 (C-4 pyridinium), 157.2 (C-2 pyridinium), 153.9 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>CH₂-</u>), 33.0 (Cα-<u>CH₂-</u>), 31.9, 29.6, 29.5, 29.4 (3C), 29.3 (4C), 29.2, 29.1, 28.9, 28.7, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₂₉H₅₄N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-decyl-2-undecylpyridinium hexafluorophosphate 17: T_c = 52.2 °C; Yield 69%; ¹H-NMR (CDCl₃), δ, ppm: 7.49 (d, J=2.0 Hz, 1H, H-5 pyridinium), 7.40 (d, J=2.0 Hz, 1H, H-3 pyridinium), 4.42 (t, *J* = 8.4 Hz, 2H, N-<u>CH₂</u>), 2.97 (t, *J* = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.83 (s, 3H, CH₃ α-pyridinium), 2.53 (s, 3H, CH₃ γ-pyridinium), 1.75 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.47 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.26 (m, 26H, 13 CH₂ from n-alkyl chains), 0.87 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.5 (C-4 pyridinium), 157.3 (C-2 pyridinium), 154.3 (C-6 pyridinium), 128.8 (C-5 pyridinium), 126.9 (C-3 pyridinium), 51.8 (N-<u>CH₂-</u>), 33.0 (Cα-<u>C</u>H₂-), 31.9, 31.8, 29.5 (2C), 29.4 (3C), 29.3, 29.2, 29.1, 28.9, 28.6, 26.6, 22.7, 22.6 (all from n-alkyl chains), 21.6 (CH₃ γ-pyridinium), 21.1 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₂₈H₅₂N⁺ PF₆⁻), C, H, N. **4,6-Dimethyl-1-dodecyl-2-undecylpyridinium hexafluorophosphate 18**: T_c = 54.8 °C; Yield 60%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (d, J=2.3 Hz, 1H, H-5 pyridinium), 7.40 (d, J=2.3 Hz, 1H, H-3 pyridinium), 4.36 (t, J = 8.5 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.79 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.75 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.47 (m, 4H, N- and Cα-CH₂CH₂<u>CH₂</u>), 1.26 (m, 30H, 15 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 153.9 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>CH₂-</u>), 33.0 (Cα-<u>CH₂-</u>), 31.9, 29.6 (2C), 29.4 (2C), 29.3 (3C), 29.1, 28.9, 28.7, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₀H₅₆N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-decyl-2-dodecylpyridinium hexafluorophosphate 19: T_c = 57.6 °C; Yield 72%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (d, J = 2.0 Hz, 1H, H-5 pyridinium), 7.40 (d, J=2.0 Hz, 1H, H-3 pyridinium), 4.35 (t, J = 8.6 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.78 (s, 3H, CH₃ α-pyridinium), 2.51 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.48 (m, 4H, N- and Cα-CH₂CH₂<u>CH₂</u>), 1.26 (m, 28H, 14 CH₂ from n-alkyl chains), 0.87 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.9 (C-4 pyridinium), 157.2 (C-2 pyridinium), 153.9 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>CH₂-</u>), 33.0 (Cα-<u>CH₂-</u>), 31.9, 31.8, 29.6 (2C), 29.5, 29.4 (2C), 29.3 (2C), 29.2, 29.1, 28.9, 28.7, 26.6, 22.6 (2C) (all from nalkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from nalkyl chains). Anal. (C₂₉H₅₄N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1,2-didodecylpyridinium hexafluorophosphate 20: T_c = 58.6 °C; Yield 63%; ¹H-NMR (CDCl₃), δ, ppm: 7.46 (d, J=2.0 Hz, 1H, H-5 pyridinium), 7.40 (d, *J* = 2.0 Hz, 1H, H-3 pyridinium), 4.35 (t, *J* = 8.5 Hz, 2H, N-<u>CH₂</u>), 2.93 (t, *J* = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.78 (s, 3H, CH₃ α-pyridinium), 2.51 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂CH₂), 1.47 (m, 4H, N- and Cα-CH₂CH₂), 1.25 (m, 32H, 16 CH₂ from n-alkyl chains), 0.87 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 153.9 (C-6 pyridinium), 128.9

(C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N- $\underline{C}H_2$ -), 33.0 (C α - $\underline{C}H_2$ -), 31.9, 29.6, 29.5 (2C), 29.4 (3C), 29.3 (5C), 29.1, 28.9, 28.7, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ -pyridinium), 20.9 (CH₃ α -pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₁H₅₈N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-decyl-2-tridecylpyridinium hexafluorophosphate 21: T_c = 58.4 °C; Yield 59%; ¹H-NMR (CDCl₃), δ, ppm: 7.46 (d, J = 2.0 Hz, 1H, H-5 pyridinium), 7.40 (d, J = 2.0 Hz, 1H, H-3 pyridinium), 4.35 (t, J = 8.5 Hz, 2H, N-<u>CH₂</u>), 2.93 (t, J = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.78 (s, 3H, CH₃ α-pyridinium), 2.51 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.47 (m, 4H, N- and Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 30H, 15 CH₂ from n-alkyl chains), 0.87 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 153.4 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>C</u>H₂-), 33.0 (Cα-<u>C</u>H₂-), 31.9, 31.8, 29.6, 29.5, 29.4 (3C), 29.3 (3C), 29.2, 29.1, 28.9, 28.7 (2C), 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.0 (2 CH₃ from n-alkyl chains). Anal. (C₃₀H₅₆N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-dodecyl-2-tridecylpyridinium hexafluorophosphate 22: T_c = 67.2 °C; Yield 62%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (d, *J* = 2.2 Hz, 1H, H-5 pyridinium), 7.40 (d, *J* = 2.2 Hz, 1H, H-3 pyridinium), 4.35 (t, *J* = 8.5 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, *J* = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.79 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.47 (m, 4H, N- and Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 34H, 17 CH₂ from n-alkyl chains), 0.87 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 154.0 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>C</u>H₂-), 33.0 (Cα-<u>C</u>H₂-), 31.9, 31.8, 29.7, 29.6, 29.5 (2C), 29.4 (2C), 29.3 (4C), 29.1, 28.9, 28.6, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₂H₆₀N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1,2-ditetradecylpyridinium hexafluorophosphate 23: $T_c = 68.5$ °C; Yield 70%; ¹H-NMR (CDCl₃), δ , ppm: 7.47 (d, J = 2.0 Hz, 1H, H-5 pyridinium), 7.40 (d, J = 2.0 Hz, 1H, H-3 pyridinium), 4.35 (t, J = 8.4 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H,

Cα-<u>CH</u>₂), 2.78 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH</u>₂), 1.47 (m, 4H, N- and Cα-CH₂CH₂CH₂), 1.25 (m, 40H, 20 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ , ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 154.0 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>C</u>H₂-), 33.0 (Cα-<u>C</u>H₂-), 31.9, 29.6 (4C), 29.4 (5C), 29.3, 29.1, 28.9, 28.7, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₅H₆₆N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-tetradecyl-2-pentadecylpyridinium hexafluorophosphate 24: T_c = 74.7 °C; Yield 61%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (d, J = 2.0 Hz, 1H, H-5 pyridinium), 7.40 (d, *J* = 2.0 Hz, 1H, H-3 pyridinium), 4.35 (t, *J* = 8.4 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, *J* = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.78 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.47 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.25 (m, 42H, 21 CH₂ from n-alkyl chains), 0.87 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.0 (C-2 pyridinium), 154.0 (C-6 pyridinium), 129.0 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>CH₂-</u>), 33.0 (Cα-<u>CH₂-</u>), 31.9, 29.7, 29.6, 29.6 (2C), 29.4 (5C), 29.3, 29.1, 28.9, 28.7, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₆H₆₈N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-hexadecyl-2-pentadecylpyridinium hexafluorophosphate 25: T_c = 74.1 °C; Yield 63%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (d, J = 2.2 Hz, 1H, H-5 pyridinium), 7.40 (d, J = 2.2 Hz, 1H, H-3 pyridinium), 4.36 (t, J = 8.4 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.79 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.47 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.25 (m, 46H, 23 CH₂ from n-alkyl chains), 0.87 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 154.0 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>CH₂-</u>), 33.0 (Cα-<u>CH₂-</u>), 31.9, 29.7, 29.6 (2C), 29.5, 29.4 (5C), 29.3, 29.1, 28.9, 28.6, 26.6, 22.6 (all from

n-alkyl chains), 21.5 (CH₃ γ -pyridinium), 20.9 (CH₃ α -pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₈H₇₂N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1,2-dihexadecylpyridinium hexafluorophosphate 26: T_c = 76.2 °C; Yield 59%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (d, J = 2.0 Hz, 1H, H-5 pyridinium), 7.40 (d, J = 2.0 Hz, 1H, H-3 pyridinium), 4.35 (t, J = 8.4 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.79 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.47 (m, 4H, N- and Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 48H, 24 CH₂ from n-alkyl chains), 0.87 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 154.0 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>CH₂-</u>), 33.0 (Cα-<u>CH₂-</u>), 31.9, 29.7 (2C), 29.6 (2C), 29.5, 29.4 (2C), 29.3 (2C), 29.1, 28.9, 28.6, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₉H₇₄N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-hexadecyl-2-heptadecylpyridinium hexafluorophosphate 27: T_c = 82.2 °C; Yield 71%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (d, J = 2.1 Hz, 1H, H-5 pyridinium), 7.40 (d, J = 2.1 Hz, 1H, H-3 pyridinium), 4.36 (t, J = 8.4 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.79 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.47 (m, 4H, N- and Cα-CH₂<u>CH₂</u>), 1.25 (m, 50H, 25 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 154.0 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>CH₂-</u>), 33.0 (Cα-<u>CH₂-</u>), 31.9, 29.7 (2C), 29.6 (3C), 29.4 (2C), 29.3 (2C), 29.1, 28.9, 28.6, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₄₀H₇₆N⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-1-octadecyl-2-heptadecylpyridinium hexafluorophosphate 28: T_c = 82.1 °C; Yield 65%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (d, J = 2.1 Hz, 1H, H-5 pyridinium), 7.40 (d, J = 2.1 Hz, 1H, H-3 pyridinium), 4.35 (t, J = 8.4 Hz, 2H, N-<u>CH₂</u>), 2.94 (t, J = 8.0 Hz, 2H, Cα-<u>CH₂</u>), 2.79 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.76 (m, 4H, N- and Cα-CH₂CH₂), 1.47 (m, 4H, N- and Cα-CH₂CH₂), 1.25 (m, 54H, 27

CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.8 (C-4 pyridinium), 157.2 (C-2 pyridinium), 154.0 (C-6 pyridinium), 128.9 (C-5 pyridinium), 127.2 (C-3 pyridinium), 51.7 (N-<u>C</u>H₂-), 33.0 (Cα-<u>C</u>H₂-), 31.9, 29.7 (2C), 29.6 (4C), 29.5 (2C), 29.4 (3C), 29.3 (4C), 29.1, 28.9, 28.7, 26.6, 22.6 (all from n-alkyl chains), 21.5 (CH₃ γ-pyridinium), 20.9 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₄₂H₈₀N⁺ PF₆⁻), C, H, N.

1,2-Bis(4,6-dimethyl-2-tetradecylpyridinium-1-yl)ethane dihexafluorophosphate 29: T_c = 178.2 °C; Yield 57%; ¹H-NMR (DMSO-d⁶), δ, ppm: 7.83 (br. s, 2H, 2 H-5 pyridinium), 7.82 (br. s, 2H, 2 H-3 pyridinium), 5.02 (m, J = 1.7 Hz, 4H, 2 N-<u>CH</u>₂), 2.90 (t, J = 7.9 Hz, 4H, 2 Cα-<u>CH</u>₂), 2.73 (d, J = 2.7 Hz, 6H, 2 CH₃ α-pyridinium), 2.55 (d, J = 2.7 Hz, 6H, 2 CH₃ γ-pyridinium), 1.69 (m, 4H, 2 Cα-CH₂<u>CH</u>₂), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.85 (t, J = 6.6 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (DMSO-d⁶), δ, ppm: 158.9 (2 C-4 pyridinium), 158.3 (2 C-2 pyridinium), 155.3 (2 C-6 pyridinium), 128.7 (2 C-5 pyridinium), 126.9 (2 C-3 pyridinium), 48.7 (2 N-<u>C</u>H₂-), 32.5 (2 Cα-<u>C</u>H₂-), 31.3 (2C), 29.12 (6C), 29.1 (4C), 29.0 (2C), 28.8 (2C), 28.7 (2C), 28.6 (2C), 27.7 (2C), 22.0 (2C), 21.0 (2 CH₃ γ-pyridinium), 20.9 (2 CH₃ α-pyridinium), 13.9 (2 CH₃ from n-alkyl chains). Anal. (C₄₄H₇₈N₂⁺ 2PF₆⁻), C, H, N.

1,3-Bis(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propane dihexafluorophosphate 30: T_c = 186.6 °C; Yield 53%; ¹H-NMR (CDCl₃), δ, ppm: 7.43 (d, *J* = 1.2 Hz, 2H, 2 H-5 pyridinium), 7.35 (d, *J* = 1.2 Hz, 2H, 2 H-3 pyridinium), 4.66 (t, *J* = 8.5 Hz, 4H, 2 N-<u>CH₂</u>), 2.97 (t, *J* = 7.9 Hz, 4H, 2 Cα-<u>CH₂</u>), 2.81 (s, 6H, 2 CH₃ α-pyridinium), 2.50 (s, 6H, 2 CH₃ γ-pyridinium), 2.31 (m, 2H, N-CH₂<u>CH₂</u>CH₂-N), 1.75 (dt, *J* = 7.5, 8.0 Hz, 4H, 2 Cα-CH₂<u>CH₂</u>), 1.44 (m, 4H, 2 Cα-CH₂CH₂<u>CH₂</u>), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.88 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 158.3 (2 C-4 pyridinium), 157.8 (2 C-2 pyridinium), 154.6 (2 C-6 pyridinium), 128.9 (2 C-5 pyridinium), 127.0 (2 C-3 pyridinium), 47.6 (2 N-<u>CH₂-), 33.0 (2 Cα-CH₂-), 31.9 (2C), 29.7 (8C), 29.5 (2C), 29.4 (4C), 29.2 (4C), 28.5 (4C), 27.6 (N-CH₂<u>CH₂CH₂-N), 22.7 (2C), 21.6 (2 CH₃ γ-pyridinium), 21.1 (2 CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₄₅H₈₀N₂⁺ 2PF₆⁻), C, H, N.</u></u> **1,4-Bis(4,6-dimethyl-2-tetradecylpyridinium-1-yl)butane dihexafluorophosphate 31**: T_c = 185.6 °C; Yield 57%; ¹H-NMR (CDCl₃), δ, ppm: 7.39 (s, 2H, 2 H-5 pyridinium), 7.42 (s, 2H, 2 H-3 pyridinium), 4.49 (br. s, 4H, 2 N-<u>CH₂</u>), 3.04 (t, *J* = 8.0 Hz, 4H, 2 Cα-<u>CH₂</u>), 2.83 (s, 6H, 2 CH₃ α-pyridinium), 2.54 (s, 6H, 2 CH₃ γ-pyridinium), 2.08 (m, 4H, 2 N-CH₂<u>CH₂</u>), 1.72 (cv, *J* = 8.0 Hz, 4H, 2 Cα-CH₂<u>CH₂</u>), 1.44 (dt, *J* = 7.4, 8.0 Hz, 4H, 2 Cα-CH₂CH₂<u>CH₂</u>), 1.24 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.7 (2 C-4 pyridinium), 157.5 (2 C-2 pyridinium), 154.4 (2 C-6 pyridinium), 128.7 (2 C-5 pyridinium), 127.1 (2 C-3 pyridinium), 51.6 (2 N-<u>C</u>H₂-), 33.1 (2 Cα-<u>C</u>H₂-), 31.9 (2C), 29.7 (4C), 29.65 (4C) , 29.6 (2C), 29.4 (4C), 29.3 (2C), 29.2 (2C), 28.9 (2C), 28.8 (2C), 25.4 (2C), 22.6 (2C), 21.5 (2 CH₃ γ-pyridinium), 21.0 (2 CH₃ α-pyridinium), 14.0 (2 CH₃ from n-alkyl chains). Anal. (C₄₆H₈₂N₂⁺ 2PF₆⁻), C, H, N.

1,5-Bis(4,6-dimethyl-2-tetradecylpyridinium-1-yl)pentane dihexafluorophosphate 32: T_c = 137.8 °C; Yield 62%; ¹H-NMR (CDCl₃), δ, ppm: 7.45 (d, *J* = 2.4 Hz, 2H, 2 H-5 pyridinium), 7.35 (d, *J* = 2.4 Hz, 2H, 2 H-3 pyridinium), 4.40 (t, *J* = 8.4 Hz, 4H, 2 N-CH₂), 3.00 (t, *J* = 8.0 Hz, 4H, 2 Cα-CH₂), 2.79 (s, 6H, 2 CH₃ α-pyridinium), 2.49 (s, 6H, 2 CH₃ γ -pyridinium), 1.88 (m, 4H, 2 N-CH₂CH₂), 1.71 (dt, *J* = 7.5, 8.0 Hz, 4H, 2 Cα-CH₂CH₂), 1.60 (m, 2H, N-CH₂CH₂CH₂), 1.42 (m, 4H, 2 Cα-CH₂CH₂CH₂), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.85 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 158.1 (2 C-2 pyridinium), 157.9 (2 C-4 pyridinium), 154.8 (2 C-6 pyridinium), 129.0 (2 C-5 pyridinium), 127.4 (2 C-3 pyridinium), 51.5 (2 N-CH₂-), 33.1 (2 Cα-CH₂-), 32.1 (2C), 29.9 (8C), 29.6 (4C) , 29.2 (4C), 29.0 (4C), 28.7 (2C), 28.5 (2 N-CH₂CH₂-), 23.4 (N-CH₂CH₂CH₂-), 22.9 (2C), 21.7 (2 CH₃ γ -pyridinium), 21.2 (2 CH₃ α -pyridinium), 14.3 (2 CH₃ from n-alkyl chains). Anal. (C₄₇H₈₄N₂⁺ 2PF₆⁻), C, H, N.

1,6-Bis(4,6-dimethyl-2-tetradecylpyridinium-1-yl)hexane dihexafluorophosphate 33: T_c = 189.9 °C; Yield 52%; ¹H-NMR (CDCl₃), δ, ppm: 7.42 (d, J = 1.4 Hz, 2H, 2 H-5 pyridinium), 7.36 (d, J = 1.4 Hz, 2H, 2 H-3 pyridinium), 4.42 (t, J = 8.4 Hz, 4H, 2 N- $\underline{CH_2}$), 3.00 (t, J = 7.9 Hz, 4H, 2 Cα- $\underline{CH_2}$), 2.82 (s, 6H, 2 CH₃ α-pyridinium), 2.53 (s, 6H, 2 CH₃ γ-pyridinium), 1.88 (m, 4H, 2 N-CH₂CH₂), 1.75 (dt, J = 7.4, 8.0 Hz, 4H, 2 Cα-CH₂CH₂), 1.64 (m, 4H, 2 N-CH₂CH₂CH₂), 1.46 (dt, J = 7.5 Hz, 4H, 2 Cα-CH₂CH₂CH₂), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.89 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.7 (2 C-2 pyridinium), 157.5 (2 C-4 pyridinium), 154.4 (2 C-6 pyridinium), 128.7 (2 C-5 pyridinium), 127.1 (2 C-3 pyridinium), 51.6 (2 N-CH₂-), 33.1 (2 Cα-CH₂-), 31.9 (2C), 29.7 (4C), 29.6 (6C), 29.4 (4C), 29.3 (2C), 29.2 (2C), 28.9 (2C), 28.8 (2C N-CH₂CH₂-), 25.4 (2C N-CH₂CH₂-), 22.6 (2C), 21.5 (2 CH₃ γ-pyridinium), 21.0 (2 CH₃ α-pyridinium), 14.0 (2 CH₃ from n-alkyl chains). Anal. (C₄₈H₈₆N₂⁺ 2PF₆⁻), C, H, N.

1,7-Bis(4,6-dimethyl-2-tetradecylpyridinium-1-yl)heptane dihexafluorophosphate 34: T_c = 83.6 °C; Yield 61%; ¹H-NMR (CDCl₃), δ, ppm: 7.46 (d, *J* = 2.0 Hz, 2H, 2 H-5 pyridinium), 7.37 (d, *J* = 2.0 Hz, 2H, 2 H-3 pyridinium), 4.37 (t, *J* = 8.4 Hz, 4H, 2 N-CH₂), 2.96 (t, *J* = 7.9 Hz, 4H, 2 Cα-CH₂), 2.79 (s, 6H, 2 CH₃ α-pyridinium), 2.51 (s, 6H, 2 CH₃ γ-pyridinium), 1.80 (m, 4H, 2 N-CH₂CH₂), 1.73 (dt, *J* = 7.5, 7.9 Hz, 4H, 2 Cα-CH₂CH₂), 1.50 (m, 4H, 2 N-CH₂CH₂CH₂), 1.44 (m, 4H, 2 Cα-CH₂CH₂CH₂), 1.33 (m, 2H, N-CH₂CH₂CH₂CH₂), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.7 (2 C-4 pyridinium), 157.4 (2 C-2 pyridinium), 154.3 (2 C-6 pyridinium), 128.9 (2 C-5 pyridinium), 127.2 (2 C-3 pyridinium), 51.6 (2 N-CH₂-), 33.0 (2 Cα-CH₂-), 31.9 (2C), 29.7 (8C), 29.4 (4C) , 29.3 (4C), 29.2 (4C), 29.0 (4C), 28.8 (2C N-CH₂CH₂-), 27.8 (2C), 25.9, 22.7 (2C), 21.5 (2 CH₃ γ-pyridinium), 20.9 (2 CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₄₉H₈₈N₂⁺ 2PF₆⁻), C, H, N.

1,8-Bis(**4,6-dimethyl-2-tetradecylpyridinium-1-yl)octane dihexafluorophosphate 35**: T_c = 68.8 °C; Yield 64%; ¹H-NMR (CDCl₃), δ, ppm: 7.45 (d, *J* = 2.1 Hz, 2H, 2 H-5 pyridinium), 7.37 (d, *J* = 2.1 Hz, 2H, 2 H-3 pyridinium), 4.37 (t, *J* = 8.4 Hz, 4H, 2 N-<u>CH₂</u>), 2.96 (t, *J* = 8.0 Hz, 4H, 2 Cα-<u>CH₂</u>), 2.80 (s, 6H, 2 CH₃ α-pyridinium), 2.51 (s, 6H, 2 CH₃ γ-pyridinium), 1.79 (m, 4H, 2 N-CH₂<u>CH₂</u>), 1.74 (dt, *J* = 7.4, 8.0 Hz, 4H, 2 Cα-CH₂<u>CH₂</u>), 1.50 (m, 4H, 2 N-CH₂<u>CH₂</u>), 1.43 (m, 4H, 2 Cα-CH₂<u>CH₂CH₂</u>), 1.34 (m, 4H, 2 N-CH₂CH₂CH₂<u>CH₂</u>), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, *J* = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.7 (2 C-4 pyridinium), 157.3 (2 C-2 pyridinium), 154.3 (2 C-6 pyridinium), 128.9 (2 C-5 pyridinium), 127.2 (2 C-3 pyridinium), 51.7 (2 N-<u>C</u>H₂-), 33.03 (2 Cα-<u>C</u>H₂-), 31.9 (2C), 29.7 (10C), 29.4 (4C), 29.3 (4C), 29.2 (6C), 29.0 (2C), 28.8 (2C), 28.0 (2C N-CH₂<u>C</u>H₂CH₂-), 25.9 (2C), 22.7 (2C), 21.5 (2 CH₃ γ -pyridinium), 21.0 (2 CH₃ α-pyridinium), 14.10 (2 CH₃ from n-alkyl chains). Anal. (C₅₀H₉₀N₂⁺ 2PF₆⁻), C, H, N.

t-Butyl-N,N-bis(2-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)ethylenyl) carbamate dihexafluorophosphate 40a: $T_c = 139.9$ °C; Yield 84%; ¹H-NMR (CDCl₃), δ , ppm: 7.50 (d, J = 2.0 Hz, 1H, H-5 pyridinium), 7.45 (d, J = 2.0 Hz, 1H, H-5' pyridinium), 7.38 (d, J = 2.0 Hz, 1H, H-3 pyridinium), 7.35 (d, J = 2.0 Hz, 1H, H-3' pyridinium), 4.58 (t, J = 7.3Hz, 4H, 2 N⁺-CH₂), 3.72 (t, J = 6.9 Hz, 2H, BocN-CH₂), 3.62 (t, J = 7.4 Hz, 2H, BocN- CH_2), 3.14 (t, J = 7.8 Hz, 2H, C α Py-CH₂), 2.98 (t, J = 7.8 Hz, 2H, C α Py'-CH₂), 2.81 (s, 3H, CH₃ α -pyridinium), 2.80 (s, 3H, CH₃ α -pyridinium'), 2.53 (s, 3H, CH₃ γ -pyridinium), 2.51 (s, 3H, CH₃ γ-pyridinium'), 1.70 (m, 4H, 2 Cα-CH₂CH₂), 1.43 (m, 4H, 2 Cα-CH₂CH₂CH₂), 1.37 (s, 9H, 3 CH₃ t-Bu), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ , ppm: 158.5 (C-4 pyridinium), 158.3 (C-4 pyridinium'), 157.8 (2 C-2 pyridinium), 154.9 (C-6 pyridinium), 154.9 (CO t-Bu), 154.8 (C-6 pyridinium'), 129.1 (C-5 pyridinium), 128.9 (C-5 pyridinium'), 127.3 (C-3 pyridinium), 127.2 (C-3 pyridinium), 82.4 (CH₃)₃C, Boc), 49.5 (N⁺-<u>C</u>H₂), 48.4 (N⁺, -<u>C</u>H₂), 46.5 (BocN-<u>C</u>H₂), 46.4 (BocN-<u>C</u>H₂), 32.9 (2) CαPy-<u>CH</u>₂-), 31.8 (2C), 29.6 (10C), 29.5 (2C), 29.4, 29.3 (2C), 29.1 (4C), 28.5, 28.0 (3C <u>CH</u>₃)₃C, Boc), 22.6 (2C), 21.5 (broad, 2 CH₃γ-pyridinium), 21.1 (CH₃ α-pyridinium), 21.0 (CH₃ α -pyridinium'), 14.0 (2 CH₃ from n-alkyl chains). Anal. (C₅₁H₉₁N₃O₂⁺ 2PF₆⁻), C, H, N.

t-Butyl-N,N-bis(3-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propylenyl) carbamate dihexafluorophosphate 40b: $T_c = 134.4$ °C; Yield 86%; ¹H-NMR (CDCl₃), δ , ppm: 7.45 (s, 2H, 2 H-5 pyridinium), 7.36 (s, 2H, 2 H-3 pyridinium), 4.39 (t, J = 7.7 Hz, 4H, 2 N⁺-<u>CH₂</u>), 3.46 (t, J = 6.6 Hz, 4H, 2 BocN-<u>CH₂</u>), 2.99 (t, J = 6.0 Hz, 4H, 2 C α Py-<u>CH₂</u>), 2.81 (s, 6H, 2 CH₃ α -pyridinium), 2.51 (s, 6H, 2 CH₃ γ -pyridinium), 2.07 (m, 4H, 2 N⁺- CH₂<u>CH</u>₂), 1.70 (dt, J = 7.5, 8.0 Hz, 4H, 2 Cα-CH₂<u>CH</u>₂), 1.37 (3, 9H, 3 CH₃ *t*-Bu), 1.44 (m, 4H, 2 Cα-CH₂CH₂CH₂), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ , ppm: 157.8 (2 C-4 pyridinium), 157.7 (2 C-2 pyridinium), 155.4 (CO *t*-Bu), 154.5 (2 C-6 pyridinium), 128.9 (2 C-5 pyridinium), 127.1 (2 C-3 pyridinium), 80.5 (CH₃)₃<u>C</u>, Boc), 49.3 (broad s., 2 N⁺-<u>C</u>H₂), 45.2 (broad s., 2 BocN-<u>C</u>H₂), 32.9 (2 CαPy-<u>C</u>H₂-), 31.9 (2C), 29.6 (10C), 29.5 (2C), 29.4, 29.3 (4C), 29.1 (2C), 28.8 (2C), 28.3 (3C <u>C</u>H₃)₃C, Boc), 22.6 (2C), 21.5 (2 CH₃ γ-pyridinium), 20.9 (2 CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₅₃H₉₅N₃O₂⁺ 2PF₆⁻), C, H, N.

t-Butyl-N-(3-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propylenyl)-N-(4-(4,6dimethyl-2-tetradecylpyridinium-1-yl)butylenyl) carbamate dihexafluorophosphate **40c**: $T_c = 143.5$ °C; Yield 79%; ¹H-NMR (CDCl₃), δ , ppm: 7.47 (br. s, 2H, 2 H-5) pyridinium), 7.38 (br. s, 2H, 2 H-3 pyridinium), 4.39 (m, 4H, 2 N⁺-<u>CH₂</u>), 3.39 (t, *J* = 6.7 Hz, 2H, BocN-<u>CH₂CH₂CH₂CH₂N⁺), 3.28 (m, 2H, BocN-<u>CH₂CH₂CH₂CH₂N⁺), 2.96 (t, J = 7.7</u></u> Hz, 4H, 2 CαPy-CH₂), 2.79 (br. s, 6H, 2 CH₃ α-pyridinium), 2.50 (br. s, 6H, 2 CH₃ γpyridinium), 2.03 (m, 2H, N⁺-CH₂CH₂CH₂N-Boc), 1.73 (m, 8H, 2 C α -CH₂CH₂ + N⁺- $CH_2CH_2CH_2CH_2N-Boc + N^+-CH_2CH_2CH_2CH_2N-Boc), 1.44$ (s, 9H, 3 CH_3 t-Bu), 1.43 (m, 4H, 2 C α -CH₂CH₂CH₂), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.86 (t, J = 6.7Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.9 (C-4 pyridinium), 157.8 (C-4 pyridinium), 157.4 (C-2 pyridinium'), 155.4 (CO t-Bu), 154.3 (2 C-6 pyridinium), 128.9 (C-5 pyridinium), 128.8 (C-5 pyridinium'), 127.2 (C-3 pyridinium), 127.1 (C-3 pyridinium'), 80.1 ((CH₃)₃C, Boc), 51.3 (N⁺-CH₂CH₂CH₂N-Boc), 49.3 (br. s, N⁺-CH₂CH₂CH₂CH₂N-Boc), 44.5 (br. s, 2 BocN-CH₂), 32.9 (CαPy-CH₂-), 32.8 (CαPy'-<u>CH</u>₂-), 31.8 (2C), 29.6 (10C), 29.5 (2C), 29.4, 29.3 (2C), 29.2 (4C), 28.7 (2C), 28.3 (3C) <u>CH</u>₃)₃C, Boc), 26.5, 22.6 (2C), 21.4 (br. s, 2 CH₃γ-pyridinium), 20.8 (br. s, 2 CH₃ αpyridinium), 14.0 (2 CH₃ from n-alkyl chains). Anal. ($C_{54}H_{97}N_3O_2^+$ 2PF₆⁻), C, H, N.

N,N'-di-*t*-Butyloxycarbonyl-N,N'-bis(3-(4,6-dimethyl-2-tetradecylpyridinium-1yl)propyl)butanediamine dihexafluorophosphate 46: $T_c = 103.3$ °C; Yield 81%; ¹H-NMR (CDCl₃), δ , ppm: 7.45 (br. s, 2H, 2 H-5 pyridinium), 7.37 (br. s, 2H, 2 H-3

pyridinium), 4.42 (m, 4H, 2 N⁺-<u>CH₂</u>), 3.39 (m, 4H, BocN-<u>CH₂CH₂CH₂CH₂N⁺</u>), 3.23 (m, 4H, BocN-<u>CH₂CH₂CH₂CH₂<u>CH₂NBoc</u>), 2.97 (t, J = 7.7 Hz, 4H, 2 CαPy-<u>CH₂</u>), 2.80 (s, 6H, 2 CH₃ α-pyridinium), 2.51 (s, 6H, 2 CH₃ γ-pyridinium), 2.06 (m, 4H, N⁺-CH₂<u>CH₂CH₂N-Boc</u>), 1.74 (m, 4H, 2 Cα-CH₂<u>CH₂</u>), 1.54 (m, 4H, BocN-CH₂<u>CH₂CH₂CH₂NBoc</u>), 1.44 (s, 9H, 3 CH₃ *t*-Bu), 1.43 (m, 4H, 2 Cα-CH₂CH₂CH₂<u>CH₂</u>), 1.25 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ , ppm: 157.9 (br. s, 2 C-4 pyridinium), 157.5 (br. s, 2 C-2 pyridinium), 156.1 (2 CO *t*-Bu), 154.8 (2 C-6 pyridinium), 129.2 (2 C-5 pyridinium), 127.5 (2 C-3 pyridinium), 80.2 (2 (CH₃)₃<u>C</u>, Boc), 50.1 (br. s., 2 N⁺-<u>CH₂CH₂CH₂N-Boc</u>), 48.9 (br. s., 2 N⁺-CH₂CH₂<u>CH₂N-Boc</u>), 44.5 (br. s, BocN-<u>CH₂CH₂CH₂CH₂CH₂NBoc), 33.3 (2 CαPy-<u>CH₂-</u>), 32.2 (2C), 30.0 (8C), 29.9 (2C), 29.8 (2C), 29.7 (2C), 29.6 (4C), 29.2 (2C), 28.7 (6C 2 <u>CH₃)₃C</u>, Boc), 26.4 (br. s, 2 N⁺-CH₂<u>CH₂CH₂N-Boc</u>), 25.7 (br. s, BocN-CH₂<u>CH₂CH₂NBoc</u>), 23.00 (2C), 21.9 (2 CH₃γ-pyridinium), 21.3 (2 CH₃ α-pyridinium), 14.4 (2 CH₃ from n-alkyl chains). Anal. (C₆₂H₁₁₂N₄O₄⁺ 2PF₆⁻), C, H, N.</u></u>

N,N-Bis(2-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)ethylenyl)amine

dihexafluorophosphate 41a: $T_c = 65.1$ °C; Yield 49%; ¹H-NMR (CDCl₃), δ, ppm: 7.47 (s, 2H, 2 H-5 pyridinium), 7.35 (s, 2H, 2 H-3 pyridinium), 4.80 (t, J = 7.1 Hz, 4H, 2 N⁺-<u>CH₂</u>), 3.46 (br. s, 1H, NH), 3.26 (t, J = 7.1 Hz, 4H, 2 HN-<u>CH₂</u>), 3.14 (t, J = 7.7 Hz, 4H, 2 CαPy-<u>CH₂</u>), 3.02 (s, 6H, 2 CH₃ α-pyridinium), 2.50 (s, 6H, 2 CH₃ γ-pyridinium), 1.67 (cv, J = 7.7 Hz, 4H, 2 Cα-CH₂<u>CH₂</u>), 1.43 (cv, J = 7.6 Hz, 4H, 2 Cα-CH₂CH₂CH₂), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.83 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 158.7 (2 C-2 pyridinium), 157.3 (2 C-4 pyridinium), 155.5 (2 C-6 pyridinium), 128.6 (2 C-5 pyridinium), 127.2 (2 C-3 pyridinium), 51.4 (2 N⁺-<u>C</u>H₂), 47.7 (2 HN-<u>C</u>H₂), 33.7 (2 CαPy-<u>C</u>H₂-), 31.8 (2C), 29.6 (4C), 29.5 (6C), 29.3 (8C), 29.0 (2C), 22.6 (2 CH₃ γ-pyridinium), 22.5 (2C), 21.7 (2 CH₃ α-pyridinium), 14.0 (2 CH₃ from n-alkyl chains). Anal. (C₄₆H₈₃N₃⁺ 2PF₆⁻), C, H, N.

N,N-Bis(3-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propylenyl)amine

dihexafluorophosphate 41b: $T_c = 45.4$ °C; Yield 52%; ¹H-NMR (CDCl₃), δ , ppm: 7.45 (s, 2H, 2 H-5 pyridinium), 7.36 (s, 2H, 2 H-3 pyridinium), 4.55 (t, J = 8.1 Hz, 4H, 2 N⁺-

<u>CH</u>₂), 3.01 (t, J = 7.8 Hz, 4H, 2 C α Py-<u>CH</u>₂), 2.84 (s, 6H, 2 CH₃ α -pyridinium), 2.78 (t, J = 6.1 Hz, 4H, 2 BocN-<u>CH</u>₂), 2.51 (s, 6H, 2 CH₃ γ -pyridinium), 1.96 (m, 4H, 2 N⁺-CH₂<u>CH</u>₂), 1.74 (cv, J = 8.0 Hz, 4H, 2 C α -CH₂<u>CH</u>₂), 1.72 (s, 1H, NH), 1.43 (cv, J = 7.7 Hz, 4H, 2 C α -CH₂CH₂CH₂), 1.26 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ , ppm: 157.7 (2 C-2 pyridinium), 157.5 (2 C-4 pyridinium), 154.7 (2 C-6 pyridinium), 128.7 (2 C-5 pyridinium), 127.0 (2 C-3 pyridinium), 50.5 (2 N⁺-<u>C</u>H₂), 46.5 (2 HN-<u>C</u>H₂), 32.9 (2 C α Py-<u>C</u>H₂-), 31.9 (2C), 29.7 (2C), 29.6 (6C), 29.5 (2C), 29.4 (2C), 29.3 (4C), 29.2 (2C), 29.1 (2C), 28.7 (2C), 22.6 (2C), 21.5 (2 CH₃ γ -pyridinium), 20.9 (2 CH₃ α -pyridinium), 14.0 (2 CH₃ from n-alkyl chains). Anal. (C₄₈H₈₇N₃⁺ 2PF₆⁻), C, H, N.

N-(3-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propylenyl)-N-(4-(4,6-dimethyl-2tetradecylpyridinium-1-yl)butylenyl)amine dihexafluorophosphate 41c: T_c = 67.2 °C; Yield 47%; ¹H-NMR (CDCl₃), δ, ppm: 7.55 (s, 1H, H-5 pyridinium), 7.52 (s, 1H, H-5 pyridinium'), 7.32 (br. s, 2H, 2 H-3 pyridinium), 4.92 (t, J = 8.8 Hz, 2H, N⁺-<u>CH</u>₂CH₂CH₂NH), 4.61 (t, J = 7.7 Hz, 2H, N⁺-<u>CH</u>₂CH₂CH₂CH₂NH), 3.33 (t, J = 6.7 Hz, 2H, HN-CH₂CH₂CH₂N⁺), 3.16 (m, J = 6.8, 7.6 Hz, 6H, HN-CH₂CH₂CH₂CH₂CH₂N⁺ + 2 CαPy-<u>CH</u>₂), 3.04 (s, 3H, CH₃ α-pyridinium), 3.05 (s, 3H, CH₃ α-pyridinium'), 2.53 (m, 2H, N⁺-CH₂CH₂CH₂NH), 2.49 (br. s, 6H, 2 CH₃ γ-pyridinium), 2.14 (m, 4H, N⁺- $CH_2CH_2CH_2CH_2NH + N^+-CH_2CH_2CH_2CH_2NH)$, 1.70 (cv, J = 7.8 Hz, 8H, 2 C α -CH₂CH₂), 1.43 (m, 4H, 2 Cα-CH₂CH₂CH₂), 1.24 (m, 44H, 22 CH₂ from n-alkyl chains), 0.82 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ , ppm: 158.3 (C-2 pyridinium), 157.7 (C-2 pyridinium'), 157.4 (C-4 pyridinium), 157.3 (C-4 pyridinium'), 155.5 (C-6 pyridinium), 155.3 (C-6 pyridinium'), 128.9 (C-5 pyridinium), 128.7 (C-5 pyridinium'), 126.7 (2 C-3 pyridinium), 57.9 (N⁺-<u>CH</u>₂CH₂CH₂CH₂NH), 51.7 (N⁺-<u>C</u>H₂CH₂CH₂NH), 50.1 (HN-<u>C</u>H₂CH₂CH₂CH₂CH₂N⁺), 47.3 $(HN-\underline{CH}_2CH_2CH_2N^+)$, 45.1 $(HN-CH_2\underline{CH}_2)$, 33.2 $(2 C\alpha Py-\underline{CH}_2-)$, 31.8 (2C), 29.5 (10C), 29.3 (8C), 28.9 (2C), 26.6 (2C), 26.0, 23.2 (2C), 22.5 (2C), 22.4 (CH₃ γ-pyridinium), 22.3 $(CH_3 \gamma$ -pyridinium), 21.7 (br. s, 2 CH₃ α -pyridinium), 14.0 (2 CH₃ from n-alkyl chains). Anal. $(C_{49}H_{89}N_3^+ 2PF_6^-), C, H, N.$

N,N'-Bis(3-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propyl)butanediamine

dihexafluorophosphate 47: amorphous; glass transition at 9.6 °C; Yield 45%; ¹H-NMR (CDCl₃), δ, ppm: 7.46 (s, 2H, 2 H-5 pyridinium), 7.37 (s, 2H, 2 H-3 pyridinium), 4.42 (t, 4H, J = 8.0 Hz, 2 N⁺-<u>CH₂</u>), 3.01 (t, J = 7.8 Hz, 4H, 2 CαPy-<u>CH₂</u>), 2.82 (s, 6H, 2 CH₃ α-pyridinium), 2.78 (t, 4H, J = 6.4 Hz, 2 HN-<u>CH₂CH₂CH₂CH₂N⁺), 2.65 (m, 4H, HN-CH₂CH₂CH₂CH₂NH), 2.51 (s, 6H, 2 CH₃ γ-pyridinium), 1.95 (m, 4H, N⁺-CH₂CH₂CH₂CH₂NH), 1.73 (cv, J = 7.7 Hz, 4H, 2 Cα-CH₂CH₂CH₂), 1.56 (m, 4H, HN-CH₂CH₂CH₂CH₂NH), 1.44 (cv, J = 7.3 Hz, 4H, 2 Cα-CH₂CH₂CH₂), 1.25 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 157.9 (2 C-4 pyridinium), 127.5 (2 C-3 pyridinium), 154.7 (2 C-6 pyridinium), 129.2 (2 C-5 pyridinium), 127.5 (2 C-3 pyridinium), 50.4 (2 N⁺-CH₂CH₂CH₂CH₂NH), 49.5 (2 N⁺-CH₂CH₂CH₂N-Boc), 45.8 (HN-<u>CH₂CH₂CH₂CH₂NH), 33.3 (2 CαPy-<u>C</u>H₂-), 32.5 (2C), 30.0 (8C), 29.9 (2C), 29.8 (2C), 29.7 (2C), 29.6 (2C), 29.5 (2C), 29.2 (2C), 27.8 (2 N⁺-CH₂CH₂CH₂NH), 23.0 (2C), 21.9 (2 CH₃γ-pyridinium), 21.3 (2 CH₃ α-pyridinium), 14.4 (2 CH₃ from n-alkyl chains). Anal. (C₅₂H₉₆N₄⁺ 2PF₆⁻), C, H, N.</u></u>

N,N'-Bis(3-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propylenyl)butane-N,N'bismyristoylamide dihexafluorophosphate 48a: $T_c = 125.8$ °C; Yield 55%; ¹H-NMR (CDCl₃), δ, ppm: 7.39 (br. s, 2H, 2 H-5 pyridinium), 7.32 (br. s, 2H, 2 H-3 pyridinium), 4.48 (m, 4H, 2 N⁺-<u>CH₂</u>), 3.57 (t, 4H, *J* = 6.6 Hz, MyristoylN-<u>CH₂CH₂CH₂CH₂N⁺</u>), 3.39 (m, 4H, MyristoylN-<u>CH₂CH₂CH₂CH₂CH₂NMyristoyl), 3.02 (t, *J* = 7.7 Hz, 4H, 2 CαPy-<u>CH₂</u>), 2.85 (s, 6H, 2 CH₃ α-pyridinium), 2.53 (s, 6H, 2 CH₃ γ-pyridinium), 2.33 (t, *J* = 7.7 Hz, 4H, 2 NCO<u>CH₂</u>), 2.12 (m, 4H, N⁺-CH₂<u>CH₂CH₂NMyristoyl</u>), 1.74 (cv, *J* = 7.7 Hz, 4H, 2 Cα-CH₂<u>CH₂</u>), 1.62 (m, 8H, 2 NCOCH₂<u>CH₂</u>+ MyristoylN-CH₂<u>CH₂CH₂CH₂NMyristoyl</u>), 1.45 (m, 4H, 2 Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 84H, 42 CH₂ from n-alkyl chains), 0.88 (t, *J* = 6.8 Hz, 12H, 4 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 174.1 (2 CO Myristoyl), 158.4 (2 C-4 pyridinium), 157.5 (2 C-2 pyridinium), 155.4 (2 C-6 pyridinium), 128.9 (2 C-5 pyridinium), 127.2 (2 C-3 pyridinium), 50.2 (br. s, 2 N⁺-<u>C</u>H₂CH₂CH₂CH₂CH₂CH₂CH₂Myristoyl), 44.1 (br. s, MyristoylN-<u>C</u>H₂CH₂CH₂CH₂CH₂Myristoyl), 33.2 (2 CαPy-<u>C</u>H₂-), 32.3 (4C), 30.1 (12C),</u> 30.0 (8C), 29.9 (4C), 29.8 (4C), 29.7 (2C), 29.4 (4C), 29.1 (2C), 25.7 (2C), 23.0 (4C), 22.0 (2 CH₃ γ-pyridinium), 21.5 (2 CH₃ α-pyridinium), 14.5 (4 CH₃ from n-alkyl chains). Anal. (C₈₀H₁₄₈N₄⁺ 2PF₆⁻), C, H, N.

N,N'-Bis(3-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propylenyl)butane-N,N'bispamitoylamide dihexafluorophosphate 48b: T_c = 124.9 °C; Yield 62%; ¹H-NMR (CDCl₃), δ, ppm: 7.41 (br. s, 2H, 2 H-5 pyridinium), 7.33 (br. s, 2H, 2 H-3 pyridinium), 4.47 (m, 4H, 2 N⁺-<u>CH₂</u>), 3.55 (t, 4H, J = 6.6 Hz, PalmitoylN-<u>CH₂CH₂CH₂CH₂N⁺</u>), 3.38 (m, 4H, PalmitoylN-CH₂CH₂CH₂CH₂NPalmitoyl), 3.00 (t, J = 7.7 Hz, 4H, 2 C α Py-CH₂), 2.84 (s, 6H, 2 CH₃ α -pyridinium), 2.51 (s, 6H, 2 CH₃ γ -pyridinium), 2.32 (t, J = 7.3 Hz, 4H, 2 NCOCH₂), 2.11 (m, 4H, N⁺-CH₂CH₂CH₂NPalmitoyl), 1.74 (m, 4H, 2 C α -CH₂CH₂), 1.62 (m, 8H, 2 NCOCH₂CH₂+ PalmitoylN-CH₂CH₂CH₂CH₂NPalmitoyl), 1.44 (m, 4H, 2 C α -CH₂CH₂CH₂), 1.25 (m, 96H, 48 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8Hz, 12H, 4 CH₃ from n-alkyl chains); 13 C-NMR (CDCl₃), δ , ppm: 174.1 (2 CO Palmitoyl), 158.2 (2 C-4 pyridinium), 157.7 (2 C-2 pyridinium), 155.2 (2 C-6 pyridinium), 127.2 (2 C-3 pyridinium), 120.0 (2 C-5 pyridinium), 50.2 (br. s, 2 N⁺-CH₂CH₂CH₂NPalmitoyl), 49.2 (br. s, 2 N⁺-CH₂CH₂CH₂NPalmitoyl), 44.1 (br. s, PalmitoylN-CH₂CH₂CH₂CH₂NPalmitoyl), 33.4 (2 CαPy-CH₂-), 33.1 (2 NCOCH₂), 32.3 (4C), 30.0 (18C), 29.9 (8C), 29.8 (2C), 29.7 (4C), 29.6 (2C), 29.5 (2C), 29.4 (2C), 29.1 (2C), 28.2 (2C), 26.6 (2C), 25.7 (2C), 23.0 (4C), 21.9 (2 CH₃ γ-pyridinium), 21.4 (2 CH₃ α -pyridinium), 14.4 (4 CH₃ from n-alkyl chains). Anal. (C₈₄H₁₅₆N₄⁺ 2PF₆⁻), C, H, N.

N,N'-Bis(3-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)propylenyl)butane-N,N'-

bispalmitylamine dihexafluorophosphate 49: T_c = 69.4 °C; Yield 65%; 7.43 (br. s, 2H, 2 H-5 pyridinium), 7.37 (br. s, 2H, 2 H-3 pyridinium), 4.46 (t, 4H, *J* = 7.8 Hz, 2 N⁺-<u>CH</u>₂), 3.01 (t, *J* = 7.8 Hz, 4H, 2 CαPy-<u>CH</u>₂), 2.81 (s, 6H, 2 CH₃ α-pyridinium), 2.56 (m, 4H, 2 PalmitylN-<u>CH</u>₂CH₂CH₂CH₂CH₂N⁺), 2.50 (s, 6H, 2 CH₃ γ-pyridinium), 2.46 (m, 4H, HN-<u>CH</u>₂CH₂CH₂CH₂MPalmityl), 2.40 (t, *J* = 7.7 Hz, 4H, N-CH₂ from Palmityl), 1.86 (m, 4H, N⁺-CH₂<u>CH</u>₂CH₂CH₂NPalmityl), 1.74 (m, 4H, 2 Cα-CH₂<u>CH</u>₂), 1.44 (m, 12H, 2 Cα-CH₂CH₂CH₂CH₂ + PalmitylN-CH₂<u>CH</u>₂CH₂CH₂CH₂CH₂CH₂MPalmityl), 1.26 (m, 96H, 48 CH₂ from n-alkyl chains), 0.88 (t, *J* = 6.7 Hz, 12H, 4 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ,

ppm: 157.9 (2 C-4 pyridinium), 157.8 (2 C-2 pyridinium), 154.7 (2 C-6 pyridinium), 129.1 (2 C-5 pyridinium), 127.5 (2 C-3 pyridinium), 54.9 (2 N⁺-<u>CH₂CH₂CH₂NPalmityl), 54.5 (2 N⁺-CH₂CH₂CH₂NPalmityl), 51.1 (PamitylN-<u>CH₂CH₂CH₂CH₂MPalmityl), 50.9 (2C N-CH₂ from Palmityl), 33.2 (2 CαPy-<u>C</u>H₂-), 32.3 (2C), 30.0 (24C), 29.9 (4C), 29.7 (6C), 29.6 (2C), 29.2 (4C), 28.3 (2C), 28.0 (4C), 27.6 (2 N⁺-CH₂<u>C</u>H₂CH₂CH₂CH₂NH), 25.5 (2C), 23.0 (4C), 21.9 (2 CH₃ γ -pyridinium), 21.3 (2 CH₃ α pyridinium), 14.4 (2 CH₃ from n-alkyl chains). Anal. (C₈₄H₁₆₀N₄⁺ 2PF₆⁻), C, H, N.</u></u>

Tris(2-(4,6-dimethyl-2-tetradecylpyridinium-1-yl)ethyl)amine

trishexafluorophosphate 50: T_c = 121.2 °C; Yield 57%; 7.42 (s, 3H, 3 H-5 pyridinium), 7.38 (s, 3H, 3 H-3 pyridinium), 4.57 (t, J = 7.0 Hz, 4H, 2 N⁺-<u>CH₂</u>), 3.01 (m, 6H, 3 N-<u>CH₂</u>), 2.99 (t, J = 7.8 Hz, 6H, 3 CαPy-<u>CH₂</u>), 2.77 (s, 9H, 3 CH₃ α-pyridinium), 2.51 (s, 9H, 3 CH₃ γ-pyridinium), 1.76 (cv, J = 7.5 Hz, 6H, 3 Cα-CH₂<u>CH₂</u>), 1.43 (m, 6H, 3 Cα-CH₂CH₂<u>CH₂</u>), 1.26 (m, 66H, 33 CH₂ from n-alkyl chains), 0.88 (t, J = 6.7 Hz, 9H, 3 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 158.8 (3 C-4 pyridinium), 158.0 (3 C-2 pyridinium), 154.7 (3 C-6 pyridinium), 129.2 (3 C-5 pyridinium), 127.9 (3 C-3 pyridinium), 52.2 (3 N⁺-<u>C</u>H₂), 50.3 (3 N-<u>C</u>H₂), 33.7 (3 CαPy-<u>C</u>H₂-), 32.3 (3C), 30.1 (12C), 30.0 (3C), 29.9 (6C), 29.7 (3C), 29.6 (3C), 28.7 (3C), 23.0 (3 CH₃ γ-pyridinium), 22.0 (3C), 21.5 (3 CH₃ α-pyridinium), 14.4 (3 CH₃ from n-alkyl chains). Anal. (C₆₉H₁₂₃N₄⁺ 3PF₆⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(2-hydroxyethyl)pyridinium hexafluorophosphate 51: mp = 55.6 °C; ¹H-NMR (CDCl₃), δ, ppm: 7.44 (s, 1H, H-5 pyridinium), 7.37 (s, 1H, H-3 pyridinium), 4.60 (t, J = 5.4 Hz, 2H, N⁺-<u>CH₂</u>), 4.03 (m, 2H, HO-<u>CH₂</u>), 3.09 (br.s, 1H, 2 <u>H</u>O-CH₂), 3.05 (t, J = 8.0 Hz, 2H, CαPy-<u>CH₂</u>), 2.81 (s, 3H, CH₃ α-pyridinium), 2.52 (s, 3H, CH₃ γ-pyridinium), 1.70 (cv, J = 8.0 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.43 (cv, J = 7.5 Hz, 2H, Cα-CH₂CH₂CH₂), 1.25 (m, 22H, 11 CH₂ from n-alkyl chain), 0.87 (t, J = 6.6 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 158.5 (C-2 pyridinium), 157.9 (C-4 pyridinium), 155.1 (C-6 pyridinium), 128.6 (C-5 pyridinium), 127.1 (C-3 pyridinium), 60.2 (HO-<u>CH₂</u>), 53.0 (N⁺-<u>CH₂</u>), 33.5 (CαPy-<u>CH₂-), 31.9, 29.6 (2C), 29.5,</u> 29.4, 29.3, 29.2, 29.1, 28.5, 28.4, 22.6, 21.9 (CH₃ γ-pyridinium), 21.4 (CH₃ α-pyridinium), 14.06 (CH₃ from n-alkyl chain). Anal. (C₂₃H₄₂NO⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(2-dodecanoyloxyethyl)pyridinium

hexafluorophosphate 52a: T_c = 61.3 °C; Yield 87%; ¹H-NMR (CDCl₃), δ, ppm: 7.48 (s, 1H, H-5 pyridinium), 7.40 (s, 1H, H-3 pyridinium), 4.77 (t, J = 6.0 Hz, 2H, N⁺-<u>CH₂</u>), 4.47 (t, J = 6.0 Hz, 2H, COO-<u>CH₂</u>), 3.04 (t, J = 8.1 Hz, 2H, CαPy-<u>CH₂</u>), 2.85 (s, 3H, CH₃ α-pyridinium), 2.54 (s, 3H, CH₃ γ-pyridinium), 2.24 (t, J = 7.6 Hz, 2H, O-CO-<u>CH₂</u>), 1.77 (cv, J = 7.9 Hz, 2H, Cα-CH₂CH₂), 1.51 (cv, J = 7.6 Hz, O-CO-CH₂CH₂), 1.47 (cv, J = 7.8 Hz, 2H, Cα-CH₂CH₂CH₂), 1.36 (m, 2H, O-CO-CH₂CH₂CH₂), 1.25 (m, 34H, 17 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 172.9 (CO), 158.6 (C-4 pyridinium), 158.4 (C-2 pyridinium), 155.3 (C-6 pyridinium), 128.8 (C-5 pyridinium), 126.9 (C-3 pyridinium), 60.7 (COO-<u>C</u>H₂), 49.7 (N⁺-<u>C</u>H₂), 33.6 (O-CO-<u>C</u>H₂-), 33.3 (CαPy-<u>C</u>H₂-), 31.9, 31.8, 29.6 (4C), 29.5 (3C), 29.4 (2C), 29.3 (3C), 29.2 (2C), 29.0, 28.3, 24.5, 22.6 (2C), 21.7 (CH₃ γ-pyridinium), 21.5 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₅H₆₄NO₂⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(2-tetradecanoyloxyethyl)pyridinium

hexafluorophosphate 52b: T_c = 68.5 °C; Yield 90%; ¹H-NMR (CDCl₃), δ, ppm: 7.49 (s, 1H, H-5 pyridinium), 7.40 (s, 1H, H-3 pyridinium), 4.77 (t, J = 6.0 Hz, 2H, N⁺-<u>CH₂</u>), 4.46 (t, J = 5.9 Hz, 2H, COO-<u>CH₂</u>), 3.04 (t, J = 8.0 Hz, 2H, CαPy-<u>CH₂</u>), 2.85 (s, 3H, CH₃ α-pyridinium), 2.54 (s, 3H, CH₃ γ-pyridinium), 2.24 (t, J = 7.6 Hz, 2H, O-CO-<u>CH₂</u>), 1.76 (cv, J = 7.9 Hz, 2H, Cα-CH₂CH₂), 1.51 (cv, J = 7.6 Hz, O-CO-CH₂CH₂), 1.46 (cv, J = 7.8 Hz, 2H, Cα-CH₂CH₂CH₂), 1.36 (m, 2H, O-CO-CH₂CH₂CH₂), 1.25 (m, 38H, 19 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 172.9 (CO), 158.6 (C-4 pyridinium), 158.4 (C-2 pyridinium), 155.2 (C-6 pyridinium), 128.8 (C-5 pyridinium), 126.9 (C-3 pyridinium), 60.7 (COO-<u>C</u>H₂), 49.7 (N⁺-<u>C</u>H₂), 33.6 (O-CO-<u>C</u>H₂-), 33.2 (CαPy-<u>C</u>H₂-), 31.9 (2C), 29.6 (4C), 29.5 (3C), 29.4 (2C), 29.3 (3C), 29.2 (4C), 29.0, 28.3, 24.5, 22.6 (2C), 21.7 (CH₃ γ-pyridinium),

21.5 (CH₃ α -pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₇H₆₈NO₂⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(2-hexadecanoyloxyethyl)pyridinium

hexafluorophosphate 52c: $T_c = 77.8$ °C; Yield 91%; ¹H-NMR (CDCl₃), δ, ppm: 7.48 (s, 1H, H-5 pyridinium), 7.40 (s, 1H, H-3 pyridinium), 4.77 (t, J = 5.6 Hz, 2H, N⁺-CH₂), 4.46 (t, J = 5.7 Hz, 2H, COO-CH₂), 3.04 (t, J = 7.8 Hz, 2H, CαPy-CH₂), 2.85 (s, 3H, CH₃ α-pyridinium), 2.54 (s, 3H, CH₃ γ-pyridinium), 2.24 (t, J = 7.3 Hz, 2H, O-CO-CH₂), 1.77 (cv, J = 7.3 Hz, 2H, Cα-CH₂CH₂), 1.51 (cv, J = 7.3 Hz, O-CO-CH₂CH₂), 1.47 (cv, J = 7.6 Hz, 2H, Cα-CH₂CH₂D, 1.36 (m, 2H, O-CO-CH₂CH₂CH₂), 1.26 (m, 42H, 21 CH₂ from n-alkyl chains), 0.88 (t, J = 6.8 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 173.0 (CO), 158.6 (C-4 pyridinium), 158.4 (C-2 pyridinium), 155.3 (C-6 pyridinium), 128.8 (C-5 pyridinium), 126.9 (C-3 pyridinium), 60.7 (COO-CH₂), 49.7 (N⁺-CH₂), 33.7 (O-CO-CH₂-), 33.3 (CαPy-CH₂-), 31.9 (2C), 29.7 (6C), 29.6 (3C), 29.4 (3C), 29.3 (3C), 29.2 (2C), 29.0 (2C), 28.3, 24.6, 22.6 (2C), 21.7 (CH₃ γ-pyridinium), 21.5 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₉H₇₂NO₂⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(2-aminoethyl)pyridinium hexafluorophosphate 53: mp = 61.4 °C; ¹H-NMR (CDCl₃), δ, ppm: 7.46 (s, 1H, H-5 pyridinium), 7.38 (s, 1H, H-3 pyridinium), 4.49 (t, J = 6.7 Hz, 2H, N⁺-<u>CH₂</u>), 3.15 (t, J = 6.7 Hz, 2H, H₂N-CH₂), 3.05 (t, J = 8.0 Hz, 2H, CαPy-<u>CH₂</u>), 2.85 (s, 3H, CH₃ α-pyridinium), 2.53 (s, 3H, CH₃ γ-pyridinium), 1.72 (cv, J = 7.8 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.44 (cv, J = 7.6 Hz, 2H, Cα-CH₂CH₂CH₂), 1.25 (m, 22H, 11 CH₂ from n-alkyl chain), 0.87 (t, J = 6.7 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 158.2 (C-2 pyridinium), 157.7 (C-4 pyridinium), 154.9 (C-6 pyridinium), 128.7 (C-5 pyridinium), 127.0 (C-3 pyridinium), 53.6 (N⁺-<u>C</u>H₂), 40.9 (H₂N-<u>C</u>H₂), 33.5 (CαPy-<u>C</u>H₂-), 31.9, 29.6 (6C), 29.5, 29.4, 29.3, 29.2 (2C), 28.7, 22.6, 21.7 (CH₃ γ-pyridinium), 21.5 (CH₃ α-pyridinium), 14.1 (CH₃ from n-alkyl chain). Anal. (C₂₃H₄₃N₂⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(2-dodecanoylamidoethyl)pyridinium chloride 54a: $T_c = 41.9$ °C; Yield 51%; ¹H-NMR (CDCl₃), δ , ppm: 7.43 (s, 1H, H-5 pyridinium), 7.36 (s,

1H, H-3 pyridinium), 7.03 (br.s., 1H, NH), 4.55 (t, J = 7.1 Hz, 2H, N⁺-<u>CH₂</u>), 3.61 (q, J = 6.8 Hz, 2H, CONH-<u>CH₂</u>), 3.17 (t, J = 7.7 Hz, 2H, CαPy-<u>CH₂</u>), 2.89 (s, 3H, CH₃ α-pyridinium), 2.53 (s, 3H, CH₃ γ-pyridinium), 2.16 (t, J = 7.7 Hz, 2H, NH-CO-<u>CH₂</u>), 1.71 (cv, J = 7.7 Hz, 2H, Cα-CH₂CH₂), 1.53 (cv, J = 6.9 Hz, NH-CO-CH₂CH₂), 1.46 (cv, J = 7.5 Hz, 2H, Cα-CH₂CH₂CH₂), 1.25 (m, 36H, 18 CH₂ from n-alkyl chains), 0.87 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 175.3 (CO), 158.8 (C-2 pyridinium), 157.9 (C-4 pyridinium), 155.0 (C-6 pyridinium), 128.6 (C-5 pyridinium), 127.1 (C-3 pyridinium), 50.3 (N⁺-<u>CH₂</u>), 37.9 (CONH-<u>CH₂</u>), 35.9 (NH-CO-<u>CH₂-), 33.1 (CαPy-<u>C</u>H₂-), 31.9, 31.8, 29.6 (2C), 29.4 (2C), 29.3 (4C), 29.2 (2C), 29.1, 29.0, 25.4, 25.0, 22.6 (2C), 21.6 (CH₃ γ-pyridinium), 21.3 (CH₃ α-pyridinium), 14.0 (2 CH₃ from n-alkyl chains). Anal. (C₃₅H₆₅N₂O⁺ CΓ), C, H, N.</u>

4,6-Dimethyl-2-tetradecyl-1-(2-tetradecanoylamidoethyl)pyridinium chloride 54b: T_c = 49.9 °C; Yield 55%; ¹H-NMR (CDCl₃), δ, ppm: 7.44 (s, 1H, H-5 pyridinium), 7.37 (s, 1H, H-3 pyridinium), 6.80 (t, *J* = 6.2 Hz, 1H, NH), 4.54 (t, *J* = 7.1 Hz, 2H, N⁺-<u>CH₂</u>), 3.61 (q, *J* = 6.8 Hz, 2H, CONH-<u>CH₂</u>), 3.17 (t, *J* = 7.6 Hz, 2H, CαPy-<u>CH₂</u>), 2.89 (s, 3H, CH₃ α-pyridinium), 2.54 (s, 3H, CH₃ γ-pyridinium), 2.16 (t, *J* = 7.7 Hz, 2H, NH-CO-<u>CH₂</u>), 1.72 (cv, *J* = 7.6 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.54 (cv, *J* = 6.8 Hz, NH-CO-CH₂<u>CH₂</u>), 1.47 (cv, *J* = 7.5 Hz, 2H, Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 40H, 20 CH₂ from n-alkyl chains), 0.87 (t, *J* = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 175.0 (CO), 158.8 (C-2 pyridinium), 158.0 (C-4 pyridinium), 154.9 (C-6 pyridinium), 128.6 (C-5 pyridinium), 127.1 (C-3 pyridinium), 50.3 (N⁺-<u>C</u>H₂), 37.9 (CONH-<u>C</u>H₂), 35.9 (NH-CO-<u>C</u>H₂-), 33.1 (CαPy-<u>C</u>H₂-), 31.9 (2C), 29.7 (4C), 29.5 (2C), 29.3 (4C), 29.1 (2C), 29.0, 25.4, 22.6 (2C), 21.6 (CH₃ γ-pyridinium), 21.3 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₇H₆₉N₂O⁺ CΓ), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(2-hexadecanoylamidoethyl)pyridinium chloride 54c: T_c = 46.8 °C; Yield 48%; ¹H-NMR (CDCl₃), δ, ppm: 7.44 (s, 1H, H-5 pyridinium), 7.37 (s, 1H, H-3 pyridinium), 6.76 (t, J = 6.2 Hz, 1H, NH), 4.53 (t, J = 7.1 Hz, 2H, N⁺-<u>CH₂</u>), 3.60 (q, J = 6.8 Hz, 2H, CONH-<u>CH₂</u>), 3.17 (t, J = 7.5 Hz, 2H, CαPy-<u>CH₂</u>), 2.89 (s, 3H, CH₃ α-pyridinium), 2.54 (s, 3H, CH₃ γ-pyridinium), 2.16 (t, J = 7.6 Hz, 2H, NH-CO-<u>CH₂</u>), 1.72

(cv, J = 7.6 Hz, 2H, Cα-CH₂CH₂), 1.54 (cv, J = 6.8 Hz, NH-CO-CH₂CH₂), 1.47 (cv, J = 7.5 Hz, 2H, Cα-CH₂CH₂CH₂), 1.25 (m, 44H, 22 CH₂ from n-alkyl chains), 0.87 (t, J = 6.6 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ , ppm: 175.1 (CO), 158.7 (C-2 pyridinium), 158.0 (C-4 pyridinium), 154.9 (C-6 pyridinium), 128.6 (C-5 pyridinium), 127.1 (C-3 pyridinium), 50.2 (N⁺-CH₂), 38.0 (CONH-CH₂), 35.9 (NH-CO-CH₂-), 33.0 (CαPy-CH₂-), 31.9 (2C), 29.7 (4C), 29.6 (4C), 29.5 (2C), 29.4 (2C), 29.3 (6C), 29.2, 29.1, 29.0, 25.4, 22.6 (2C), 21.6 (CH₃ γ-pyridinium), 21.3 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₉H₇₃N₂O⁺ Cl⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(2-mercaptoethyl)pyridinium hexafluorophosphate 55: mp = 71.9 °C; ¹H-NMR (CDCl₃), δ, ppm: 7.48 (s, 1H, H-5 pyridinium), 7.40 (s, 1H, H-3 pyridinium), 4.49 (t, J = 7.1 Hz, 2H, N⁺-<u>CH₂</u>), 2.99 (t, J = 7.5 Hz, 2H, CαPy-<u>CH₂</u>), 2.92 (q, J = 6.6 Hz, 2H, HS-<u>CH₂</u>) 2.81 (s, 3H, CH₃ α-pyridinium), 2.53 (s, 3H, CH₃ γ-pyridinium), 1.83 (t, J = 8.2 Hz, 1H, <u>HS</u>-CH₂), 1.74 (m, 2H, Cα-CH₂<u>CH₂</u>), 1.45 (m, 2H, Cα-CH₂CH₂<u>CH₂</u>), 1.25 (m, 22H, 11 CH₂ from n-alkyl chain), 0.87 (t, J = 6.5 Hz, 3H, CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 158.5 (C-4 pyridinium), 157.7 (C-2 pyridinium), 154.4 (C-6 pyridinium), 129.0 (C-5 pyridinium), 127.3 (C-3 pyridinium), 53.3 (N⁺-<u>C</u>H₂), 33.4 (CαPy-<u>C</u>H₂-), 31.9, 29.6 (4C), 29.5, 29.4, 29.3, 29.2 (2C), 28.7, 22.6, 21.6 (CH₃ γ-pyridinium), 21.3 (CH₃ α-pyridinium), 14.1 (CH₃ from n-alkyl chain). Anal. (C₂₃H₄₂NS⁺ PF₆⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(3,4-dithia-tetradecyl)pyridinium

56a:

hexafluorophosphate $T_c = 76.0$ °C; Yield 58%; ¹H-NMR (CDCl₃), δ, ppm: 7.48 (s, 1H, H-5 pyridinium), 7.41 (s, 1H, H-3 pyridinium), 4.70 (t, J = 8.0 Hz, 2H, N⁺-<u>CH₂</u>), 3.04 (t, J = 8.2 Hz, 2H, CαPy-<u>CH₂</u>), 3.02 (t, J = 8.0 Hz, 2H, RSS-<u>CH₂CH₂N⁺</u>), 2.83 (s, 3H, CH₃ α-pyridinium), 2.76 (t, J = 7.4 Hz, 2H, R<u>CH₂SS-CH₂CH₂N⁺</u>), 2.53 (s, 3H, CH₃ γ-pyridinium), 1.77 (cv, J = 7.8 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.68 (cv, J = 7.4 Hz, 2H, R<u>CH₂CH₂CH₂SS-CH₂CH₂N⁺</u>), 1.47 (cv, J = 7.4 Hz, 2H, Cα-CH₂CH₂CH₂CH₂CH₂SS-CH₂CH₂N⁺), 1.26 (m, 32H, 16 CH₂ from n-alkyl chains), 0.88 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 158.6 (C-4 pyridinium), 157.7 (C-2 pyridinium), 154.3 (C-6 pyridinium), 129.1 (C-5 pyridinium),

127.4 (C-3 pyridinium), 51.0 (N⁺-<u>C</u>H₂), 39.0 (N⁺CH₂CH₂SS-<u>C</u>H₂), 35.2 (N⁺CH₂<u>C</u>H₂SS), 33.3 (CαPy-<u>C</u>H₂-), 31.9, 31.8, 29.6 (4C), 29.5 (3C), 29.4, 29.3 (3C), 29.2, 29.1 (2C), 28.8, 28.4, 22.6 (2C), 21.6 (CH₃ γ-pyridinium), 21.2 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₃H₆₂NS₂⁺ PF₆⁻), C, H, N; **chloride** T_c = 77.4 °C; Yield 82% (from hexafluorophosphate); Anal. (C₃₃H₆₂NS₂⁺ Cl⁻), C, H, N.

4,6-Dimethyl-2-tetradecyl-1-(3,4-dithia-hexadecyl)pyridinium 56b:

hexafluorophosphate T_c = 81.0 °C; Yield 63%; ¹H-NMR (CDCl₃), δ, ppm: 7.48 (s, 1H, H-5 pyridinium), 7.41 (s, 1H, H-3 pyridinium), 4.70 (t, *J* = 8.0 Hz, 2H, N⁺-<u>CH₂</u>), 3.03 (t, *J* = 8.4 Hz, 2H, CαPy-<u>CH₂</u>), 3.01 (t, *J* = 8.0 Hz, 2H, RSS-<u>CH₂CH₂N⁺</u>), 2.83 (s, 3H, CH₃ α-pyridinium), 2.76 (t, *J* = 7.4 Hz, 2H, R<u>CH₂SS-CH₂CH₂N⁺</u>), 2.53 (s, 3H, CH₃ γ-pyridinium), 1.77 (cv, *J* = 7.8 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.68 (cv, *J* = 7.4 Hz, 2H, R<u>CH₂CH₂SS-CH₂CH₂CH₂N⁺), 1.47 (cv, *J* = 7.4 Hz, 2H, Cα-CH₂CH₂CH₂CH₂CH₂SS-CH₂CH₂N⁺), 1.26 (m, 36H, 18 CH₂ from n-alkyl chains), 0.88 (t, *J* = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 158.6 (C-4 pyridinium), 157.7 (C-2 pyridinium), 154.3 (C-6 pyridinium), 129.1 (C-5 pyridinium), 127.4 (C-3 pyridinium), 50.9 (N⁺-<u>CH₂</u>), 39.0 (N⁺CH₂CH₂SS-<u>CH₂</u>), 35.1 (N⁺CH₂<u>CH₂SS), 33.3 (CαPy-<u>CH₂-), 31.9, 29.7 (2C), 29.6 (5C), 29.55 (2C), 29.4, 29.3 (4C), 29.2, 29.1</u> (2C), 28.8, 28.4, 22.6 (2C), 21.6 (CH₃γ-pyridinium), 21.2 (CH₃α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains). Anal. (C₃₅H₆₆NS₂⁺ PF₆⁻), C, H, N; chloride T_c = 75.1 °C; Yield 76% (from hexafluorophosphate); Anal. (C₃₅H₆₆NS₂⁺ CΓ⁻), C, H, N.</u></u>

4,6-Dimethyl-2-tetradecyl-1-(3,4-dithia-octadecyl)pyridinium

56c:

hexafluorophosphate $T_c = 81.8$ °C; Yield 65%; ¹H-NMR (CDCl₃), δ, ppm: 7.48 (s, 1H, H-5 pyridinium), 7.41 (s, 1H, H-3 pyridinium), 4.70 (t, J = 8.1 Hz, 2H, N⁺-<u>CH₂</u>), 3.04 (t, J = 8.4 Hz, 2H, CαPy-<u>CH₂</u>), 3.02 (t, J = 8.0 Hz, 2H, RSS-<u>CH₂CH₂N⁺</u>), 2.83 (s, 3H, CH₃ α-pyridinium), 2.76 (t, J = 7.4 Hz, 2H, R<u>CH₂SS-CH₂CH₂N⁺</u>), 2.54 (s, 3H, CH₃ γ-pyridinium), 1.77 (cv, J = 7.8 Hz, 2H, Cα-CH₂<u>CH₂</u>), 1.68 (cv, J = 7.4 Hz, 2H, R<u>CH₂CH₂SS-CH₂CH₂N⁺), 1.48 (cv, J = 7.6 Hz, 2H, Cα-CH₂CH₂CH₂CH₂), 1.37 (m, 2H, R<u>CH₂CH₂CH₂SS-CH₂CH₂N⁺), 1.26 (m, 40H, 20 CH₂ from n-alkyl chains), 0.88 (t, J = 6.7 Hz, 6H, 2 CH₃ from n-alkyl chains); ¹³C-NMR (CDCl₃), δ, ppm: 158.6 (C-4)</u></u>

pyridinium), 157.7 (C-2 pyridinium), 154.3 (C-6 pyridinium), 129.1 (C-5 pyridinium), 127.4 (C-3 pyridinium), 50.9 (N⁺-<u>C</u>H₂), 39.0 (N⁺CH₂CH₂SS-<u>C</u>H₂), 35.1 (N⁺CH₂<u>C</u>H₂SS), 33.3 (CαPy-<u>C</u>H₂-), 31.9, 29.7 (5C), 29.6 (5C), 29.5, 29.4, 29.3 (4C), 29.2, 29.1 (2C), 28.8, 28.4, 22.6 (2C), 21.7 (CH₃ γ-pyridinium), 21.2 (CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chains).Anal. (C₃₇H₇₀NS₂⁺ PF₆⁻), C, H, N; **chloride** T_c = 86.9 °C; Yield 78% (from hexafluorophosphate); Anal. (C₃₇H₇₀NS₂⁺ Cl⁻), C, H, N.

1,6-Bis(4,6-dimethyl-2-tetradecylpyridinium-1-yl)-3,4-dithiahexane

dihexafluorophosphate 57: hexafluorophosphate T_c = 107.0 °C; Yield 71%; ¹H-NMR (CDCl₃), δ, ppm: 7.44 (s, 2H, 2 H-5 pyridinium), 7.36 (s, 2H, 2 H-3 pyridinium), 4.71 (t, J = 7.5 Hz, 4H, 2 N⁺-CH₂), 3.16 (t, J = 7.6 Hz, 4H, 2 N⁺-CH₂CH₂S-S), 3.01 (t, J = 7.7 Hz, 4H, 2 CαPy-CH₂) 2.82 (s, 6H, 2 CH₃ α-pyridinium), 2.50 (s, 6H, 2 CH₃ γ-pyridinium), 1.75 (cv, J = 7.1 Hz, 4H, 2 Cα-CH₂CH₂), 1.44 (cv, J = 6.5 Hz, 4H, 2 Cα-CH₂CH₂CH₂), 1.27 (m, 40H, 20 CH₂ from n-alkyl chain), 0.87 (t, J = 6.6 Hz, 6H, 3 CH₃ from n-alkyl chain); ¹³C-NMR (CDCl₃), δ, ppm: 158.5 (2 C-4 pyridinium), 157. 7 (2 C-2 pyridinium), 154.5 (2 C-6 pyridinium), 128.9 (2 C-5 pyridinium), 127.3 (2 C-3 pyridinium), 50.7 (2 N⁺-CH₂), 34.8 (2 N⁺-CH₂CH₂S), 33.2 (2 CαPy-CH₂-), 31.9 (2C), 29.7 (6C), 29.6 (4C), 29.4 (2C), 29.3 (2C), 29.2 (4C), 28.5 (2C), 22.6 (2C), 21.6 (2 CH₃ γ-pyridinium), 21.0 (2 CH₃ α-pyridinium), 14.1 (2 CH₃ from n-alkyl chain). Anal. (C₄₆H₈₂N₂S₂⁺ PF₆⁻), C, H, N; **chloride** T_c = 139.3 °C; Yield 79% (from hexafluorophosphate); Anal. (C₄₆H₈₂N₂S₂⁺ Cl⁻), C, H, N.

No.	Formula	Elemental analysis data (calc./found)			
		%C	%H	%N	
14a	$C_{17}H_{29}O^+ PF_6^-$	51.77/51.86	7.41/7.54	-	
14b	$C_{18}H_{31}O^+ PF_6^-$	52.94/53.22	7.65/7.72	-	
14c	$C_{19}H_{33}O^+ PF_6^-$	54.02/54.11	7.87/7.94	-	
14d	$C_{20}H_{35}O^+ PF_6^-$	55.04/55.31	8.08/8.28	-	
14e	$C_{21}H_{37}O^+ PF_6^-$	55.99/56.17	8.28/8.40	-	
14f	$C_{22}H_{39}O^+ PF_6^-$	56.88/57.06	8.46/8.64	-	
14g	$C_{23}H_{41}O^+ PF_6^-$	57.73/57.92	8.64/8.89	-	
14h	$C_{24}H_{43}O^{+}PF_{6}^{-}$	58.52/58.71	8.80/8.96	-	
15	$C_{27}H_{50}N^+ PF_6^-$	60.77/60.94	9.44/9.14	2.62/2.63	
16	$C_{29}H_{54}N^+ PF_6^-$	62.01/62.38	9.69/9.30	2.49/2.38	
17	$C_{28}H_{52}N^+ PF_6^-$	61.40/61.53	9.57/9.37	2.56/2.55	
18	$C_{30}H_{56}N^+ PF_6^-$	62.58/62.49	9.80/9.77	2.43/2.46	
19	$C_{29}H_{54}N^+ PF_6^-$	62.01/61.95	9.69/9.38	2.49/2.55	
20	$C_{31}H_{58}N^+ PF_6^-$	63.13/63.13	9.91/9.57	2.37/2.45	
21	$C_{30}H_{56}N^+ PF_6^-$	62.58/62.76	9.80/9.57	2.43/2.33	
22	$C_{32}H_{60}N^+ PF_6^-$	63.66/63.54	10.02/9.68	2.32/2.31	
23	$C_{35}H_{66}N^+ PF_6^-$	65.09/65.29	10.30/9.97	2.17/2.18	
24	$C_{36}H_{68}N^+ PF_6^-$	65.52/65.16	10.39/10.41	2.12/1.93	
25	$C_{38}H_{72}N^+PF_6^-$	66.34/66.19	10.55/10.42	2.04/2.18	
26	$C_{39}H_{74}N^{+}PF_{6}$	66.73/66.47	10.63/10.33	2.00/2.36	
27	$C_{40}H_{76}N^+ PF_6^-$	67.10/66.75	10.70/10.38	1.96/1.97	
28	$C_{42}H_{80}N^+ PF_6^-$	67.80/67.42	10.84/10.83	1.88/1.53	
29	$C_{44}H_{78}N_2^+ 2PF_6^-$	57.13/57.41	8.50/8.13	3.03/3.26	
30	$C_{45}H_{80}N_2^+ 2PF_6^-$	57.56/57.73	8.59/8.68	2.98/3.01	
31	$C_{46}H_{82}N_2^+ 2PF_6^-$	57.97/58.22	8.67/8.88	2.94/2.75	
32	$C_{47}H_{84}N_2^+ 2PF_6^-$	58.37/58.42	8.75/8.93	2.90/2.83	
33	$C_{48}H_{86}N_2^+ 2PF_6^-$	58.76/58.72	8.83/8.61	2.86/2.45	
34	$C_{49}H_{88}N_2^+ 2PF_6^-$	59.14/59.09	8.91/9.16	2.81/2.64	
35	$C_{50}H_{90}N_2^+ 2PF_6^-$	59.51/59.78	8.99/9.22	2.78/2.77	
40a	$C_{51}H_{91}N_3O_2^+ 2PF_6^-$	57.34/57.65	8.59/8.26	3.93/4.05	
40b	$C_{53}H_{95}N_3O_2^+ 2PF_6^-$	58.07/58.40	8.73/8.93	3.83/4.11	
40c	$C_{54}H_{97}N_3O_2^+ 2PF_6^-$	58.41/58.13	8.81/8.72	3.78/3.56	
46	$C_{62}H_{112}N_4O_4^+ 2PF_6^-$	58.75/59.09	8.91/9.28	4.42/4.64	

2. Elemental analysis data for the compounds described in the paper

No.	Formula	Elemental analysis data (calc./found)		
		%C	%H	%N
41 a	$C_{46}H_{83}N_3^+ 2PF_6^-$	57.07/57.25	8.64/8.86	4.34/4.21
41b	$C_{48}H_{87}N_3^+ 2PF_6^-$	57.87/57.49	8.80/8.62	4.22/4.34
41c	$C_{49}H_{89}N_3^+ 2PF_6^-$	58.26/58.31	8.88/8.97	4.16/4.12
47	$C_{52}H_{96}N_4^+ 2PF_6^-$	58.52/58.14	9.07/9.43	5.25/5.51
48a	$C_{80}H_{148}N_4^+ 2PF_6^-$	67.57/67.89	10.03/10.33	3.77/3.88
48b	$C_{84}H_{156}N_4^+ 2PF_6^-$	65.34/65.22	10.18/10.46	3.63/3.72
49	$C_{84}H_{160}N_4^+ 2PF_6^-$	66.54/66.98	10.64/10.99	3.70/3.84
50	$C_{69}H_{123}N_4^+ 3PF_6^-$	57.41/57.15	8.59/8.84	3.88/4.04
51	$C_{23}H_{42}NO^{+}PF_{6}^{-}$	55.97/56.31	8.58/8.81	2.84/2.96
52a	$C_{35}H_{64}NO_2^+ PF_6^-$	62.20/62.34	9.54/9.32	2.07/2.12
52b	$C_{37}H_{68}NO_2^+ PF_6^-$	63.13/63.21	9.74/9.55	1.99/2.03
52c	$C_{39}H_{72}NO_2^+ PF_6^-$	64.00/64.08	9.91/10.07	1.91/1.90
53	$C_{23}H_{43}N_2^+ PF_6^-$	56.08/56.42	8.80/9.04	5.69/5.23
54a	$C_{35}H_{65}N_2O^+Cl^-$	74.36/74.02	11.59/11.92	4.96/5.28
54b	$C_{37}H_{69}N_2O^+Cl^-$	74.89/74.96	11.72/11.89	4.72/4.82
54c	$C_{39}H_{73}N_2O^+Cl^-$	75.37/75.70	11.84/11.88	4.51/4.24
55	$C_{23}H_{42}NS^+PF_6^-$	54.21/54.55	8.31/8.63	2.75/3.02
56a	$C_{33}H_{62}NS_2^+ PF_6^-$	58.12/58.37	9.16/9.42	2.05/1.87
	$C_{33}H_{62}NS_2^+ Cl^-$	69.24/69.56	10.92/11.05	2.45/2.09
56b	$C_{35}H_{66}NS_2^+PF_6^-$	59.21/59.41	9.37/9.66	1.97/2.03
	$C_{35}H_{66}NS_2^+Cl^-$	70.01/70.39	11.08/11/31	2.33/2.64
56c	$C_{37}H_{70}NS_2^+PF_6^-$	60.21/60.49	9.56/9.86	1.90/1.86
	$C_{37}H_{70}NS_2^+Cl^-$	70.70/71.02	11.23/11.48	2.23/2.38
57	$C_{46}H_{82}N_2S_2^+PF_6^-$	54.31/54.21	8.13/8.29	2.75/2.88
	$C_{46}H_{82}N_2S_2^+$ Cl ⁻	69.22/69.43	10.35/10.63	3.51/3.23