Supporting Information

Potent Benzimidazole Sulfonamide PTP1B Inhibitors
 Containing the Heterocyclic (\boldsymbol{S})-Isothiazolidinone

 Phosphotyrosine Mimetic

 Phosphotyrosine Mimetic}

Andrew P. Combs,* ${ }^{\mathbb{\top}}$ Wenyu Zhu, ${ }^{\boldsymbol{\llbracket}}$ Matthew L. Crawley, ${ }^{\boldsymbol{\top}}$ Brian Glass, ${ }^{\boldsymbol{\llbracket}}$ Padmaja
 Yue, ${ }^{\text {§ }}$ Zelda Wasserman, ${ }^{\text {® }}$ Michael Bower, ${ }^{\mathbb{\circledR}}$ Min Wei, ${ }^{\S}$ Mark Rupar, ${ }^{\S}$ Paul J. Ala, ${ }^{\S}$ Brian M. Reid, ${ }^{\S}$ Dawn Ellis, ${ }^{\S}$ Lucie Gonneville, ${ }^{\S}$ Thomas Emm, ${ }^{\ddagger}$ Nancy Taylor, ${ }^{\star}$ Swamy Yeleswaram, ${ }^{\neq}$Yanlong Li, ${ }^{\S}$ Richard Wynn, ${ }^{\S}$ Timothy C. Burn, ${ }^{\S}$ Gregory Hollis, ${ }^{\S}$ Phillip C.C. Liu, ${ }^{\S}$ Brian Metcalf

Incyte Corporation, Discovery Chemistry ${ }^{\text {§ }}$ and Applied Technology, ${ }^{\S}$ Drug Metabolism, ${ }^{\neq}$ Experimental Station, Route 141 and Henry Clay Road, Wilmington, DE 19880
*To whom correspondence should be addressed.
Andrew P. Combs, Ph.D.
Discovery Chemistry
Experimental Station, E336/132A
Route 141 and Henry Clay Rd.
Wilmington, DE 19880
Ph: (302)-498-6832
Fax: (302)-425-2708
E-mail: acombs@incyte.com

Contents:

1-HPLC Purity Analysis

1- HPLC Purity Analysis: HPLC Purity Analysis

HPLC purity was determined to be $>95 \%$ for all final products by the following two HPCL conditions (See Table below); 1) HPLC method A utilized a Phenominex Luna C18 column ($6 \times 75 \mathrm{~mm}, 3 \mu \mathrm{M}$ particle size), with a gradient of 95% water/0.05\% TFA to 5% acetonitrile/ 0.05% TFA at a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$ over a total run time of 7 min. with UV monitoring at 220 nm and 254 nm . 2) HPLC method B utilized a Zorbax Eclipse XDB-C8 column ($6 \times 50 \mathrm{~mm}, 3.5 \mu \mathrm{M}$ particle size), with a gradient of 95% water/ 0.05% TFA to 5% acetonitrile $/ 0.05 \%$ TFA at a flow rate of $1.5 \mathrm{~mL} / \mathrm{min}$ over a total run time of 5 min . with UV monitoring at 225 nm and 254 nm .

Compound	Formula	HPLC Analysis Data
$\mathbf{2}$	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	Method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=2.23 \mathrm{~min}(99.9 \%)$
Method B: $\mathrm{t}_{\mathrm{R}}=1.74 \min (99.9 \%)$		
$\mathbf{1 0}$	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$	Method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=2.99 \min (95.0 \%)$
		Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=2.27 \mathrm{~min}(99.9 \%)$
$\mathbf{1 2}$	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	Method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=2.23 \mathrm{~min}(100 \%)$

		Method B: $\mathrm{t}_{\mathrm{R}}=1.74 \mathrm{~min}(100 \%)$
14	$\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method A: $\mathfrak{t}_{\mathrm{R}}=2.75 \mathrm{~min}(99.7 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.25 \mathrm{~min}(100 \%)$
16	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method A: $\mathfrak{t}_{\mathrm{R}}=2.84 \min (95.9 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.34 \mathrm{~min}(99.1 \%)$
67a	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{FN}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method A: $t_{R}=2.67 \mathrm{~min}(96.9 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.19 \mathrm{~min}(98.6 \%)$
67b	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method A: $\mathrm{t}_{\mathrm{R}}=2.77 \mathrm{~min}(95.6 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.28 \mathrm{~min}(97.2 \%)$
67c	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClF}_{4} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method A: $t_{R}=3.66 \mathrm{~min}(97.6 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.96 \mathrm{~min}(98.2 \%)$
$67 \mathrm{~d}$	$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ClF}_{4} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	Method A: $\mathrm{t}_{\mathrm{R}}=3.28 \mathrm{~min}(98.7 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.60 \mathrm{~min}(97.8 \%)$
79a	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method A: $t_{R}=2.71 \mathrm{~min}(96.0 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.27 \mathrm{~min}(98.5 \%)$
79b	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method A: $\mathrm{t}_{\mathrm{R}}=2.82 \mathrm{~min}(98.7 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.37 \mathrm{~min}(99.0 \%)$
79c	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{BrF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method A: $\mathrm{t}_{\mathrm{R}}=3.32 \mathrm{~min}(97.2 \%)$ Method B: $\mathrm{t}_{\mathrm{R}}=2.82 \mathrm{~min}(99.5 \%)$

79d	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=2.69 \min (95.2 \%)$
Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=2.82 \mathrm{~min}(96.5 \%)$		
$\mathbf{7 9 e}$	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=3.02 \mathrm{~min}(95.1 \%)$
		Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=2.82 \mathrm{~min}(95.5 \%)$
$\mathbf{8 7}$	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{5} \mathrm{~S}_{2}$	Method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=2.77 \mathrm{~min}(97.2 \%)$ Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=2.27 \mathrm{~min}(98.0 \%)$

