A SeCSe-Pd(II) Pincer Complex as Highly Efficient Catalyst for Allylation of Aldehydes with AllyltributyltinQingwei Yao and Mathew SheetsDepartment of Chemistry and Biochemistry, The Michael Faraday Laboratories,Northern Illinois University,DeKalb, Illinois 60115
Contents
General 2S
Synthesis of the SeCSe-Pd(II) Pincer Complex 4 2S
Allylation of Aldehydes with Allyltributyltin in the Presence of the
SeCSe-Pd(II) Pincer Catalyst 4. Representative Procedure 3S
Table S-1. Allylation of Aldehydes with Allyltributyltin 7
Using the Pd-Complex 4 as Catalyst 4S
${ }^{1}$ H NMR Spectroscopic Study on the Reaction of the Pd Complex 4 with
Allyltributyltin 7: Identification of the Transmetalation Product 9 5S
NMR Spectroscopic data of Compounds 8b-8g 8S
References 10S
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 4 11S
${ }^{13}$ C NMR Spectrum of Compound 4 12S
${ }^{1} \mathbf{H}$ NMR Spectrum of Compound 8a 13S
${ }^{13}$ C NMR Spectrum of Compound 8a 14S
${ }^{1} \mathbf{H}$ NMR Spectrum of Compound 8b $15 S$
${ }^{13}$ C NMR Spectrum of Compound 8b 16S
${ }^{1}$ H NMR Spectrum of Compound 8c 17S
${ }^{13}$ C NMR Spectrum of Compound 8c 18S
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 8d 19S
${ }^{13}$ C NMR Spectrum of Compound 8d 20S
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 8 e 21S
${ }^{13}$ C NMR Spectrum of Compound 8 e 22S
${ }^{1} \mathrm{H}$ NMR Spectrum of Compound 8 f $23 S$
${ }^{13}$ C NMR Spectrum of Compound $8 f$ 24S
${ }^{1}$ H NMR Spectrum of Compound $\mathbf{8 g}$ 25S
${ }^{13}$ C NMR Spectrum of Compound $\mathbf{8 g}$ 26S

Experimental Section

General. Aldehydes were obtained from commercial sources. Their purity was checked by ${ }^{1} \mathrm{H}$ NMR and, whenever necessary, purified by distillation or chromatography to ensure no carboxylic acid was present. Allyltributyltin was purchased from Aldrich and used as received. THF was distilled from sodium/benzophenone under a nitrogen atmosphere prior to use. $\mathrm{N}, \mathrm{N}-$ Dimethylformamide (DMF) (anhydrous; Sure-Seal bottle) was purchased from Aldrich. $N, N-$ Dimethylacetamide (DMA) and DMSO were dried and freshly distilled over molecular sieves. THF- d_{8} was purchased from Cambridge Chemicals and dried over flamed dried molecular sieves prior to use. Unless otherwise indicated, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ in CDCl_{3} at 500 and 125 MHz , respectively. Chemical shifts (ppm) were obtained by referencing to CDCl_{3} as a standard. Flash chromatography was performed on grade 60 silica gel ($32-63 \mu \mathrm{~m}$) obtained from commercial sources. All reactions were performed under an argon atmosphere by standard Schlenk techniques. All reactions were performed in duplicate.

Synthesis of the SeCSe-Pd(II) Pincer Complex 4. An oven-dried flask was charged with bis-selenide ligand 5^{11} ($435 \mathrm{mg}, 1.045 \mathrm{mmol}$) and 1 mL of glacial HOAc. Palladium acetate (236 $\mathrm{mg}, 1.05 \mathrm{mmol}$) was then added followed by an additional 1 mL of HOAc. The reaction mixture was heated to $116^{\circ} \mathrm{C}$ and maintained at gentle reflux for 3 h . After the reaction was cooled to rt and HOAc removed in vacuo, the crude reaction product was dissolved in dichloromethane (2 $\mathrm{mL})$. Hexanes (10 mL) were then added and the product precipitated as a yellow crystalline solid. The precipitates were allowed to settle and the solvent was decanted. This process was repeated three times and the purified product was dried on vacuum line overnight to give pure $\mathbf{4}$ ($498 \mathrm{mg}, 82 \%$) as a bright yellow solid, m.p. $185-188^{\circ} \mathrm{C}$. Spectroscopic analysis showed that this material exists as a diastereomeric mixture in a ratio of $3: 2 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 7.98 (dd, $J=1.86$ and 7.7 Hz , major diastereomer) and 7.91 (d, $J=7.2 \mathrm{~Hz}$, minor diastereomer)
(4 H in total), 7.33-7.41 (m, 6H), 6.87-6.94 (m, 3H), 4.573 (minor, d, $J=14.2 \mathrm{~Hz}$) and $4.568(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}$, major diastereomer) (2 H in total), $4.32(\mathrm{~d}, J=13.7 \mathrm{~Hz}$, major) and $4.21(\mathrm{~d}, J=14.1$ Hz , minor diastereomer) (2 H in total), 1.84 (bs, minor diastereomer) and 1.71 (bs, major diastereomer) (3 H in total). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$): $\delta 177.2$ (minor diastereomer) and 176.9 (major diastereomer), 152.7 (minor diastereomer) and 152.3 (major diastereomer), 150.7 (minor diastereomer) and 150.1 (major diastereomer), 133.3 (major diastereomer) and 133.2 (minor diastereomer), 130.0, 129.8, 129.59, 129.56 and 129.4 (isomeric peaks of 3 C), 124.5 (major diastereomer) and 124.3 (minor diastereomer), 123.7 (minor diastereomer) and 123.6 (major diastereomer), 43.0 (major diastereomer) and 42.4 (minor diastereomer), 23.6 (minor diastereomer) and 23.5 (major diastereomer). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{PdSe}_{2}$: C, 45.50; H, 3.47. Found: C, 45.45; H, 3.48.

Allylation of Aldehydes with Allyltributyltin in the Presence of the SeCSe-Pd(II) Pincer

Catalyst 4. Representative Procedure: Allylation of 4-bromobenzaldehyde (6a) with allyltributyltin (7) in the presence of 4 (Table 1, entry 6). A flame-dried Schlenk flask was charged with aldehyde $\mathbf{6 a}(92.5 \mathrm{mg}, 0.5 \mathrm{mmol})$, DMF $(0.5 \mathrm{~mL})$ and catalyst $4(2.9 \mathrm{mg}, 0.0050$ mmol) under argon. Allyltributyltin (7) ($186 \mu \mathrm{~L}, 199 \mathrm{mg}, 0.6 \mathrm{mmol})$ was then added via syringe. The flask was sealed and heated to $40{ }^{\circ} \mathrm{C}$ (bath temperature) for 18 h . After cooling to rt , the reaction mixture was poured into water and extracted with ether. The combined extracts were stirred with aqueous KF $(10 \%$, w/v) overnight. The organic layer was then separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude product was purified by flash column chromatography (hexanes/EtOAc 8:1) to give the known homoallyl alcohol 8a ${ }^{1}$ ($106 \mathrm{mg}, 93 \%$) as a colorless oil. The reaction was repeated one more time and the product was isolated in 95% yield. ${ }^{1} \mathrm{H}$ NMR (200 MHz): $\delta 7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}$), $7.22(\mathrm{~d}, 2 \mathrm{H} J=8.3 \mathrm{~Hz}), 5.68-5.88(\mathrm{~m}, 1$
H), $5.10-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.64(\mathrm{bs}, 1 \mathrm{H}$, alcohol), 2.44-2.51(m, 2 H$) .{ }^{13} \mathrm{C}$

NMR (50 MHz): $\delta 142.84,133.97,131.43,127.61,121.21,118.69,72.65,43.69$.
Reactions (each in duplicate) of other aldehydes under a variety of conditions were performed according to the general procedure with appropriate adjustment of the solvent used and the reaction time and temperature. The results were given in Table S-1.

Table S-1. Allylation of Aldehydes with Allyltributyltin 7 Using the Pd-Complex $\mathbf{4}$ as Catalyst

${ }^{a}$ All reactions were performed with 1 eq of $\mathbf{6}$ and 1.2 eq of 7 under conditions as indicated. ${ }^{b}$ Referred to isolated yield after column chromatography on silica gel. ${ }^{c}$ Average of two runs. ${ }^{d}$ The $\operatorname{SeCSe}-\mathrm{Pd}(\mathrm{II})$ pincer complex 1 was used. ${ }^{e}$ This control reaction was performed in the absence of any catalyst. ${ }^{f}$ Not detected by ${ }^{1} \mathrm{H}$ NMR. ${ }^{g}$ The Se-palladacycle 2 was used.

${ }^{1}$ H NMR Spectroscopic Study on the Reaction of the Pd Complex 4 with Allyltributyltin

 7: Identification of the Transmetalation Product 9. An NMR tube (5 mm) was charged with $\mathbf{4}$ $(4.6 \mathrm{mg}, 0.008 \mathrm{mmol})$ and $600 \mu \mathrm{~L}$ of degassed THF- d_{8} was added under an Ar atmosphere. The NMR tube was cooled to $-5^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectrum (at 500 MHz with $\mathrm{d} 1=10 \mathrm{~s}$) was recorded. Due to the chiral nature of the Pd-bound selenium, there exist two diastereomers, cis- and trans-4 (Scheme S-1) as evidenced by the two diastereotopic SeCH_{2} groups corresponding to each of the diastereomers. Each of the SeCH_{2} groups appears as two doublets (Figure S-1). Allyltributyltin $7(24.5 \mu \mathrm{~L}, 26.5 \mathrm{mg}, 0.080 \mathrm{mmol})$ was then added and the temperature of the NMR probe was raised to $25^{\circ} \mathrm{C}$. After 20 min at this temperature, $\mathbf{4}$ was converted to a new compound in about 50% conversion. This new compound was identified as the transmetalation product $9-\eta{ }^{1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture at $-5^{\circ} \mathrm{C}$ was shown in Figure S-2. The spectrum assignments for compounds 4, $\mathbf{7}$ and $\mathbf{9}$ were shown in Figure S-3. The 2D proton COSY NMR spectra of the reaction mixture were shown in Figures S-4.A and S-4.B.

Scheme S-1. Reaction of Pd Complex 4 with Allyltributyltin 7 in THF-d d_{8}.

Figure S-1. ${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4}$ in THF- d_{8} to $25{ }^{\circ} \mathrm{C}$.

Figure S-2. ${ }^{1} \mathrm{H}$ NMR Spectrum of the Reaction Mixture of 4 and 7.

Figure S-3. Partial $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR Spectrum and Spectrum Assignments for the Crude Reaction Mixture Containing 4, 7 and the Allyl-Pd(II) Complex 9^{14} in THF- d_{8} at $-5^{\circ} \mathrm{C}$.

Figure S-4. A. 2D COSY Spectrum (Plot A) of the Crude Reaction Mixture of 4 and 7.

Figure S-4. B. 2D COSY Spectrum (Plot B) of the Reaction Mixture of 4 and 7.

Phenylbut-3-en-1-ol (8b) ${ }^{2}$

${ }^{1} \mathrm{H}$ NMR: $\delta 7.29-7.41(\mathrm{~m}, 5 \mathrm{H}), 5.79-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{t}, 1 \mathrm{H} \mathrm{J}=6.5 \mathrm{~Hz})$, 2.79 (bs, 1 H alcohol), 2.54 (t, $2 \mathrm{H}, J=6.8$). ${ }^{13} \mathrm{C}$ NMR: δ 144.22, 134.74, 128.39, 127.47, 126.08, 117.85, 73.56, 43.72.

1-(4-Methoxyphenyl)but-3-en-1-ol (8c) ${ }^{1,3}$

${ }^{1} \mathrm{H}$ NMR: $\delta 7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.78-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.18(\mathrm{~m}$, $2 \mathrm{H}), 4.69(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 2.18\left(\mathrm{bs}, 1 \mathrm{H}\right.$, alcohol). ${ }^{13} \mathrm{C}$ NMR: $\delta 159.07,136.14,134.65,127.09,118.11,113.64,73.03,55.28,43.64$.

1-(4-Nitrophenyl)but-3-en-1-ol (8d) ${ }^{1 \mathrm{bb} 3 \mathrm{c}}$

${ }^{1} \mathrm{H}$ NMR: $\delta 8.14(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.52(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 5.74-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.15$ $(\mathrm{m}, 2 \mathrm{H}), 4.87(\mathrm{t}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.17\left(\mathrm{bs}, 1 \mathrm{H}\right.$, alcohol), 2.45-2.56(m,2H). ${ }^{13} \mathrm{C}$ NMR: δ 151.52, 147.067, 133.36, 126.65, 123.46, 118.96, 72.35, 43.61.

4-(1-Hydroxybut-3-enyl)benzonitrile (8e) ${ }^{3 \mathrm{c}}$

${ }^{1} \mathrm{H}$ NMR: $\delta 7.56(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.43(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 5.69-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.11$ $(\mathrm{m}, 2 \mathrm{H}), 4.75(\mathrm{t}, J=6.1 \mathrm{~Hz}), 3.08\left(\mathrm{bs}, 1 \mathrm{H}\right.$, alcohol), 2.39-2.50(m,2H). ${ }^{13} \mathrm{C}$ NMR: δ 149.56, 133.50, 132.12, 126.61, 118.9, 110.81, 72.48, 43.62.

Phenyl-5-hexen-3-ol (8f) ${ }^{4}$

${ }^{1} \mathrm{H}$ NMR: $\delta 7.20-7.38(\mathrm{~m}, 5 \mathrm{H}), 5.78-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.19(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.89$ $(\mathrm{m}, 2 \mathrm{H}), 2.18-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.66\left(\mathrm{bs}, 1 \mathrm{H}\right.$, alcohol). ${ }^{13} \mathrm{C}$ NMR: δ 142.07, $134.63,128.48,128.44,125.87,118.51,69.88,42.12,38.48,32.08$

Undec-1-en-4-ol (8g) ${ }^{1 b, 5}$

${ }^{1} \mathrm{H}$ NMR: $\delta 5.81-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.18(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.67(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.20-$ $2.11(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{bs}, 1 \mathrm{H}$, alcohol $), 1.49-1.28(\mathrm{~m}, 12 \mathrm{H}), 0.89(\mathrm{t}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR: δ $134.94,117.66,70.75,41.91,36.84,31.77,29.58,29.20,25.60,22.56,13.93$.

References

(1) (a) Yanagisawa, A.; Kageyama, H.; Nakatsuka, Y.; Asakawa, K.; Matsumoto, Y.;

Yamamoto, H. Angew. Chem., Int. Ed. 1998, 38, 3701. (b) Thadani, A. N.; Batey, R. A. Org. Lett. 2002, 4, 3827.
(2) (a) Dussault, P. H.; Lee, H.-J.; Liu, X. J. Chem. Soc., Perkin Trans. 1 2000, 3006. (b) Cai, M.;

Huang, Y.; Zhao, H.; Zhang, R. J. Organomet. Chem. 2004, 689, 2436.
(3) (a) Shibato, A.; Itagaki, Y.; Tayama, E.; Hokke, Y.; Asao, N.; Maruoka, K. Tetrahedron 2000, 56, 5373. (b) Doucet. H.; Santelli, M. Tetrahetron: Asymmetry 2000, 11, 4163. (c) Fürstner, A.; Voigtlaender, D. Synthesis 2000, 959.
(4) (a) Akiyama, T.; Iwai, J.; Sugano, M. Tetrahedron 1999, 55, 7499. (b) Fujioka, H.; Ohba, Y.;

Hirose, H.; Murai, K.; Kita, Y. Org. Lett. 2005, 7, 3303.
(5) Fürstner, A.; Shi, N. J. Am. Chem. Soc. 1996, 118, 12349.

8a

ppm	140	120,	100	80	60	40	20

Supporting Information

8b

Supporting Information

Supporting Information

Supporting Information

Supporting Information

$\left.\right|_{\substack{\tilde{\sim} \\ \text { W. }}}$

Supporting Information

틈 $\stackrel{\substack{\infty \\ \hline \\ \underset{\sim}{m} \\ m}}{\square}$
$\stackrel{\text { O}}{\stackrel{\sim}{0}}$

숫ํํㅇ
リ1

