Supplementary Information

Assembly of Heterometallic Polynuclear $\mathrm{Sn}^{\text {IV }}-\mathrm{Cu}^{\text {I }}$ Cluster Based on
 $\operatorname{Sn}(\text { edt })_{2}($ edt $=$ ethane-1,2-dithiolate $)$ as Metalloligand

Xin Wang, Tian-Lu Sheng, Rui-Biao Fu, Sheng-Min Hu, Sheng-Chang Xiang, Long-Sheng Wang and Xin-Tao Wu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
*Corresponding author. E-mail: wxt@ms.fjirsm.ac.cn. Tel: 86-591-3792837
Fax: 86-591-3714946

Supplementary Index

1. Materials and General Procedures S3
2. Synthesis of compound 2 S4
3. Supporting Tables and Figures. S5
Table S1. Crystal data collection and structural refinement parameters S5
Table S2. Selected bond distances (\AA) of the nonhydrogen atoms. S6
Table S3. Selected bond angles (${ }^{\circ}$) S6
Figure S1. ORTEP view for 2 S7
Figure S2. Powder XRD patterns S8
Figure $\mathrm{S} 3 .{ }^{1} \mathrm{H}$ NMR spectrum. S9
Figure $\mathrm{S} 4 .{ }^{31}$ P NMR spectrum S9
Figure S5. IR spectrum S10
Figure S6. Raman spectrum S11
Figure S7. Low-frequency infrared spectrum S12

1. Materials and General Procedures.

All chemicals were obtained from commercial sources without further purification. $\mathrm{Sn}(\mathrm{edt})_{2}^{[1]}$ and $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})_{2}\right] \mathrm{ClO}_{4}{ }^{[2]}$ were prepared according to the literature.

The crystal data collection was performed on a Mercury-CCD diffractometer. The structure was solved by direct methods and refined by full-matrix least-squares techniques on F^{2} using SHELXTL-97. ${ }^{[3]}$ All non-hydrogen atoms were treated anisotropically. The positions of hydrogen atoms attached to carbon atoms were generated geometrically.

Infrared spectra were recorded on a Nicolet magna 750 FT-IR spectrophotometer using KBr pellets. Raman spectrum were recorded on a Nicolet raman 950 FT-IR spectrophotometer. Elemental analyses were carried out with a Vario EL III element analyzer. Fluorescent properties of solid $\mathbf{1}$ and $\mathbf{2}$ were performed with FLS920 under room temperature. Powder X-ray diffraction (XRD) patterns were acquired on a DMAX-2500 diffractometer using Mo-K α radiation at ambient environment. ${ }^{1} \mathrm{H}$ NMR spectroscopy was recorded on a Varian UNITY-500 spectrometer at room temperature using TMS as an internal reference. ${ }^{31}$ P NMR spectra were measured on a Varian UNITY-500 spectrometer using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard.

References

1. Bandoli, G.; Dolmella, A.; Peruzzo, V.; Plazzogna, G. Inorg. Chem. acta 1992, 193, 185.
2. Barron, P. F.; Dyason, J. C.; Engelhardt, L. M.; Healy, P. C.; White, A. H. Aust. J. Chem. 1985, 38, 261.
3. Sheldrick, G. M. SHELXTL-97, Program for Crystal Structure Refinement; University of Göttingen: Germany, 1997.

2. Synthesis of compound 2

All synthetic operations were performed under an oxygen-free nitrogen atmosphere by using standard Schlenk techniques. To a dichloromethane (20 mL) solution of $\left[\mathrm{Cu}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{MeCN})_{2}\right] \mathrm{ClO}_{4}(0.077 \mathrm{~g}, 0.1 \mathrm{mmol}), \operatorname{Sn}(\mathrm{edt})_{2}(0.030 \mathrm{~g}, 0.1 \mathrm{mmol})(\mathrm{edt}=$ ethane-1,2-dithiolate) was added to give a yellow solution. After stirring at room temperature for 1 day, the solution was filtered to remove a little of precipitate. The yellow prismatic crystals of 2 were obtained by slow diffusion of diethyl ether into the filtrate in 56% yield (based on Cu). Anal. Calcd for $\mathrm{C}_{87} \mathrm{H}_{90} \mathrm{Cl}_{8} \mathrm{Cu}_{4} \mathrm{O}_{9} \mathrm{P}_{4} \mathrm{~S}_{12} \mathrm{Sn}_{3}$: C, 38.96; H, 3.38; S, 14.34. Found: C, 39.05; H, 3.48; S, 14.40. ${ }^{31} \mathrm{P} \operatorname{NMR}(202.3 \mathrm{MHz}, \mathrm{DMSO}, \mathrm{ppm}):-1.878\left(\mathrm{~s},-\mathrm{PPh}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}(500$ MHz, DMSO-d $\left.{ }^{6}, \mathrm{ppm}\right): \delta_{\mathrm{H}} 7.307-7.470\left(\mathrm{~m}, 60 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.754\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 2.844-3.05(\mathrm{~m}$, $\left.24 \mathrm{H},-\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}-\right)$. FT-IR(KBr pellet, cm^{-1}): $3430 \mathrm{vw}, 3040 \mathrm{w}, 2925 \mathrm{w}, 1585 \mathrm{w}, 1500 \mathrm{~m}, 1435 \mathrm{~s}$, $1406 \mathrm{~m}, 1284 \mathrm{w}, 1269 \mathrm{w}, 1182 \mathrm{vw}, 1161 \mathrm{w}, 1093 \mathrm{vs}, 1028 \mathrm{~m}, 997 \mathrm{~m}, 920 \mathrm{w}, 843 \mathrm{w}, 825 \mathrm{vw}, 748 \mathrm{~s}$, $694 \mathrm{vs}, 621 \mathrm{~m}, 580 \mathrm{~s}, 525 \mathrm{vs}, 511 \mathrm{~s}, 490 \mathrm{~s}, 440 \mathrm{~m}, 428 \mathrm{~m}, 390 \mathrm{w}, 380 \mathrm{w}, 339 \mathrm{~m}, 322 \mathrm{~m}, 295 \mathrm{~m}, 285 \mathrm{~m}$, 274m, 229m, 218m. Raman (KBr pellet, cm^{-1}): 3681(m), 3361(s), 3045(s), 2856(s), 2728(w), 2080(w), 1776(m), 1456(s), 634(m), 538(m), 318(w).

3. Supporting Tables and Figures

Table S1. Crystal data collection and structural refinement parameters for 2.

Formula	$\mathrm{C}_{87} \mathrm{H}_{90} \mathrm{Cl}_{8} \mathrm{Cu}_{4} \mathrm{O}_{9} \mathrm{P}_{4} \mathrm{~S}_{12} \mathrm{Sn}_{3}$	$\mu\left(\mathrm{~mm}^{-1}\right)$	2.077
$F w$	2682.02	$T(\mathrm{~K})$	130.15
$a(\AA)$	$18.156(2)$	$\theta_{\text {min }}\left({ }^{\circ}\right)$	3.17
$b(\AA)$	$18.156(2)$	$\theta_{\text {max }}\left({ }^{\circ}\right)$	27.49
$c(\AA)$	$54.495(10)$	Total reflections	39919
$\alpha($ deg $)$	90	Independent reflections	7923
$\beta($ deg $)$	90	Observed reflections $(I>2 \sigma(I))$	7653
$\gamma($ deg $)$	120	$R_{\text {int }}$	0.0365
$V\left(\AA^{3}\right)$	$15558(4)$	Parameters refind	401
Z	6	$R{ }^{\text {a }}$	0.0496
Crystal system	trigonal	$R w^{\text {b }}$	0.1042
Space group	$R-3$	GOF	1.114
Crystal size (mm)	$0.38 \times 0.30 \times 0.25$	Max/mean shift in final cycle	$0.001 / 0.000$
$\lambda(\AA)$	0.71073	Max/min. $\Delta \rho\left(\mathrm{e} / \AA^{3}\right)$	$4.638 /-1.360$
$\rho\left(\mathrm{~g} / \mathrm{cm}{ }^{3}\right)$	1.718	Max./min. transmission	0.8005 to 1.000

a. $\quad R=\Sigma\left(\left\|F_{o}|-| F_{c}\right\|\right) / \Sigma\left|F_{o}\right|$,
b. $\quad R w=\left\{\Sigma w\left[\left(F_{o}{ }^{2}-F_{c}{ }^{2}\right)\right]^{2} / \Sigma w\left[\left(F_{o}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}, w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0267 P)^{2}+242.2413 P\right], P=\left(F_{o}{ }^{2}+2\right.$ $\left.\left.F_{c}{ }^{2}\right) / 3\right]$

Table S2. Selected bond distances (\AA) of the nonhydrogen atoms.

Bond	Dist.	Bond	Dist.
$\mathrm{Sn}(1)-\mathrm{O}(1)$	$2.0626(6)$	$\mathrm{Cu}(2)-\mathrm{P}(2)$	$2.2500(19)$
$\mathrm{Sn}(1)-\mathrm{S}(3)$	$2.4367(12)$	$\mathrm{Cu}(2)-\mathrm{S}(1) \# 1$	$2.3032(12)$
$\mathrm{Sn}(1)-\mathrm{S}(1) \# 1$	$2.4940(12)$	$\mathrm{Cu}(2)-\mathrm{S}(1) \# 2$	$2.3032(12)$
$\mathrm{Sn}(1)-\mathrm{S}(2)$	$2.5869(10)$	$\mathrm{Cu}(2)-\mathrm{S}(1)$	$2.3032(12)$
$\mathrm{Sn}(1)-\mathrm{S}(4)$	$2.6080(13)$	$\mathrm{S}(1)-\mathrm{Sn}(1) \# 2$	$2.4941(12)$
$\mathrm{Sn}(1)-\mathrm{S}(4) \# 1$	$2.6152(13)$	$\mathrm{S}(2)-\mathrm{Cu}(1) \# 1$	$2.3046(10)$
$\mathrm{Cu}(1)-\mathrm{P}(1)$	$2.2303(11)$	$\mathrm{S}(4)-\mathrm{Sn}(1) \# 2$	$2.6152(13)$
$\mathrm{Cu}(1)-\mathrm{S}(2)$	$2.2806(10)$	$\mathrm{O}(1)-\mathrm{Sn}(1) \# 1$	$2.0626(7)$
$\mathrm{Cu}(1)-\mathrm{S}(2) \# 2$	$2.3046(10)$	$\mathrm{O}(1)-\mathrm{Sn}(1) \# 2$	$2.0626(6)$

Symmetry transformations used to generate equivalent atoms: \#1-x+y+1, -x+1, z; \#2-y+1, x-y, Z

Table S3. Selected bond angles $\left({ }^{\circ}\right)$.

Angle	$\left({ }^{\circ}\right)$	Angle	$\left({ }^{\circ}\right)$
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{S}(3)$	$168.03(11)$	$\mathrm{S}(1) \# 1-\mathrm{Sn}(1)-\mathrm{S}(4) \# 1$	$83.01(4)$
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{S}(1) \# 1$	$99.23(12)$	$\mathrm{S}(2)-\mathrm{Sn}(1)-\mathrm{S}(4) \# 1$	$88.67(3)$
$\mathrm{S}(3)-\mathrm{Sn}(1)-\mathrm{S}(1) \# 1$	$91.93(4)$	$\mathrm{S}(4)-\mathrm{Sn}(1)-\mathrm{S}(4) \# 1$	$154.54(3)$
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{S}(2)$	$83.52(12)$	$\mathrm{P}(1)-\mathrm{Cu}(1)-\mathrm{S}(2)$	$132.04(4)$
$\mathrm{S}(3)-\mathrm{Sn}(1)-\mathrm{S}(2)$	$86.17(4)$	$\mathrm{P}(1)-\mathrm{Cu}(1)-\mathrm{S}(2) \# 2$	$120.10(4)$
$\mathrm{S}(1) \# 1-\mathrm{Sn}(1)-\mathrm{S}(2)$	$170.41(4)$	$\mathrm{S}(2)-\mathrm{Cu}(1)-\mathrm{S}(2) \# 2$	$104.29(4)$
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{S}(4)$	$77.58(3)$	$\mathrm{P}(2)-\mathrm{Cu}(2)-\mathrm{S}(1) \# 1$	$111.22(3)$
$\mathrm{S}(3)-\mathrm{Sn}(1)-\mathrm{S}(4)$	$96.98(5)$	$\mathrm{P}(2)-\mathrm{Cu}(2)-\mathrm{S}(1) \# 2$	$111.22(3)$
$\mathrm{S}(1) \# 1-\mathrm{Sn}(1)-\mathrm{S}(4)$	$96.41(4)$	$\mathrm{S}(1) \# 1-\mathrm{Cu}(2)-\mathrm{S}(1) \# 2$	$107.67(3)$
$\mathrm{S}(2)-\mathrm{Sn}(1)-\mathrm{S}(4)$	$93.15(3)$	$\mathrm{P}(2)-\mathrm{Cu}(2)-\mathrm{S}(1)$	$111.22(3)$
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{S}(4) \# 1$	$77.41(3)$	$\mathrm{S}(1) \# 1-\mathrm{Cu}(2)-\mathrm{S}(1)$	$107.67(3)$
$\mathrm{S}(3)-\mathrm{Sn}(1)-\mathrm{S}(4) \# 1$	$108.49(5)$	$\mathrm{S}(1) \# 2-\mathrm{Cu}(2)-\mathrm{S}(1)$	$107.67(3)$

Symmetry transformations used to generate equivalent atoms: \#1-x+y+1, -x+1, z; \#2-y+1, x-y,

Figure S1. ORTEP drawing of the complex cation of $\mathbf{2}$ with atom labeling scheme showing 30% themal ellipsoids. Phenyl rings on the phosphorous atoms, three dichloromethane solvent molecules and one perchlorate anion are omitted for clarity. Symmetry codes: A: $1-\mathrm{x}+\mathrm{y}, 1-\mathrm{x}, \mathrm{z}$;

B: 1-y, x-y, z.

Figure S2. XRD patterns of experimental (red line) and that of simulated from single crystal data (black line).

Figure S3. ${ }^{1}$ H NMR spectrum for compound 2 in DMSO-d ${ }^{6}$ using TMS as an internal reference.

Figure S4. ${ }^{31} \mathrm{P}$ NMR spectrum for compound $\mathbf{2}$ in DMSO solvent using $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard.

Figure S5. IR spectrum for 2.

Figure S6. Raman spectrum for compound 2

Figure S7. Low-frequency infrared spectrum for compound 2

