Supporting information for:

"Biochemical and structural studies of N^{5}-carboxyaminoimidazole ribonucleotide mutase (PurE) from the acidophilic bacterium Acetobacter aceti"

Charles Z. Constantine, Courtney M. Starks, Christopher P. Mill, Aaron E. Ransome, Steven J. Karpowicz, Julie A. Francois, Rena A. Goodman, and T. Joseph Kappock*

Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130-4899

EXPERIMENTAL

PurK activity assays. PurK activity assays were performed at $37^{\circ} \mathrm{C}$ using a published method (1).

Partial purification of A. aceti PurK. For PurK isolations it was necessary to repress "leaky" expression of $A a$ PurE by supplementing pJK174 starter cultures with 1% glucose. The subsequent steps in the AaPurE isolation were performed as described. The supernatant from the 35% ammonium sulfate (AS) precipitation was adjusted to 60% saturation by the addition of solid AS over 30 min . After another 30 min stirring, solids were collected by centrifugation at $37,000 \mathrm{xg}$ for 15 min and the supernatant was discarded. The pellet was redissolved in a small volume of 25 mM MOPS pH 6.5 and desalted using a Sepharose G25 column ($2.5 \times 13 \mathrm{~cm}$) equilibrated in the same buffer. Fractions containing protein were applied to a QAE cellulose FF column ($1.5 \times 7.5 \mathrm{~cm}$), which was washed with 25 mM MOPS pH 6.5 (5 column volumes, C.V.) and developed in a linear gradient of $\mathrm{KCl}(0$ to $0.4 \mathrm{M}, 20 \mathrm{C} . V$.$) in the same buffer. Pooled$ protein-containing fractions were concentrated and partially desalted by several cycles of dilution in 50 mM Tris $\bullet \mathrm{Cl} \mathrm{pH} 8.0$ followed by ultrafiltration using a YM10 membrane. Protein was then applied to a DEAE Sepharose FF column ($1.5 \times 8 \mathrm{~cm}$), which was washed with 50 mM Tris• Cl pH 8.0 (6 C.V.) and developed in a linear gradient of $\mathrm{KCl}(0$ to $0.5 \mathrm{M}, 20 \mathrm{C} . V$. $)$ in the same buffer. Fractions containing protein were concentrated by ultrafiltration to $>5 \mathrm{mg} / \mathrm{mL}$. Aliquots were frozen and stored at $-80^{\circ} \mathrm{C}$. Aliquots were thawed only once before discarding.

Isolation of H6AaPurK. BL21(DE3) cells transformed with pJK130 were grown at $37{ }^{\circ} \mathrm{C}$ in LB supplemented with $70 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin. At $\mathrm{A}_{600}=0.6$, IPTG was added to 0.1 mM and the cells were grown another 4 hr . Cells were harvested by centrifugation, resuspended in 50 mM Tris ${ }^{\bullet} \mathrm{Cl} \mathrm{pH} 8.0$ (5 mL / g cells), and disrupted by sonication (three cycles, 30 s apiece). All subsequent steps were performed at $4{ }^{\circ} \mathrm{C}$ in 50 mM Tris $\cdot \mathrm{Cl} \mathrm{pH}$ 8.0. Debris was removed by centrifugation ($3,080 \times \mathrm{g}, 15 \mathrm{~min}$). The supernatant was adjusted to 30% saturation by the addition of solid AS over 30 min . After another 30 min stirring, solids were removed by centrifugation ($27,000 \times \mathrm{g}, 25 \mathrm{~min}$) and the supernatant was adjusted to 50% saturation by the addition of solid AS over 30 min . After another 30 min stirring, solids were collected by centrifugation, dissolved in Tris buffer ($5 \mathrm{~mL} / \mathrm{g}$ cell paste), and applied to a Ni^{2+}-charged iminodiacetic acid Sepharose FF column (NiIDA, $2.5 \times 10 \mathrm{~cm}$). The column was washed in Tris buffer (5 C.V.) and stripped with Tris buffer containing 50 mM EDTA and 100 mM KCl (10 C.V.). (Using an
imidazole gradient to elute H6AaPurK from the NiIDA column caused slow protein aggregation.) Blue AaPurK-containing fractions were pooled (110 mL), concentrated by ultrafiltration over a YM10 membrane (15 mL), and applied to a DEAE Sepharose FF column ($1.5 \times 8 \mathrm{~cm}$) equilibrated in Tris buffer. The column was developed in a linear gradient of $\mathrm{KCl}(0$ to $0.5 \mathrm{M}, 20 \mathrm{C} . \mathrm{V}$.$) in Tris buffer. Fractions$ containing protein were pooled and concentrated by ultrafiltration over a YM10 membrane to $>10 \mathrm{mg} / \mathrm{mL}$. Single-use aliquots were frozen and stored at $-80^{\circ} \mathrm{C}$.

Determination of $\Delta \varepsilon$ values at other pH values. Extinction coefficents are known at 260 nm at $\mathrm{pH} 6,7$, and 8 for AIR and CAIR, which allows the computation of $\Delta \varepsilon$ values used in PurE activity assays (2). CAIR solutions were standardized using endpoint assays at pH 8 , in which small aliquots of CAIR (<0.1 mM) were added to a large amount of $A a \operatorname{PurE}$ (typically $66 \mu \mathrm{~g}, 2.5 \mathrm{U}$ at pH 8), using $\Delta \mathrm{A}_{260}$ of the resultant burst to compute the concentration of the stock solution. A standardized CAIR solution was subjected to replicate endpoint assays at $30^{\circ} \mathrm{C}$ and pHs ranging from 4.5-9 to determine $\Delta \varepsilon$ values at intermediate pHs (Table S2). The buffer conditions used were the same as in the construction of pH -rate profiles. In all cases, the bursts used for quantitation appeared to be monophasic and reached stable endpoints within 2 min. Assuming some decarboxylation of N^{5}-CAIR to AIR occurs in this period, especially at the lower pH values, the flat endpoint implies there is no substantial difference in ε_{260} values for N^{5}-CAIR and AIR over the pH range used.

RESULTS

Recombinant AaPurK isolation and characterization. AaPurK was cleanly separated from AaPurE by a 35% AS precipitation step, but attempts to purify AaPurK from the 35% AS supernatant yielded only $\sim 50 \%$ pure protein with specific activity $25 \mathrm{U} / \mathrm{mg}$ at $37{ }^{\circ} \mathrm{C}$. A form with a 20 amino acid N -terminal fusion, H6AaPurK, was purified to homogeneity in two steps but with lower specific activity ($21 \mathrm{U} / \mathrm{mg}$). On SDS-PAGE, A. aceti H6AaPurK migrates with $\mathrm{M}_{\mathrm{r}}=42,000$ (Figure S1). ESI-MS showed 43,918 ± 3 Da , consistent with the $43,918.3 \mathrm{Da}$ expected for the fusion protein lacking one Met residue, presumably due to removal of Met1. Gel filtration shows a single peak at 88 kDa , showing it is exclusively a dimer. $E c$ PurK has specific activity $55 \mathrm{U} / \mathrm{mg}$ at $37^{\circ} \mathrm{C}$ and is a dimer of 39.5 kDa subunits (3).

SUPPORTING INFORMATION REFERENCES

1. Firestine, S. M., Misialek, S., Toffaletti, D. L., Klem, T. J., Perfect, J. R., and Davisson, V. J. (1998) Biochemical role of the Cryptococcus neoformans ADE2 protein in fungal de novo purine biosynthesis, Arch. Biochem. Biophys. 351, 123-134.
2. Mueller, E. J., Meyer, E., Rudolph, J., Davisson, V. J., and Stubbe, J. (1994) N ${ }^{5}$ carboxyaminoimidazole ribonucleotide: Evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli, Biochemistry 33, 2269-2278.
3. Thoden, J. B., Kappock, T. J., Stubbe, J., and Holden, H. M. (1999) Three-dimensional structure of N^{5}-carboxyaminoimidazole ribonucleotide synthetase: A member of the ATP grasp protein superfamily, Biochemistry 38, 15480-15492.
4. Meyer, E., Leonard, N. J., Bhat, B., Stubbe, J., and Smith, J. M. (1992) Purification and characterization of the purE, purK, and purC gene products: identification of a previously unrecognized energy requirement in the purine biosynthetic pathway, Biochemistry 31, 5022-5032.
5. Mathews, I. I., Kappock, T. J., Stubbe, J., and Ealick, S. E. (1999) Crystal structure of Escherichia coli PurE, an unusual mutase in the purine biosynthetic pathway, Structure 7, 1395-1406.
6. Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions, Protein Eng. 8, 127-134.

Table S1. Oligodeoxynucleotides (ODNs) used in this study. ${ }^{\text {a }}$

ODN\#	Sequence (5' \rightarrow 3')
408	GAGCTCGAATTCTTAACTGGCAGATTCTTCAT
410	GATATACATATGACCTCCTTACATTCTCC
614	CCCACCCATATGATGAGCGAAACCGCCC
615	AGGAGGGAATTCTCATTTATCTTCGGTAATG
686	biotin-CTCTTAAAGGCATGGACAGCCTGCTTTCCA
1002	GTGGAGCTGCAAATTTGCCGGGTATG
1003	CATACCCGGCAAATTTGCAGCTCCAC
1011	GTGGAGCTGCAGATCTGCCGGGTATG
1012	CATACCCGGCAGATCTGCAGCTCCAC
1013	GTGGAGCTGCATTTCTGCCGGGTATG
1014	CATACCCGGCAGAAATGCAGCTCCAC
1015	CATTGTTTCAGCATTTCGTACGCCAGAC
1016	GTCTGGCGTACGAAATGCTGAAACAATG
1017	CATTGTTTCTGCAGATCGTACGCCAGAC
1018	GTCTGGCGTACGATCTGCAGAAACAATG
1019	CATTGTTTCAGCAAATCGTACGCCAGAC
1020	GTCTGGCGTACGATTTGCTGAAACAATG
1062	GTGGAGCTGCAGTTCTGCCGGGTATG
1063	CATACCCGGCAGAACTGCAGCTCCAC
1064	GTGGAGCTGCAGGTCTGCCGGGTATG
1065	CATACCCGGCAGACCTGCAGCTCCAC
1066	CATTGTTTCAGCACAACGTACGCCAGAC
1067	GTCTGGCGTACGTTGTGCTGAAACAATG
1078	CATTGCCTGAATTCCTCCGTTACAGAC
1068	CATTGTTTCAGCAGCTCGTACGCCAGAC
1069	GTCTGGCGTACGAGCTGCTGAAACAATG
1070	CATTGTTTCAGCAAGTCGTACGCCAGAC
1071	GTCTGGCGTACGACTTGCTGAAACAATG
$107 T A A G C T T A G A A T G T A A G ~$	
1076	

${ }^{2}$ ODNs 1002-1071 were used for QuikChange mutagenesis of AaPurE. The other ODN functions are described in the text.

Table S2. Carboxylic acids as potential AaPurE ligands at low pH .

Compound	Counterion ${ }^{\text {c }}$	Final pH	$\mathrm{K}_{\mathrm{d}}(\mathrm{mM})^{\text {d }}$	$\Delta \mathrm{F}^{e}$
citrate ${ }^{\text {a }}$	sodium	5.5	0.19 ± 0.02	D
DL-isocitrate ${ }^{\text {a }}$	sodium	5.6	0.8 ± 0.2	D
OAA ${ }^{\text {a }}$	-	5.41	>3	D
fumaric acid ${ }^{\text {a }}$	-	4.90	>5	D
succinic acid ${ }^{\text {a }}$	-	4.98	>10	N
α-ketoglutarate ${ }^{\text {a }}$	sodium	5.16	>5	N
L-glutamate ${ }^{\text {a }}$	sodium	5.43	>30	N
L-lactate ${ }^{\text {a }}$	-	5.43	>20	N
cis-aconitate ${ }^{\text {a }}$	-	5.45	~ 1	I
trans-aconitate ${ }^{\text {a }}$	-	5.44	~ 1	D
DL-aspartate ${ }^{\text {a }}$	-	5.5	>1.5	D
DL-2-fluorocitrate ${ }^{\text {b }}$	potassium	4.16	0.53 ± 0.04	D
"	"	4.78	0.70 ± 0.06	"
"	"	5.39	1.0 ± 0.1	"
DL-malate ${ }^{\text {b }}$	-	5.23	2.8 ± 1.0	D
L-malate ${ }^{\text {b }}$	-	5.23	3.8 ± 0.6	D

${ }^{\text {a }}$ Buffer was 50 mM ammonium acetate, 100 mM potassium chloride
${ }^{\mathrm{b}}$ Buffer was 50 mM potassium acetate, 100 mM potassium chloride
${ }^{\text {c }}$ Commercially available or prepared salt used to make titrant solution, (-)indicates free acid used.
${ }^{d}$ From fluorescence emission titrations.
${ }^{\mathrm{e}}$ Effect on AaPurE fluorescence: D, decrease; I, increase; N, no change/no binding.

Table S3. Additional crystallographic data and refinement statistics.

	H59N (pH 8)	H59F (pH 8)	H89F (pH 8)	H89G (pH 8)	H89N (pH 7)
PDB id (our code)	2fw7	2fw9	2 fwb	2fw8	2fwa
Cell dimensions	$\begin{aligned} & \mathrm{a}=\mathrm{b}=99.3 \AA ; \mathrm{c}= \\ & 164.1 \AA ; \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=\mathrm{b}=99.4 \AA ; \mathrm{c}= \\ & 164.7 \AA ; \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=\mathrm{b}=99.7 \AA ; \mathrm{c}= \\ & 163.9 \AA ; \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=\mathrm{b}=99.6 \AA ; \mathrm{c}= \\ & 164.4 \AA ; \alpha=\beta=\gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{a}=\mathrm{b}=99.2 \AA ; \mathrm{c}= \\ & 164.2 \AA ; \alpha=\beta=\gamma=90^{\circ} \end{aligned}$
Resolution, \AA ®	$\begin{aligned} & 50-1.75(1.81- \\ & 1.75)^{\mathrm{a}} \end{aligned}$	$\begin{aligned} & 50-1.75(1.81- \\ & 1.75) \end{aligned}$	40-2.0 (2.07-2.00)	$\begin{aligned} & 50-1.75(1.81- \\ & 1.75) \end{aligned}$	$\begin{aligned} & 30-1.9(1.97-1.90 \\ & \AA) \end{aligned}$
Reflections (total/unique)	240,174 / 38,755	239,521 / 40,968	106,542 / 27,131	317,563 / 40,066	153,109 / 31,276
Completeness	92.9\% (73.1\%)	98.0\% (93.7\%)	95.8\% (97.0\%)	95.3\% (78.9\%)	95.9\% (99.0\%)
<I/o>	30.5 (3.4)	30.1 (2.8)	16.6 (2.8)	36.3 (5.4)	17.2 (3.9)
$\mathrm{R}_{\text {sym }}{ }^{\text {b }}$	4.9\% (40.5\%)	4.7\% (43.8\%)	7.1\% (48.1\%)	4.2\% (29.0\%)	9.1\% (43.9\%)
$\mathrm{R}_{\text {cryst }}{ }^{\mathrm{c}} / \mathrm{R}_{\text {free }}{ }^{\text {d }}$	17.4\% / 18.8\%	17.2\% / 18.8\%	17.8\% (20.6\%)	17.4\% / 19.7\%	18.8\% / 20.7\%
No. of protein atoms	2,314	2,305	2,328	2,300	2,314
No. of water molecules	374	397	308	378	276
No. of ligand ions	0	1	0	0	0
R.m.s. deviation, bond lengths (\AA)	0.005	0.004	0.005	0.005	0.005
R.m.s. deviation, bond angles	$1.3{ }^{\circ}$				
Average B-factor (\AA^{2})	20.7	20.9	23.8	20.5	19.8

[^0]${ }^{\mathrm{c}} \mathrm{R}_{\text {cryst }}=\Sigma\left|\mathrm{F}_{\mathrm{o}}-\left\langle\mathrm{F}_{\mathrm{c}}\right\rangle\right| / \Sigma \mathrm{F}_{\mathrm{o}}$, where summation is over the data used for refinement.
${ }^{d} R_{\text {free }}$ is defined the same as $R_{\text {cryst }}$, but was calculated using 5% of data excluded from refinement.

Figures.

Figure S1. SDS-PAGE analysis of (left) total cell protein (CP) for pJK174, which expresses AaPurE at 21 kDa and $A a$ PurK at $\sim 40 \mathrm{kDa}$; (center) partially purified $A a$ PurK (specific activity $25 \mathrm{U} / \mathrm{mg}$); and (right) purified H6AaPurK (specific activity $21 \mathrm{U} / \mathrm{mg}$). The positions of size standards (kDa) are indicated for each gel.

Figure S2. Determination of $\Delta \varepsilon_{260}$ for the conversion CAIR $\rightarrow N^{5}$-CAIR as a function of pH . Mean values for each pH were determined in at least triplicate (open symbols) with the indicated standard deviation. The solid line is a fit of the data in the $\mathrm{pH} 5.0-8.0$ interval, which yields the expression $\Delta \varepsilon_{260}=1.19 \times \mathrm{pH}-$ 0.15. Outside this range, individual $\Delta \varepsilon_{260}$ values were determined. Previously reported values for $\Delta \varepsilon_{260}$ and uncertainties are shown for reference (solid squares) (4).

from previous page:

Figure S3. Divergent stereodiagrams for active sites in chains A (top) and D (bottom), presented to emphasize the location of His89 and waters located between active sites. Key loops are color coded as for EcPurE (5): the P loop is in cyan, the forties loop is in pink, and the seventies loop is in yellow. Selected water O atoms are illustrated in cyan. Dotted lines represent contacts of $\leq 3.1 \AA$ to the bound
 water 165 are also shown in dotted lines.

H59D•AIR (2fwi)

H89F (2fwb)

H59F•sulfate (2fw9)

H89G (2fw8)

H59N (2fw7)

H89N (2fwa)

$\mathrm{H} 59 \mathrm{~N} \cdot$ citrate (2fw6)

WT•acetate (2fw1)

Figure S4. Views of the inter-active site region in the remaining eight $A a$ PurE crystal structures reported here. The viewpoint is the same as the average viewpoint in Figure S3 stereodiagrams. The color scheme is the same as in Figure S3.

Figure S5. Contacts between isoCAIR (ICR1001), the active site, and waters observed in crystal structure $2 \mathrm{fwp}(\mathrm{H} 59 \mathrm{~N}-A a \mathrm{PurE} \cdot \mathrm{isoCAIR} \cdot \mathrm{citrate})$. Inferred double bonds are drawn. All illustrated residues are from subunit A. Distances (\AA) are given as labels on the green dotted lines. This figure was made with LigPlot (6) and LigEd (R. Laskowski, unpublished program).

[^0]: ${ }^{a}$ Numbers in parentheses refer to highest resolution shell.
 ${ }^{\mathrm{b}} \mathrm{R}_{\text {sym }}=\Sigma\left|\mathrm{I}_{\mathrm{h}}-<\mathrm{I}_{\mathrm{h}}\right\rangle / \Sigma \mathrm{I}_{\mathrm{h}}$, where $<\mathrm{I}_{\mathrm{h}}>$ is the average intensity over symmetry.

