SUPPORTING INFORMATION

Naphthyl and coumarinyl biaryl piperazine derivatives as highly potent human β-secretase inhibitors. Design, synthesis, enzymatic BACE- 1 and cell assays

Cédrik Garino, ${ }^{1}$ Taisuke Tomita, ${ }^{2}$ Nicolas Pietrancosta, ${ }^{1}$ Younes Laras, ${ }^{1}$ Roselyne Rosas, ${ }^{3}$ Gaëtan Herbette, ${ }^{3}$ Bernard Maigret, ${ }^{4}$ Gilles Quéléver, ${ }^{1}$ Takeshi Iwatsubo ${ }^{2}$ and Jean-Louis Kraus ${ }^{1, *}$

Table of Contents :
> Experimental section
> Table of elemental analyses

Experimental section

General procedures: Unless otherwise noted, starting materials and reagents were obtained from commercial suppliers and were used without purification. Methylene dichloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ just prior to use. Acetonitrile was of anhydrous quality from commercial suppliers (Aldrich, Carlo Erba Reagents). Melting points were determinated on an Electrothermal IA-9100 digital, all temperature are given in degrees Celsius and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 250 MHz on a Brüker AC-250 spectrometer. Chemical shifts are expressed as δ units (part per million) downfield from TMS (tetramethylsilane). Electro-spray mass spectra were obtained on a Waters Micromass ZMD spectrometer by direct injection of the sample solubilized in acetonitrile. Elemental analyses were within $\pm 0.4 \%$ of theorical values for all compounds. All reactions were monitored by thin-layer chromatography. Analytical thin layer chromatographies (TLC) were performed using silica gel plates 0.2 mm thick $\left(60 \mathrm{~F}_{254}\right.$ Merck). Preparative flash column chromatographies were carried out on silica gel (230-400 mesh, G60 Merck).

4-(4-Bromo-2-nitro-phenyl)-morpholine (1a). To a mixture of 2,5dibromonitrobenzene ($4.0 \mathrm{~g}, 14.2 \mathrm{mmol}$), triethylamine ($1 \mathrm{~mL}, 7.2 \mathrm{mmol}$) in $i-\mathrm{PrOH}(15 \mathrm{~mL})$ was added morpholine ($2.5 \mathrm{~mL}, 28.4 \mathrm{mmol}$). The resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled to room temperature, and then concentrated under reduced pressure. The brown residue was purified by chromatography on silica gel. Elution with increasing proportions of EtOAc-cHex ($1: 3$ to 1:1) gave the desired compound $\mathbf{1 a}$ (3.0 g , 73%) as an orange oil. $\mathrm{R}_{\mathrm{f}} 0.18$ (cHex:EtOAc, 3:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.02(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.5$ $\mathrm{Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $3.82\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), $7.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{ArH}), 7.58$ (dd, 1H, J= 2.3 and $8.8 \mathrm{~Hz}, \mathrm{ArH}$), 7.91 (d, 1H, J=2.3 Hz, ArH). ESI-MS m/z [M+H] $=287$.

4-(4-Bromo-2-nitro-phenyl)-1-tert-butoxycarbonyl-piperazine (1b). To a mixture of 2,5-dibromonitrobenzene ($0.50 \mathrm{~g}, 1.8 \mathrm{mmol}$), triethylamine ($250 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$) in i - PrOH $(10 \mathrm{~mL})$ was added 1-tert-butoxycarbonyl-piperazine $(0.67 \mathrm{~g}, 3.6 \mathrm{mmol})$. The resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled to room temperature, and then concentrated under reduced pressure. The brown residue was purified by chromatography on silica gel. Elution with increasing proportions of EtOAc-cHexane (1:3 to 1:1) gave the desired compound $\mathbf{1 b}(0.50 \mathrm{~g}, 72 \%)$ as an orange oil. $\mathrm{R}_{\mathrm{f}} 0.79$ (cHex:EtOAc, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 2.98\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}\right)$, 3.57 (t, 4H, J= $4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 7.01 (d, 1H, J= $8.9 \mathrm{~Hz}, \mathrm{ArH}$), 7.58 (dd, 1H, J= 2.4 and $8.9 \mathrm{~Hz}, \operatorname{Ar} H), 7.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}, \mathrm{Ar} H)$. ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=386$.

1-Benzyl-4-(4-bromo-2-nitro-phenyl)-piperazine (1c). To a mixture of 2,5dibromonitrobenzene ($1.0 \mathrm{~g}, 3.6 \mathrm{mmol}$) in i - $\mathrm{PrOH}(15 \mathrm{~mL})$ was added 1-benzylpiperazine ($0.96 \mathrm{~g}, 5.4 \mathrm{mmol}$). The resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled to room temperature, and then concentrated under reduced pressure. The brown residue was purified by chromatography on silica gel. Elution with increasing proportions of EtOAc-cHexane (1:5 to 1:3) gave the desired compound $\mathbf{1 c}(1.16 \mathrm{~g}, 85 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{f}} 0.51$ (cHexane:EtOAc, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.59(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), $3.06\left(\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}\right.$), 3.56 (s, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 7.01 (d, J=8.7 Hz, ArH), 7.28-7.34 (m, 5H, ArH), 7.54 (dd, J= 8.7 and $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$), 7.89 (d, $\mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H)$. ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=376$.

4-(2-Amino-4-bromo-phenyl)-morpholine (2a). Zinc dust ($3.4 \mathrm{~g}, 52.3 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{1 a}(3.0 \mathrm{~g}, 10.4 \mathrm{mmol})$ in THF (60 mL) followed by $\mathrm{KH}_{2} \mathrm{PO}_{4}(20$
$\mathrm{mL}, 1 \mathrm{M})$. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled to room temperature, filtered and evaporated to a small volume. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, with EtOAccHexane as eluant (1:6), giving aniline $\mathbf{2 a}(1.7 \mathrm{~g}, 63 \%)$ as a pale yellow foam. M.p. $123^{\circ} . \mathrm{R}_{\mathrm{f}}$ 0.53 (EtOAc:cHexane, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.59\left(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 2.89(\mathrm{t}, \mathrm{J}=4.8$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.01 (brs, $2 \mathrm{H}, \mathrm{NH}_{2}$), 6.78-6.87 (m, 3H). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=257$.

4-(2-Amino-4-bromo-phenyl)-1-tert-butoxycarbonyl-piperazine (2b). Zinc dust $(4.4 \mathrm{~g}, 66.8 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{1 b}(5.2 \mathrm{~g}, 13.4 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ followed by $\mathrm{KH}_{2} \mathrm{PO}_{4}(20 \mathrm{~mL}, 1 \mathrm{M})$. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled to room temperature, filtered and evaporated to a small volume. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, with EtOAc-toluene as eluant (6:1), giving aniline $\mathbf{2 b}(3 \mathrm{~g}, 63 \%)$ as a yellow oil. R_{f} 0.42 (EtOAc:toluene, 1:6). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 2.81(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 3.56 (br s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 4.08 (br s, $2 \mathrm{H}, \mathrm{NH}$), 6.81-6.87 (m, 3H, $\mathrm{ArH})$. ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=356$.

1-Benzyl-4-(2-amino-4-bromo-phenyl)-piperazine (2c). Zinc dust (1.9 g, 28.6 mmol) was added to a stirred solution of $\mathbf{1 b}(2.2 \mathrm{~g}, 5.7 \mathrm{mmol})$ in THF (30 mL) followed by $\mathrm{KH}_{2} \mathrm{PO}_{4}(10 \mathrm{~mL}, 1 \mathrm{M})$. The resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was cooled to room temperature, filtered and evaporated to a small volume. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, with EtOAc-toluene as eluant (6:1), giving aniline $\mathbf{2 c}(1.7 \mathrm{~g}, 86 \%)$ as a yellow powder. M.p. $85^{\circ} . \mathrm{R}_{\mathrm{f}} 0.66$ (EtOAc:cHex, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right) \quad \delta_{\mathrm{H}} \quad 2.62 \quad$ (brs, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), $2.91\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}\right), 3.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 4.00$ (brs, $1 \mathrm{H}, \mathrm{NH}_{2}$), 6.82-6.85 (m, 3H, ArH), 7.29-7.36 (m, 5H, ArH). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=346$.
\{4-Bromo-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-morpholine (3a). To a solution of $\mathbf{2 a}(210 \mathrm{mg}, 0.81 \mathrm{mmol})$ in methylene chloride $(10 \mathrm{~mL})$ with DIEA $(210 \mu \mathrm{~L}, 1.21$ mmol) was added 1-naphthoyl chloride ($200 \mathrm{mg}, 1.05 \mathrm{mmol}$). The reaction mixture was stirred for 4 hours at room temperature. The mixture was extracted with water (15 mL), the organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, with EtOAc-cHexane eluant (1:9) giving 3c $(300 \mathrm{mg}, 90 \%)$ as a yellow solid. M.p. $172^{\circ} . \mathrm{R}_{\mathrm{f}} 0.61$ (EtOAc:cHexane, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.86\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.70\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 7.08(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2$ and $8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.51-7.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.71-$ $7.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.91-7.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.01(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{ArH}), 8.44-8.48(\mathrm{~m}, 1 \mathrm{H}$, ArH), 8.93 (d, 1H, J=2.2 Hz, ArH), 9.15 (brs, 1H, NHC(O)). ESI-MS m/z [M+H] ${ }^{+}=411$.

1-\{4-Bromo-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-tert-butoxycarbonyl

piperazine (3b). To a solution of $\mathbf{2 b}(150 \mathrm{mg}, 0.42 \mathrm{mmol})$ in methylene chloride (5 mL) with DIEA ($110 \mu \mathrm{~L}, 0.63 \mathrm{mmol}$) was added 1-naphthoyl chloride ($104 \mathrm{mg}, 0.55 \mathrm{mmol}$). The reaction mixture was stirred for 4 hours at room temperature. The mixture was extracted with water (10 mL), the organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, with EtOAc-cHexane eluant (1:9) giving 3b ($180 \mathrm{mg}, 84 \%$) as a colourless oil. $\mathrm{R}_{\mathrm{f}} 0.59$ (EtOAc:cHexane, 1:2). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta_{\mathrm{H}} 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 2.81\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}^{2}\right.$, 3.43 (brs,
$\left.4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}\right), 7.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.3$ and $8.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.51-7.60 (m, 3H, $\mathrm{Ar} H$), $7.70-7.84$ (m, 1H, $\mathrm{Ar} H), 7.91-7.95$ (m, 1H, ArH), 7.99 (d, 1H, J= 8.2 $\mathrm{Hz}, \mathrm{ArH}), 8.43-8.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.92(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, \operatorname{ArH}), 9.10$ (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=510$.

4-Benzyl-1-\{4-bromo-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-piperazine (3c). To a solution of $\mathbf{2 c}(1.8 \mathrm{~g}, 5.2 \mathrm{mmol})$ in methylene chloride (20 mL) with DIEA (1.4 $\mathrm{mL}, 7.8 \mathrm{mmol}$) was added 1-naphthoyl chloride ($1.3 \mathrm{~g}, 6.8 \mathrm{mmol}$). The reaction mixture was stirred for 4 hours at room temperature. The mixture was extracted with water (20 mL), the organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by chromatography on silica gel, with EtOAc-cHexane eluant (1:6) giving 3c ($2.0 \mathrm{~g}, 75 \%$) as a white powder. M.p. $147^{\circ} . \mathrm{R}_{\mathrm{f}} 0.31$ (EtOAc:cHexane, 1:9). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta_{\mathrm{H}} 2.49$ (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), 2.89 (t, $4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), 3.48 (s , $\left.2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.08(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.24(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.3$ and $8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.29-7.33$ (m, 5H, ArH), 7.52-7.61 (m, 3H, ArH), 7.71-7.75 (m, 1H, ArH), 7.93-7.95 (m, 1H, ArH), 8.02 (d, 1H, J= $8.2 \mathrm{~Hz}, \operatorname{Ar} H), 8.47-8.51(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 8.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, \mathrm{ArH}), 9.17$ (brs, 1 H , $\mathrm{NHC}(\mathrm{O}))$. ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=500$.

1-\{4-Bromo-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-piperazine (3d). Tо а stirred suspension of the appropriate N -benzyl compound $\mathbf{3 c}(1.0 \mathrm{~g}, 2 \mathrm{mmol})$ and an equal weight of 10% Pd-C in dry methanol (10 mL), anhydrous ammonium formate ($630 \mathrm{mg}, 10$ mmol) was added in a single portion under nitrogen. The resulting mixture was stirred at relux temperature and the reaction was monitored by TLC. After completion, the catalyst was removed by filtration through celite, washed with methyle chloride (10 mL). The solvent was removed under reduced pressure, the crude product was purified by chromatography on silica gel with DCM, $0.5 \% \mathrm{MeOH}$ as eluent, to yield the desired compound $\mathbf{3 d}(0.8 \mathrm{~g}, 97 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{f}} 0.09$ (EtOAc:cHexane, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.08$ (brs, 4H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.19 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 7.19 (d, $1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}$), $7.40(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 2.3 and $8.4 \mathrm{~Hz}, \mathrm{ArH}$), 7.58-7.64 (m, 3H, ArH), 7.77-7.80 (m, 1H, ArH), 8.02-8.05 (m, 1H, $\mathrm{ArH}), 8.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}, \operatorname{ArH}), 8.22-8.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.43(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, \operatorname{ArH})$, 8.77 (brs, $2 \mathrm{H}, \mathrm{N} H$), 9.78 (brs, $1 \mathrm{H}, \mathrm{N} H \mathrm{C}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=410$.

1-\{4-Bromo-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-(2-hydroxyethyl)piperazine (3e). 2-Bromoethanol ($5.0 \mu \mathrm{~L}, 0.070 \mathrm{mmol}$) was added to a vigorous stirred mixture of $\mathbf{3 d}(34 \mathrm{mg}, 0.065)$ and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(18 \mathrm{mg}, 0.13 \mathrm{mmol})$ in dry acetonitrile (5 $\mathrm{mL})$. The suspension was refluxed for 10 hours under nitrogen. The solvent was then removed under reduced pressure. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and extracted with water ($2 \times 5 \mathrm{~mL}$), the organic layer was dried over MgSO_{4}, and then purified by chromatography on silica gel, using methylene chloride-methanol (9:1) as eluent, to yield the compound $3 \mathrm{e}(27 \mathrm{mg}, 92 \%)$ as a white powder. M.p. $88^{\circ} . \mathrm{R}_{\mathrm{f}} 0.55\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 5: 1\right) .{ }^{1} \mathrm{H}-$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.53$ (brs, $6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 2.91 (brs, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.62 (t, $2 \mathrm{H}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 7.08 (d, $1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}$, $\mathrm{ArH}), 7.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2$ and $8.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.51-7.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$, $\operatorname{Ar} H), 7.91-7.95(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar} H), 8.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \operatorname{Ar} H), 8.45-8.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 8.92(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{Ar} H), 9.10$ (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=454$.

1-\{4-(Phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-tert-butoxy
carbonyl piperazine ($\mathbf{4 b}$) Phenyl boronic acid ($132 \mathrm{mg}, 1.1 \mathrm{mmol}$) was dissolved in anhydrous 1,3-dioxane (30 mL). The appropriate bromo derivative $\mathbf{3 b}(500 \mathrm{mg}, 1 \mathrm{mmol})$ was dissolved in anhydrous dioxane (30 mL) and the two solutions were mixed with dppf (17 mg ,
0.03 mmol), dppf-Pd ${ }^{\text {II }}$ ($25 \mathrm{mg}, 0.03 \mathrm{mmol}$), and KOAc ($300 \mathrm{mg}, 3 \mathrm{mmol}$). The resulting suspension was refluxed for 72 hours. The dioxane was removed under reduced pressure and the catalysts were removed by filtration through silica gel. The crude product was purified by flash chromatography with cHex-EtOAc (9:1) as eluent, to yield the desired compound $\mathbf{4 b}$ as a white oil ($180 \mathrm{mg}, 36 \%$). $\mathrm{R}_{\mathrm{f}} 0.26$ (EtOAc: cHexane, $1: 9$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} .1 .45$ (s, 9 H , $\mathrm{CH}_{3}, t \mathrm{Bu}$), 2.81 (t, $4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 3.43 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 7.27$7.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.75-7.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.91-7.93$ (m, 1H, $\mathrm{Ar} H$), $8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{ArH}), 8.50-8.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.98$ (brs, $1 \mathrm{H}, \mathrm{ArH}$), 9.20 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$) ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=508$.

4-Benzyl-1-\{4-(phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-piperazine (4c). Phenyl boronic acid ($270 \mathrm{mg}, 2.2 \mathrm{mmol}$) was dissolved in anhydrous 1,3-dioxane (40 $\mathrm{mL})$. The appropriate bromo derivative $\mathbf{3 c}(1 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in anhydrous dioxane $(30 \mathrm{~mL})$ and the two solutions were mixed with dppf ($34 \mathrm{mg}, 0.06 \mathrm{mmol}$), dppf-Pd ${ }^{\mathrm{II}}$ (50 mg , 0.06 mmol), and KOAc ($590 \mathrm{mg}, 6 \mathrm{mmol}$). The resulting suspension was refluxed for 72 hours. The dioxane was removed under reduced pressure and the catalysts were removed by filtration through silica gel. The crude product was purified by flash chromatography with $\mathrm{cHex}-\mathrm{EtOAc}(9: 1)$ as eluent, to yield the desired compound $\mathbf{4 c}$ as a white powder $800 \mathrm{mg}, 80$ \%). M.p. $156^{\circ} . \mathrm{R}_{\mathrm{f}} 0.23$ (EtOAc: cHexane, 1:9). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.51$ (brs, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), $2.96\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}\right.$), 3.49 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 7.27$7.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.53-7.63(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.75-7.78(\mathrm{~m}, 1 \mathrm{H}$, ArH), 7.91-7.93 (m, 1H, $\operatorname{ArH}), 8.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \operatorname{ArH}), 8.50-8.54$ (m, 1H, ArH), 8.98 (brs, $1 \mathrm{H}, \mathrm{Ar} H$), 9.20 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=498$.

1-\{4-(Phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-piperazine (4d). To a stirred suspension of the appropriate N -Benzyl compound $\mathbf{4 c}(800 \mathrm{mg}, 1.5 \mathrm{mmol})$ and an equal weight of 10% Pd-C in dry methanol (75 mL), anhydrous ammonium formate (475 mg , 7.5 mmol) was added in a single portion under nitrogen. The resulting reaction mixture was stirred at reflux temperature. After completion of reaction, the catalyst was removed by filtration through celite, which was then washed with $2 \times 40 \mathrm{~mL}$ of chloroform. The combined organic filtrates were concentrated under reduced pressure and the crude product was purified by chromatography on silica gel with $\mathrm{DCM}, 0.5 \% \mathrm{MeOH}$ as eluent, to yield $\mathbf{4 d}$ as a white powder ($540 \mathrm{mg}, 88 \%$). M.p. $118^{\circ} . \mathrm{R}_{\mathrm{f}} 0.45\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 3.03$ (brs, $8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 4.32 (brs, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 7.31-7.41 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.43-7.49 (m, 2H, ArH), 7.55-7.59 (m, 3H, ArH), 7.67-7.71 (brd, 2H, ArH), 7.75 (dd, 1H, J= 1.3 and 7.0 $\mathrm{Hz}, \mathrm{ArH}$), 7.91-7.95 (m, 2H, ArH), 8.00 (brd, 1H, ArH), 8.46-8.50 (m, 1H, ArH), 9.00 (brs, $1 \mathrm{H}, \mathrm{Ar} H$), 9.06 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=408$.

1-\{4-(Phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-(2-hydroxyethyl)

 piperazine (5a). 2-Bromoethanol ($9 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) was added to a vigorous stirred mixture of $4 \mathbf{d}(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ and anhydrous potassium carbonate ($38 \mathrm{mg}, 0.27 \mathrm{mmol}$) in dry acetonitrile (6 mL), and then the suspension was refluxed for 10 hours under nitrogen. After that time, the suspension was concentrated. The crude product was purified by chromatography (2% methanol in methylene chloride) to give $\mathbf{5 a}(42 \mathrm{mg}, 77 \%$) as a white solid. M.p. $183^{\circ} . \mathrm{R}_{\mathrm{f}} 0.65$ (MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.51-2.57(\mathrm{~m}, 6 \mathrm{H}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 2.74 (brs, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 2.98 (t, $4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.62\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.3 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$), 7.28-7.41 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.43-7.48 (m, 2H, ArH), 7.52-7.60 (m, 3H, ArH), 7.69-7.72 (brd, 2H, ArH), 7.77 (dd, 1H, J= 1.3 and $7.0 \mathrm{~Hz}, \mathrm{ArH})$, $7.91-7.95$ (m, 2H, ArH), 7.99-8.02 (brd, $1 \mathrm{H}, \mathrm{ArH}$), $8.50-8.54$ (m, 1 H , ArH), 9.02 (brs, $1 \mathrm{H}, \mathrm{ArH}$), 9.16 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=452$.1-\{4-(Phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-(ethyl-aceto)
piperazine ($\mathbf{5 b}$). Ethyl-bromo acetate ($20 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was added to a vigorous stirred mixture of $\mathbf{4 d}(70 \mathrm{mg}, 0.17 \mathrm{mmol})$ and anhydrous potassium carbonate ($56 \mathrm{mg}, 0.40 \mathrm{mmol}$) in dry acetonitrile $(7 \mathrm{~mL})$, and then the suspension was refluxed for 10 hours under nitrogen. After that time, the suspension was concentrated. The crude product was chromatographied with cyclohexane-ethyl acetate (9/1) as eluent to give $\mathbf{5 b}(40 \mathrm{mg}, 47 \%)$ as a white oil. $\mathrm{R}_{\mathrm{f}} 0.42$ (EtOAc:cHexane, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.25\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 2.65 (brs, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 3.03 ($\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 3.20 (s, 2 H , $\mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), 4.17 (q, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 7.29-7.40 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.42-7.48 (m, 2 H , $\mathrm{Ar} H$), 7.53-7.60 (m, 3H, ArH), 7.68-7.72 (brd, 2H, ArH), 7.77 (dd, $1 \mathrm{H}, \mathrm{J}=1.3$ and 7.0 Hz , $\mathrm{Ar} H$), 7.91-7.95 (m, 2H, ArH), 7.99-8.02 (brd, 1H, ArH), 8.51-8.55 (m, 1H, ArH), 9.01 (brs, $1 \mathrm{H}, \mathrm{ArH}$), 9.20 (brs, 1H, NHC(O)). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=494$.

1-\{4-(Phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-[1-(5-phthalimido)pentyl] piperazine (5c). N -(5-bromopentyl) phthalimide ($44 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added to a vigorous stirred mixture of $\mathbf{4 d}(60 \mathrm{mg}, 0.14 \mathrm{mmol})$ and anhydrous potassium carbonate (50 $\mathrm{mg}, 0.35 \mathrm{mmol}$) in dry acetonitrile (7 mL), and then the suspension was refluxed for 10 hours under nitrogen. After that time, the suspension was concentrated. The crude product was chromatographied with methylene chloride-methanol (9/1) as eluent to give $\mathbf{5 c}(90 \mathrm{mg}, 99 \%)$ as a aple yellow neddles. M.p. 72°. $\mathrm{R}_{\mathrm{f}} 0.60\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.32-$ $1.38(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.49$ (brs, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}$-phthalimide), $2.96\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5}\right.$ - phthalimide), $3.68(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.27-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.42-7.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.53-7.60(\mathrm{~m}, 3 \mathrm{H}$, ArH), 7.68-7.72 (m, 4H, ArH), 7.73-7.80 (m, 1H, ArH), 7.82-7.85 (m, 2H, ArH), 7.91-7.94 (m, 2H, ArH), 7.99-8.02 (brd, 1H, ArH), 8.52-8.57 (m, 1H, ArH), 9.02 (brs, 1H, ArH), 9.20 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=623$.

4-[1-(5-Amino)-pentyl]-1-\{4-(phenyl)-2-[(naphthalene-1-carbonyl)-amino]phenyl $\}$-piperazine ($\mathbf{5 d}$). Compound $\mathbf{5 c}(75 \mathrm{mg}, 0.12 \mathrm{mmol})$ was dissolved in warm ethanol (5 mL), hydrazine monohydrate ($10 \mathrm{mg}, 0.18 \mathrm{mmol}$) was added, and the solution was refluxed for 3 hours, cooled to room temperature and filtered. The filtrate was concentrated under reduced pressure and the residue was diluted with NaHCO_{3} and extracted with methylene chloride. The organic layer was dried with MgSO_{4}, and concentrated in vacuo. The crude product was purified by flash chromatography with methylene chloride-methanol (9/1) as eluent to give the compound $\mathbf{5 d}(50 \mathrm{mg}, 84 \%)$ as brown oil. $\mathrm{R}_{\mathrm{f}} 0.09$ ($\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.26-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.53(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.49$ (brs, 4 H , $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{2}\right), 2.71 \quad(\mathrm{t}, 2 \mathrm{H}, \quad \mathrm{J}=6.9 \mathrm{~Hz}), 2.98 \quad(\mathrm{t}, 4 \mathrm{H}, \quad \mathrm{J}=4.7 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{2}$), 3.49 (brs, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}^{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{NH}_{2}$), 7.29 (d, $1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}$, ArH), 7.36-7.40 (m, 1H, ArH), $7.46(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{ArH}), 7.53-7.61$ (m, 3H, ArH), 7.697.72 (m, 2H, ArH), 7.77-7.79 (m, 1H, ArH), 7.92-7.95 (m, 2H, ArH), 8.01 (d, 1H, J= 8.2 Hz , ArH), 8.52-8.56 (m, 1H, ArH), 9.02 (brs, 1H, ArH), 9.22 (brs, 1H, NHC(O)). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=493$.

(S)-(-)-1-\{4-(Phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-[1-(3-

phenyl)-propan-3-ol]-piperazine (5e). (S)-(-)-3-Chloro-1-phenyl-1-propanol ($17 \mathrm{mg}, 0.09$ mmol) was added to a vigorous stirred mixture of $\mathbf{4 d}(40 \mathrm{mg}, 0.09 \mathrm{mmol})$ and anhydrous potassium carbonate ($31 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dry acetonitrile (5 mL), and then the suspension was stirred at room temperature for 10 hours under nitrogen. After that time, the suspension was concentrated. The crude product was chromatographied with methylene chloride-
methanol (9/1) as eluent to give $\mathbf{5 e}(42 \mathrm{mg}, 86 \%)$ as a yellow oil. $\mathrm{R}_{\mathrm{f}} 0.64\left(\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, 1:9). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.86-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.74(\mathrm{~m}, 5 \mathrm{H}), 3.03(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Ph}) \mathrm{OH}\right)$, 3.36-3.49 (m, 1H), 4.92-4.95 (m, 1H), 7.27-7.39 (m, 8H, ArH), 7.43-7.49 (m, 2H, ArH), 7.52-7.62 (m, 3H, ArH), 7.70 (brd, 2H, ArH), 7.77 (dd, 1H, J= 1.3 and $7.0 \mathrm{~Hz}, \mathrm{Ar} H), 7.91-7.95$ (m, 2H, $\mathrm{Ar} H$), 7.99 (brd, $1 \mathrm{H}, \mathrm{Ar} H$), 8.50-8.54 (m, 1H, $\mathrm{Ar} H$), $9.02(\mathrm{brs}, 1 \mathrm{H}, \mathrm{Ar} H), 9.14(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NHC}(\mathrm{O}))$. ESI-MS m$/ \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=542 .[\alpha]^{20}{ }_{\mathrm{D}}=-24^{\circ}(\mathrm{c}=$ $1.10, \mathrm{CHCl}_{3}$).
(R)-(+)-1-\{4-(Phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-[1-(3-phenyl)-propan-3-ol]-piperazine (5f). (R)-(+)-3-Chloro-1-phenyl-1-propanol ($17 \mathrm{mg}, 0.09$ mmol) was added to a vigorous stirred mixture of $\mathbf{4 d}(40 \mathrm{mg}, 0.09 \mathrm{mmol})$ and anhydrous potassium carbonate ($31 \mathrm{mg}, 0.22 \mathrm{mmol}$) in dry acetonitrile (5 mL), and then the suspension was stirred at room temperature for 12 hours under nitrogen. After that time, the suspension was concentrated. The crude product was purified by chromatography with methylene chloride- methanol (9:1) as eluent to give $\mathbf{5 f}(25 \mathrm{mg}, 51 \%)$ as a white oil. $\mathrm{R}_{\mathrm{f}} 0.64(\mathrm{MeOH}$: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.83-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.74(\mathrm{~m}, 5 \mathrm{H}), 3.03(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7$ $\left.\mathrm{Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Ph}) \mathrm{OH}\right)$, 3.36-3.49 (m, 1H), 4.93-4.98(m, 1H), 7.25-7.39 (m, 8H, ArH), 7.43-7.49 (m, 2H, ArH), 7.52-7.62 (m, 3H, ArH), 7.70 (brd, 2H, ArH), 7.77 (dd, $1 \mathrm{H}, \mathrm{J}=1.3$ and $7.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.91-7.95 (m, 2H, ArH), 8.09 (brd, $1 \mathrm{H}, \mathrm{ArH}$), 8.49-8.53 (m, 1H, ArH), 9.02 (brs, $1 \mathrm{H}, \mathrm{ArH}$), 9.13 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=542 .[\alpha]^{20}{ }_{\mathrm{D}}=+$ $19.5^{\circ}\left(\mathrm{c}=1.07, \mathrm{CHCl}_{3}\right)$.

1-\{4-(Phenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-benzoyl-piperazine ($\mathbf{6 a}$). $4 \mathbf{d}(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ was dissolved in methylene chloride (5 mL) with DIEA ($30 \mu \mathrm{~L}$, $0.16 \mathrm{mmol})$. To this solution, benzoyl chloride ($17 \mu \mathrm{~L}, 0.14 \mathrm{mmol}$) was added. The reaction mixture was stirred for 2 hours at room temperature. The solvent was removed under reduced pressure and the residue was purified by flash chromatography with cyclohexane-ethyl acetate (9/1) as eluent to give the desired compound $\mathbf{6 a}(56 \mathrm{mg}, 91 \%)$ as a white powder. M.p. $91^{\circ} . \mathrm{R}_{\mathrm{f}}$ 0.44 (EtOAc:cHexane, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.98$ (brs, $\left.4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{Ph}\right), 3.60$ (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NC}(\mathrm{O}) \mathrm{Ph}$), 7.18 (d, $1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{ArH}$), 7.27-7.40 (m, 8H, ArH), 7.44$7.53(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar} H), 7.60-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.68(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.3$ and $7.0 \mathrm{~Hz}, \mathrm{ArH}), 7.84-7.87$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.91-7.95$ (brd, 2H, $\mathrm{Ar} H$), 8.38-8.41 (m, $1 \mathrm{H}, \mathrm{Ar} H$), 8.94 (brs, 1H, ArH), 9.03 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). $\mathrm{ESI}-\mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=512$.

1-\{4-(4'-Chlorophenyl)-2-[(naphthalene-1-carbonyl)-amino]-phenyl\}-4-\{(5-

 dithiolan)-pentanoyl\}-piperazine ($\mathbf{6 b}$). 4d $(50 \mathrm{mg}, 0.12 \mathrm{mmol}$), racemic ($+/-$)- α-Lipoic acid ($47 \mathrm{mg}, 0.22 \mathrm{mmol}$), DCC ($47 \mathrm{mg}, 0.22 \mathrm{mmol}$), HOBt ($30 \mathrm{mg}, 0.22 \mathrm{mmol}$), and DMAP (28 $\mathrm{mg}, 0.22 \mathrm{mmol})$ were stirred in dry $\mathrm{DCM}(6 \mathrm{~mL})$ at room temperature for 10 hours. After this time, the insoluble residue was filtered off and washed with $2 \times 5 \mathrm{~mL}$ of DCM. The filtrate was concentrated and the resulting crude residue was purified by column chromatography with DCM, $0.5 \% \mathrm{MeOH}$ as eluent, to yield $\mathbf{6 b}$ as a white solid ($60 \mathrm{mg}, 84 \%$) as a white powder. M.p. $82^{\circ} . \mathrm{R}_{\mathrm{f}} 0.83$ (MeOH: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1: 9\right)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.42-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.76$ $(\mathrm{m}, 4 \mathrm{H}), 1.84-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 2.40-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NC}(\mathrm{O})-\left(\mathrm{CH}_{2}\right)_{4}$-dithiolan $), 3.10-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.66(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3$ $\mathrm{Hz}, \mathrm{Ar} H)$, 7.37-7.41 (m, 1H, ArH), $7.46(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}, \operatorname{ArH}), 7.55-7.61(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Ar} H)$, 7.68-7.71 (d, 2H, ArH), 7.77 (dd, 1H, J= 1.3 and $7.0 \mathrm{~Hz}, \mathrm{ArH}), 7.92-7.96$ (m, 2H, ArH), 8.00 (brd, 1H, J= Hz, ArH), 8.47-8.51 (m, 1H, ArH), 9.03 (brs, 1H, ArH), 9.12 (brs, 1H, NHC(O)). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=596$.Coumarin-3-carboxylic acid or 2-oxo-2H-chromene-3-carboxylic acid (7). A mixture of salicylaldehyde, 2-hydroxy-benzaldehyde, ($1.22 \mathrm{~g}, 10.0 \mathrm{mmol}$), Meldrum's acid $(1.44 \mathrm{~g}, 10.0 \mathrm{mmol})$, piperidinium acetate ($30 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol $(10 \mathrm{~mL})$ was stirred at room temperature for 20 minutes, and then refluxed for 2 hours. The reaction mixture was allowed to cool down to room temperature. The crystallized product was filtered, washed three times with ethanol, and dried in vacuo to give quantitativelly the desired compound 7 as yellow needles (1.9 g , quantitative) as yellow neddles. M.p. $188^{\circ} . \mathrm{R}_{\mathrm{f}} 0.12$ (cHex-EtOAc, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}\right) \delta_{\mathrm{H}} 7.38(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.0$ and $7.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.41-7.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.69-$ $7.76(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArH}), 7.90(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.6$ and $7.7 \mathrm{~Hz}, \mathrm{ArH}), 8.73\left(\mathrm{~s}, 1 \mathrm{H}, H_{4}\right), 13.12(\mathrm{brs}, 1 \mathrm{H}$, $\mathrm{COOH})$. ESI-MS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=191$.

8-Methoxy-coumarin-3-carboxylic acid or 8-methoxy-2-oxo-2H-chromene-3carboxylic acid (8). A mixture of 2-hydroxy-3-methoxy-benzaldehyde ($1.50 \mathrm{~g}, 10.0 \mathrm{mmol}$), Meldrum's acid ($1.44 \mathrm{~g}, 10.0 \mathrm{mmol}$), piperidinium acetate ($30 \mathrm{mg}, 0.2 \mathrm{mmol}$) and ethanol (10 mL) was stirred at room temperature for 20 minutes, and then refluxed for 2 hours. The reaction mixture was allowed to cool down to room temperature. The crystallized product was filtered, washed three times with ethanol, and dried in vacuo to give quantitativelly the desired compound as yellow needles (2.2 g , quantitative) as yellow neddles. M.p. $182^{\circ} . \mathrm{R}_{\mathrm{f}}$ 0.09 (cHex-EtOAc, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}\right) \delta_{\mathrm{H}} 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.25-7.41(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{Ar} H$), $8.67\left(\mathrm{~s}, 1 \mathrm{H}, H_{4}\right), 13.40$ (brs, $\left.1 \mathrm{H}, \mathrm{COO} \underline{H}\right) . \mathrm{ESI}-\mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=221$.
\{4-Bromo-2-[(2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-morpholine (9a). Coumarin-3-carboxylic acid $7(350 \mathrm{mg}, 1.90 \mathrm{mmol})$ and the amino moiety $\mathbf{2 a}(400 \mathrm{mg}, 1.56$ mmol) were dissolved in anhydrous pyridine (10 mL). The solution was cooled to $-15^{\circ} \mathrm{C}$ and phosphorus oxychloride ($160 \mu \mathrm{~L}, 1.72 \mathrm{mmol}$) was added dropwise under vigorous stirring. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for at least 30 min . The solution was then stirred 12 hours at room temperature. The reaction was quenched by addition of crushed ice/water (30 mL). The desired compound was extracted into AcOEt ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography to lead to the desired compound 9 a ($200 \mathrm{mg}, 30 \%$) as yellow neddles. M.p. 222°. $\mathrm{R}_{\mathrm{f}} 0.48$ ($\mathrm{cHex}-\mathrm{EtOAc}, 1: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta_{\mathrm{H}} 2.90\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.99\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 7.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.3$ and $8.4 \mathrm{~Hz}, \mathrm{Ar} H), 7.42-7.47(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.68-7.78(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}$), $8.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, \mathrm{ArH}$), $9.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 11.67$ (brs, 1H, NHC(O)). ESI$\mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=429$.

1-\{4-Bromo-2-[(2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-4-tert-
butoxycarbonyl piperazine (9b). Coumarin-3-carboxylic acid 7 ($240 \mathrm{mg}, 1.25 \mathrm{mmol}$) and the amino moiety $\mathbf{2 b}(370 \mathrm{mg}, 1.04 \mathrm{mmol})$ were dissolved in anhydrous pyridine $(10 \mathrm{~mL})$. The solution was cooled to $-15^{\circ} \mathrm{C}$ and phosphorus oxychloride ($110 \mu \mathrm{~L}, 1.14 \mathrm{mmol}$) was added dropwise under vigorous stirring. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for at least 30 min . The solution was then stirred 12 hours at room temperature. The reaction was quenched by addition of crushed ice/water (30 mL). The desired compound was extracted into AcOEt ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography to lead to the desired compound $\mathbf{9 b}(390 \mathrm{mg}, 71 \%)$ as a yellow powder. M.p. $230^{\circ} . \mathrm{R}_{\mathrm{f}} 0.66$ (Toluene-EtOAc, 6:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.48\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 2.87$ (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 3.73 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}^{2}$), 7.09-7.24 (m, 4H, ArH), 7.37-7.45 (m, $3 \mathrm{H}, \mathrm{ArH}), 7.66-7.76(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 8.61(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, \mathrm{ArH}), 9.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 11.69$ (brs, 1H, NHC(O)). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=528$.

4-Benzyl-1-\{4-bromo-2-[(2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}piperazine (9c). Coumarin-3-carboxylic acid $7(55 \mathrm{mg}, 0.29 \mathrm{mmol})$ and the amino moiety $\mathbf{2 c}$ ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$) were dissolved in anhydrous pyridine (4 mL). The solution was cooled to $-15^{\circ} \mathrm{C}$ and phosphorus oxychloride ($30 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) was added dropwise under vigorous stirring. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for at least 30 min . The solution was then stirred 12 hours at room temperature. The reaction was quenched by addition of crushed ice/water (10 mL). The desired compound was extracted into AcOEt ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography to lead to the desired compound $9 \mathbf{9 c}\left(100 \mathrm{mg}, 70 \%\right.$) as a yellow powder. M.p. $190^{\circ} . \mathrm{R}_{\mathrm{f}} 0.27$ (cHexEtOAc, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.77$ (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), 2.93 (brs, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), $3.65\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}\right), 7.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.23(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ 2.3 and $8.4 \mathrm{~Hz}, \mathrm{Ar} H$), 7.28-7.48 (m, 7H, ArH), 7.67-7.77 (m, 2H, ArH), $8.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3$ $\mathrm{Hz}, \mathrm{Ar} H), 9.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 11.57$ (brs, 1H, NHC(O)). ESI-MS m/z [M+H] ${ }^{+}=518$.

1-\{4-Bromo-2-[(2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-piperazine as a TFA salt (9d). To a stirred solution of the appropriate N -Boc compound 9 C ($60 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, trifluoroacetic acid (TFA) $(90 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ was added dropwise under nitrogen at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at room temperature. After completion, the solvent and excess TFA were removed under reduced pressure, the corresponding trifluoroacetic acid salt was identified as the desired compound $\mathbf{9 d}(60 \mathrm{mg}, 97 \%)$ as a TFA salt. $\mathrm{R}_{\mathrm{f}} 0.09$ (EtOAc:cyclohexane, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}\right) \delta_{\mathrm{H}}$ 3.06 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH} . \mathrm{TFA}$), 3.32 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH} . \mathrm{TFA}$), $7.26-7.38$ (m, 2 H , ArH), 7.48-7.58 (m, 2H, ArH), 7.83 (t, 1H, J= $8.1 \mathrm{~Hz}, \operatorname{ArH}$), 8.10 (d, 1H, J= $6.7 \mathrm{~Hz}, \operatorname{ArH}$), 8.72 (d, 1H, J= $2.2 \mathrm{~Hz}, \mathrm{ArH}$), 8.85 (brs, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$.TFA), 9.10 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 11.53 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=428$.

1-\{4-Bromo-2-[(2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-4-(2-

hydroxyethyl)-piperazine (9e). 2-Bromoethanol ($4.5 \mu \mathrm{~L}, 0.061 \mathrm{mmol}$) was added to a vigorous stirred mixture of $9 \mathbf{d}(30 \mathrm{mg}, 0.055 \mathrm{mmol})$ and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{mg}, 0.14$ mmol) in dry acetonitrile (5 mL). The suspension was refluxed for 10 hours under nitrogen. The solvent was then removed under reduced pressure. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and extracted with water (2 x 5 mL), the organic layer was dried over MgSO_{4}, and then purified by chromatography on silica gel, using methylene chloride-methanol (9:1) as eluent, to yield the compound $9 \mathrm{e}(20 \mathrm{mg}, 77 \%)$ as a brown oil. $\mathrm{R}_{\mathrm{f}} 0.45\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}\right.$, 5:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.76$ (brs, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 2.89 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$ $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 2.96 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.67-3.73 (m, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $7.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.25(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2$ and $8.3 \mathrm{~Hz}, \operatorname{ArH}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H)$, 7.67-7.76 (m, 2H, ArH), 8.82 (d, 1H, J= $2.2 \mathrm{~Hz}, \mathrm{ArH}$), 9.01 (s, 1H, ArH), 11.56 (brs, 1H, $\mathrm{NHC}(\mathrm{O}))$. ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=472$.

\{4-Bromo-2-[(8-methoxy-2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-

morpholine (10a). Coumarin-3-carboxylic acid $\mathbf{8}(410 \mathrm{mg}, 1.90 \mathrm{mmol})$ and the amino moiety 2a ($400 \mathrm{mg}, 1.56 \mathrm{mmol}$) were dissolved in anhydrous pyridine $(10 \mathrm{~mL})$. The solution was cooled to $-15^{\circ} \mathrm{C}$ and phosphorus oxychloride ($160 \mu \mathrm{~L}, 1.72 \mathrm{mmol}$) was added dropwise under vigorous stirring. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for at least 30 min . The solution was then stirred 12 hours at room temperature. The reaction was quenched by addition of crushed ice/water (30 mL). The desired compound was extracted into AcOEt ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated
under reduced pressure. The crude material was purified by flash chromatography to lead to the desired compound $\mathbf{1 0 a}(150 \mathrm{mg}, 21 \%)$ as a yellow powder. M.p. $229^{\circ} . \mathrm{R}_{\mathrm{f}} 0.41$ (cHexEtOAc, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.89\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.98$ (t, 4H, J= 4.5 $\mathrm{Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $4.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH})$, 8.83 (d, 1H, J= $2.3 \mathrm{~Hz}, \operatorname{Ar} H$), 8.98 (s, 1H, ArH), 11.70 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=459$.

Abstract

1-\{4-Bromo-2-[(8-methoxy-2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-4-tert-butoxycarbonyl piperazine (10b). 8-Methoxy-coumarin-3-carboxylic acid 8 (300 mg , 1.35 mmol) and the amino moiety 2b ($400 \mathrm{mg}, 1.12 \mathrm{mmol}$) were dissolved in anhydrous pyridine (10 mL). The solution was cooled to $-15^{\circ} \mathrm{C}$ and phosphorus oxychloride ($115 \mu \mathrm{~L}$, 1.23 mmol) was added dropwise under vigorous stirring. The reaction mixture was stirred at $15^{\circ} \mathrm{C}$ for at least 30 min . The solution was then stirred 12 hours at room temperature. The reaction was quenched by addition of crushed ice/water (30 mL). The desired compound was extracted into AcOEt ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography to lead to the desired compound $\mathbf{1 0 b}(390 \mathrm{mg}, 64 \%)$ as a yellow powder. M.p. $241^{\circ} . \mathrm{R}_{\mathrm{f}} 0.39$ (cHex-EtOAc, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right)$, 2.83 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 3.71 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}^{2}$), 4.00 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.02 (d, $1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \operatorname{Ar} H), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar} H), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 8.83(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3$ $\mathrm{Hz}, \mathrm{Ar} H), 8.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 11.73$ (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=558$.

4-Benzyl-1-\{4-bromo-2-[(8-methoxy-2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-piperazine (10c). 8-Methoxy-coumarin-3-carboxylic acid $\mathbf{8}(35 \mathrm{mg}, 0.16 \mathrm{mmol})$ and the amino moiety $2 \mathrm{c}(50 \mathrm{mg}, 0.14 \mathrm{mmol}$) were dissolved in anhydrous pyridine (4 mL). The solution was cooled to $-15^{\circ} \mathrm{C}$ and phosphorus oxychloride ($20 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was added dropwise under vigorous stirring. The reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for at least 30 min . The solution was then stirred 12 hours at room temperature. The reaction was quenched by addition of crushed ice/water (10 mL). The desired compound was extracted into AcOEt (3 x 20 mL). The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The crude material was purified by flash chromatography to lead to the desired compound $\mathbf{1 0 c}(30 \mathrm{mg}, 40 \%)$ as a yellow powder. M.p. $232^{\circ} . \mathrm{R}_{\mathrm{f}} 0.31$ (cHex-EtOAc, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.79$ (brs, 4H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), 2.94 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), 3.66 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ph}$), 4.03 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.07 (d, $1 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.23(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.3$ and $8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.28-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 7.40-7.42$ (m, $2 \mathrm{H}, \mathrm{ArH}$), $8.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, \mathrm{ArH}$), 8.98 (s, 1H, ArH), 11.59 (brs, 1H, NHC(O)). ESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+}=548$.

1-\{4-Bromo-2-[(8-methoxy-2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-

 piperazine as a TFA salt (10d). To a stirred solution of the appropriate N-Boc compound $\mathbf{1 0 c}(100 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, trifluoroacetic acid (TFA) ($140 \mu \mathrm{~L}, 1.8$ mmol) was added dropwise under nitrogen at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at room temperature. After completion, the solvent and excess TFA were removed under reduced pressure, the corresponding trifluoroacetic acid salt was identified as the desired compound 10d ($102 \mathrm{mg}, 99 \%$) as TFA salt. $\mathrm{R}_{\mathrm{f}} 0.08$ (EtOAc:cHexane, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{DMSOd}_{6}\right) \delta_{\mathrm{H}} 3.05\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), 3.34 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.96 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.35(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2$ and $8.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.43(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=7.5 \mathrm{~Hz}, \operatorname{Ar} H), 7.48-7.52(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArH}), 7.61-7.66(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArH}), 8.71(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}$, ArH), 8.70 (brs, 2H, $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH} . \mathrm{TFA}$), 9.06 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{ArH}$), 11.58 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESIMS m/z $[\mathrm{M}+\mathrm{H}]^{+}=458$.1-\{4-Bromo-2-[(8-methoxy-2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-4-(2-hydroxyethyl)-piperazine (10e). 2-Bromoethanol ($6.3 \mu \mathrm{~L}, 0.090 \mathrm{mmol}$) was added to a vigorous stirred mixture of $\mathbf{1 0 d}(46 \mathrm{mg}, 0.081 \mathrm{mmol})$ and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(28 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in dry acetonitrile (6 mL). The suspension was refluxed for 10 hours under nitrogen. The solvent was then removed under reduced pressure. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and extracted with water (2 x 5 mL), the organic layer was dried over MgSO_{4}, and then purified by chromatography on silica gel, using methylene chloride-methanol (9:1) as eluent, to yield the compound $\mathbf{1 0 e}(40 \mathrm{mg}, 97 \%)$ as a pale yellow solid. M.p. $219^{\circ} . \mathrm{R}_{\mathrm{f}} 0.65$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 5: 1\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSOd}_{6}\right) \delta_{\mathrm{H}} 2.76$ (brs, $2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.16 (brs, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.36 (brs, $4 \mathrm{H}, \quad \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 3.79 (brs, 2 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.29(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.36(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=2.2$ and $8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.42-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.67-7.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 8.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{ArH}$), 9.07 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{Ar} H$), 11.50 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=502$.

1-\{4-(Phenyl)-2-[(2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-4-tert-
butoxycarbonyl piperazine (11b). Phenyl boronic acid ($30 \mathrm{mg}, 0.23 \mathrm{mmol}$) was dissolved in anhydrous 1,3-dioxane (10 mL). The appropriate bromo derivative $9 \mathbf{~}$ ($100 \mathrm{mg}, 0.19 \mathrm{mmol}$) was dissolved in anhydrous dioxane $(10 \mathrm{~mL}$) and the two solutions were mixed with dppf (5 $\mathrm{mg}, 0.006 \mathrm{mmol}$), dppf-Pd ${ }^{\text {II }}(10 \mathrm{mg}, 0.006 \mathrm{mmol})$, and $\mathrm{KOAc}(56 \mathrm{mg}, 0.57 \mathrm{mmol})$. The resulting suspension was refluxed for 72 hours. The dioxane was removed under reduced pressure and the catalysts were removed by filtration through silica gel. The crude product was purified by flash chromatography with cHex-EtOAc (9:1) as eluent, to yield the desired compound 11b as a yellow powder ($45 \mathrm{mg}, 45 \%$). M.p. $224^{\circ} . \mathrm{R}_{\mathrm{f}} 0.76$ (EtOAc:cHexane, 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 1.45$ (s, $9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}$), 2.98 (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 3.92 (brs, 4 H , $\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NBoc}$), 7.23-7.26 (m, 1H, ArH), 7.32-7.47 (m, 7H, ArH), 7.56-7.69 (m, 2H, ArH), 7.71-7.78 (m, 2H, ArH), 8.92 (d, 1H, J= $2.0 \mathrm{~Hz}, \mathrm{ArH}$), 9.05 (s, 1H, ArH), 11.75 (brs, 1H, $\mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=526$.

4-Benzyl-1-\{4-(phenyl)-2-[(2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-

 piperazine (11c). Phenyl boronic acid ($175 \mathrm{mg}, 1.43 \mathrm{mmol}$) was dissolved in anhydrous $1,3-$ dioxane (20 mL). The appropriate bromo derivative $9 \mathrm{c}(370 \mathrm{mg}, 0.720 \mathrm{mmol}$) was dissolved in anhydrous dioxane (10 mL) and the two solutions were mixed with dppf $(12 \mathrm{mg}, 0.022$ $\mathrm{mmol})$, dppf-Pd ${ }^{\mathrm{II}}(20 \mathrm{mg}, 0.022 \mathrm{mmol})$, and $\mathrm{KOAc}(210 \mathrm{mg}, 2.1 \mathrm{mmol})$. The resulting suspension was refluxed for 72 hours. The dioxane was removed under reduced pressure and the catalysts were removed by filtration through silica gel. The crude product was purified by flash chromatography with cHex-EtOAc (9:1) as eluent, to yield the desired compound 11c as a yellow powder ($190 \mathrm{mg}, 51 \%$). M.p. $235^{\circ} . \mathrm{R}_{\mathrm{f}} 0.61$ (EtOAc: cHexane, $1: 1$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 2.79$ (brs, $4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}$), $3.00\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{Ph}\right)$, 3.66 (s, 2H, NCH ${ }_{2} \mathrm{Ph}$), 7.29-7.44 (m, 10H, ArH), 7.46-7.49 (m, 2H, ArH), 7.57 (d, 2H, J= 8.7 $\mathrm{Hz}, \operatorname{ArH}$), 7.67-7.75 (m, 2H, $\operatorname{ArH}), 8.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.7 \mathrm{~Hz}, \operatorname{ArH}), 9.03(\mathrm{~s}, 1 \mathrm{H}, \operatorname{ArH}), 11.60$ (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O})$). ESI-MS m/z $[\mathrm{M}+\mathrm{H}]^{+}=516$.1-\{4-(Phenyl)-2-[(2-Oxo-2H-chromene-3-carbonyl)-amino]-phenyl\}-piperazine (11d). To a stirred solution of the appropriate N -Boc compound $\mathbf{1 1 b}(37 \mathrm{mg}, 0.070 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, trifluoroacetic acid (TFA) ($55 \mu \mathrm{~L}, 0.70 \mathrm{mmol}$) was added dropwise under nitrogen at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred overnight at room temperature. After completion, the solvent and excess TFA were removed under reduced pressure, the corresponding trifluoroacetic acid salt was identified as the desired compound 11d (4 mg , 13%) as a TFA salt. $\mathrm{R}_{\mathrm{f}} 0.06$ (EtOAc:cHexane, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 3.13$ (brt, 4H, J=
$4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.00 (brt, $4 \mathrm{H}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $7.39-7.51$ (m, $8 \mathrm{H}, \mathrm{ArH}$), 7.61-7.64 (m, 2H, ArH), 7.75-7.84 (m, 1H, ArH), 7.91 (dd, 1H, J= 1.6 and $8.1 \mathrm{~Hz}, \mathrm{ArH}$), 8.80 (brs, $1 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH} . \mathrm{TFA}$), $8.85(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz}, \operatorname{ArH}), 9.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}$), 11.50 (brs, $1 \mathrm{H}, \mathrm{NHC}(\mathrm{O}))$. $\mathrm{ESI}-\mathrm{MS} \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}=426$.

Table of elemental analyses

Compound	Formula	Calculated	Found
1a	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{2} \mathrm{O}_{3}$	C 41.83, H 3.86, N 9.76	C 41.46, H 4.12, N 10.05
1b	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{4}$	C 46.64, H 5.22, N 10.88	C 46.31, H 5.49, N 11.10
1c	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrN}_{3} \mathrm{O}_{2}$	C 54.27, H 4.82, N 11.17	C 54.60, H 4.51, N 10.92
2 a	$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}$	C 46.71, H 5.10, N 10.89	C 46.42, H 5.32, N 10.61
2b	$\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{2}$	C 50.57, H 6.22, N 11.79	C 50.87, H 6.22, N 11.42
2 c	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{BrN}_{3}$	C 58.97, H 5.82, N 12.14	C 59.31, H 5.43, N 12.39
3a	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2}$	C 61.32, H 4.66, N 6.81	C 61.69, H 4.93 N 7.12
3b	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{O}_{3}$	C 61.18, H 5.53, N 8.23	C 61.34, H 5.81 N 8.54
3 c	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}$	C 67.20, H 5.24, N 8.40	C 67.54, H 5.02 N 8.76
3d	$\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}$	C 61.47, H 4.91, N 10.24	C 61.98, H 5.24 N 10.49
3 e	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{2}$	C 60.80, H 5.32, N 9.25	C 61.12, H 5.02 N 9.54
4b	$\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3}$	C 75.71, H 6.55, N 8.28	C 75.43, H 6.59 N 7.99
4c	$\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}$	C 82.06, H 6.28, N 8.46	C 81.98, H 6.09 N 8.26
4d	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}$	C 79.58, H 6.18, N 10.31	C 79.64, H 6.27 N 10.13
5a	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$	C 77.13, H 6.47, N 9.31	C 77.57, H 6.22 N 9.45
5b	$\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3}$	C 75.43, H 6.33, N 8.51	C 75.79, H 6.47 N 8.63
5c	$\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{3}$	C 77.15, H 6.15, N 9.00	C 76.89, H 5.99 N 8.86
5d	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}$	C 78.01, H 7.37, N 11.37	C 78.22, H 7.05 N 11.69
5 e	$\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2}$	C 79.82, H 6.51, N 7.76	C 79.53, H 6.71 N 7.62
5 f	$\mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2}$	C 79.76, H 6.46, N 7.56	C 79.22, H 6.69 N 7.44
6 a	$\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}$	C 79.78, H 5.67, N 8.21	C 79.62, H 5.46 N 8.06
6b	$\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}$	C 70.55, H 6.26, N 7.05	C 70.43, H 6.48 N 6.97

7	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{4}$	$\mathrm{C} 63.16, \mathrm{H} 3.18$	$\mathrm{C} 63.37, \mathrm{H} 3.04$
8	$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{5}$	$\mathrm{C} 60.00, \mathrm{H} 3.66$	$\mathrm{C} 60.37, \mathrm{H} 3.41$
9a	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{4}$	$\mathrm{C} 55.96, \mathrm{H} 3.99, \mathrm{~N} 6.53$	$\mathrm{C} 56.21, \mathrm{H} 3.62 \mathrm{~N} 6.32$
9b	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{5}$	$\mathrm{C} 56.83, \mathrm{H} 4.96, \mathrm{~N} 7.95$	$\mathrm{C} 57.13, \mathrm{H} 4.71 \mathrm{~N} 8.31$
9c	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{3}$	$\mathrm{C} 62.56, \mathrm{H} 4.67, \mathrm{~N} 8.11$	$\mathrm{C} 62.77, \mathrm{H} 4.29 \mathrm{~N} 8.37$
9d	$\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{BrF}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}$	$\mathrm{C} 48.72, \mathrm{H} 3.53, \mathrm{~N} 7.75$	$\mathrm{C} 48.99, \mathrm{H} 3.31 \mathrm{~N} 7.91$
9e	$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrN}_{3} \mathrm{O}_{4}$	$\mathrm{C} 55.94, \mathrm{H} 4.69, \mathrm{~N} 8.90$	$\mathrm{C} 56.21, \mathrm{H} 4.39 \mathrm{~N} 8.63$
10a	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{5}$	$\mathrm{C} 54.92, \mathrm{H} 4.17, \mathrm{~N} 6.10$	$\mathrm{C} 55.31, \mathrm{H} 4.34 \mathrm{~N} 6.47$
10b	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{BrN}_{3} \mathrm{O}_{6}$	$\mathrm{C} 55.92, \mathrm{H} 5.05, \mathrm{~N} 7.52$	$\mathrm{C} 55.63, \mathrm{H} 5.29 \mathrm{~N} 7.78$
10c	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{O}_{4}$	$\mathrm{C} 61.32, \mathrm{H} 4.78, \mathrm{~N} 7.66$	$\mathrm{C} 61.75, \mathrm{H} 4.93 \mathrm{~N} 8.12$
10d	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrF}_{3} \mathrm{~N}_{3} \mathrm{O}_{6}$	$\mathrm{C} 48.27, \mathrm{H} 3.70, \mathrm{~N} 7.34$	$\mathrm{C} 48.39, \mathrm{H} 3.41 \mathrm{~N} 7.59$
10e	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{3} \mathrm{O}_{5}$	$\mathrm{C} 54.99, \mathrm{H} 4.82, \mathrm{~N} 8.36$	$\mathrm{C} 54.70, \mathrm{H} 4.99 \mathrm{~N} 8.72$
11b	$\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5}$	$\mathrm{C} 70.84, \mathrm{H} 5.95, \mathrm{~N} 7.95$	$\mathrm{C} 70.81, \mathrm{H} 6.12 \mathrm{~N} 7.87$
11c	$\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3}$	$\mathrm{C} 76.86, \mathrm{H} 5.63, \mathrm{~N} 8.14$	$\mathrm{C} 76.95, \mathrm{H} 5.49 \mathrm{~N} 7.93$
11d	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}$	$\mathrm{C} 62.34, \mathrm{H} 4.44, \mathrm{~N} 7.72$	$\mathrm{C} 62.19, \mathrm{H} 4.14 \mathrm{~N} 7.91$

