Supporting Information

One-Pot Synthesis of Metal Primary Phosphine Complexes from O=PCl₂R or PCl₂R. Isolation and Characterization of Primary Alkylphosphine Complexes of a Metalloporphyrin

Jie-Sheng Huang,* Guang-Ao Yu, Jin Xie, Nianyong Zhu, and Chi-Ming Che*

Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong

Experimental Section

General. All manipulations were performed under argon by using standard Schlenk techniques unless otherwise specified. Dichloromethane and hexane were distilled from CaH₂. All other solvents were of AR grade and were used without purification. $O=PCl_2Ad$, ¹ $O=PCl_2Bu^{t,2} O=PCl_2Bu^{sec,3} PCl_2Mes$, ⁴ and [Ru^{II}(Por)(CO)] (Por = TTP, 4-MeO-TPP, ⁵ F₂₀-TPP ⁶) were prepared according to the literature methods. UV-vis spectra were recorded on a Hewlett-Packard 8453 diode array spectrophotometer (interfaced with an IBM compatible PC). ¹H and ³¹P NMR spectra were recorded with a Bruker DPX-300 or 400 spectrometer; the chemical shifts (δ , ppm) are relative to tetramethylsilane (TMS) for ¹H NMR and 85% H₃PO₄ for ³¹P NMR. Infrared spectra were obtained with a Nicolet 20 SXC FT-IR spectrometer. IR spectra were obtained on a Bio-Rad FT-IR spectrometer. Fast atom bombardment mass spectra (FAB MS) were recorded on a Finnigan MAT 95 mass spectrometer using 3-nitrobenzyl alcohol as matrix. Elemental analyses were performed by the Institute of Chemistry, the Chinese Academy of Sciences.

Preparation of Bis(primary phosphine)ruthenium(II) Porphyrins $[Ru^{II}(Por)(PH_2R)_2]$. LiAlH₄ (200 mg) was added to a solution of $[Ru^{II}(Por)(CO)]$ (0.1 mmol) and O=PCl₂R or PCl₂R (0.24 mmol) in diethyl ether (50 mL) at 0 °C. The mixture was stirred for 30 min and then treated with methanol at 0 °C until no H₂ bubbles evolved. After filtration, the filtrate was evaporated to dryness to give a red solid. The solid was collected, washed with hexane, and then recrystallized from dichloromethane/hexane.

[**Ru**^{II}(**TTP**)(**PH**₂**Mes**)₂] (1a). Yield: 64%. ¹H NMR (400 MHz, CDCl₃): δ 8.24 (s, 8H), 7.68 (d, J = 7.8 Hz, 8H), 7.42 (d, J = 7.8 Hz, 8H), 5.92 (s, 4H), 2.65 (s, 12H), 1.93(s, 6H), -0.26 (s, 12H), -0.25 (s), -0.39 (s), -0.54 (br), -0.76 (s), -0.91 (s), -1.06 (s) (a total of 4H). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -84.94. ³¹P NMR (162 MHz, CDCl₃): δ -80.33, -80.68, -82.33, -82.95, -83.69, -84.05, -84.23, -84.96, -85.69, -85.88, -86.23, -86.97, -87.59, -89.24, -89.60. UV-vis (CH₂Cl₂): λ_{max} (log ε) 428 (Soret), 529 nm. IR (KBr pellet): 1003 cm⁻¹ (oxidation state marker band). FAB MS: *m/z* 1074 [M]⁺, 922 [M - PH₂Mes], 770 [M - 2PH₂Mes]. Anal. Calcd for C₆₆H₆₂N₄P₂Ru·CH₂Cl₂: C, 69.42; H, 5.56; N, 4.83. Found: C, 69.51; H, 5.59; N, 5.06.

[**Ru**^{II}(4-MeO-TPP)(PH₂Mes)₂] (1b). Yield: 65%. ¹H NMR (400 MHz, CDCl₃): δ 8.26 (s, 8H), 7.70 (d, J = 7.8 Hz, 8H), 7.14 (d, J = 7.8 Hz, 8H), 5.92 (s, 4H), 4.05 (s, 12H), 1.92 (s, 6H), -0.27 (s, 12H), -0.25 (s), -0.40 (s), -0.55 (s), -0.77 (s), -0.92 (s), -1.06 (s) (a total of 4H). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -84.96. ³¹P NMR (162 MHz, CDCl₃): δ -80.32, -80.68, -82.33, -82.95, -83.68, -84.04, -84.22, -84.96, -85.69, -85.87, -86.23, -86.96, -87.58, -89.24, -89.60. UV-vis (CH₂Cl₂): λ_{max} (log ε) 428 (Soret), 530 nm. IR (KBr pellet): 1004 cm⁻¹ (oxidation state marker band). FAB MS: *m/z* 1138

 $[M]^+$, 986 $[M - PH_2Mes]$, 834 $[M - 2PH_2Mes]$. Anal. Calcd for $C_{66}H_{62}N_4O_4P_2Ru\cdot CH_2Cl_2$: C, 65.79; H, 5.27; N, 4.58. Found: C, 65.66; H, 5.28; N, 4.72.

[**Ru**^{II}(**F**₂₀-**TPP**)(**PH**₂**Mes**)₂] (**1c**). Yield: 35%. ¹H NMR (400 MHz, CDCl₃): δ 8.24 (s, 8H), 5.85 (s, 4H), 1.80 (s, 6H), -0.28 (s, 12H), -0.38 (s), -0.51 (s), -0.67 (s), -0.91 (s), -1.07 (s), -1.21 (s) (a total of 4H). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -86.82. ³¹P NMR (162 MHz, CDCl₃): δ -82.22, -82.57, -84.27, -84.74, -85.48, -85.82, -86.06, -86.80, -87.53, -87.78, -88.12, -88.85, -89.31, -91.02, -91.36. UV-vis (CH₂Cl₂): λ_{max} (log ε) 429 (Soret), 516 nm. FAB MS: *m/z* 1378 [M]⁺, 1226 [M - PH₂Mes], 1074 [M - 2PH₂Mes]. Anal. Calcd for C₆₂H₃₄F₂₀N₄P₂Ru·CH₂Cl₂: C, 51.73; H, 2.48; N, 3.83. Found: C, 51.27; H, 2.50; N, 4.13.

[**Ru**^{II}(**TTP**)(**PH**₂**Ad**)₂] (**2a**). Yield: 43%. ¹H NMR (400 MHz, CDCl₃): δ 8.31 (s, 8H), 7.91 (d, *J* = 7.8 Hz, 8H), 7.45 (d, *J* = 7.8 Hz, 8H), 2.65 (s, 12H), 0.99 (s, 12H), 0.64 (m, 6H), -1.27 (s, 12H), -1.71 (s), -1.84 (s), -1.98 (s), -2.20 (s), -2.34 (s), -2.47 (s) (a total of 4H). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -19.26. ³¹P NMR (162 MHz, CDCl₃): δ -15.02, -15.34, -16.92, -17.37, -18.04, -18.35, -18.57, -19.25, -19.92, -20.14, -20.45, -21.13, -21.58, -23.14, -23.45. UV-vis (CH₂Cl₂): λ_{max} (log ε) 428 (Soret), 521 nm. IR (KBr pellet): 1002 cm⁻¹ (oxidation state marker band). FAB MS: *m/z* 1106 [M]⁺, 938 [M - PH₂Ad], 770 [M - 2PH₂Ad]. Anal. Calcd for C₆₈H₇₀N₄P₂Ru·CH₂Cl₂: C, 69.57; H, 6.09; N, 4.70. Found: C, 70.11; H, 6.27; N, 4.94.

[**Ru**^{II}(4-MeO-TPP)(PH₂Ad)₂] (2b). Yield: 54%. ¹H NMR (400 MHz, CDCl₃): δ8.33 (s, 8H), 7.88 (d, J = 7.8 Hz, 8H), 7.19 (d, J = 7.8 Hz, 8H), 4.06 (s, 12H), 0.99 (s, 12H), 0.64 (m, 6H), -1.27 (s, 12H), -1.71 (s), -1.84 (s), -1.99 (s), -2.20 (s), -2.35 (s), -2.47 (s) (a total of 4H). ³¹P{¹H} NMR (162 MHz, CDCl₃): $\delta -19.22$. ³¹P NMR (162 MHz, CDCl₃): $\delta -15.04$, -15.30, -16.90, -17.34, -18.02, -18.33, -18.55, -19.22, -19.90, -20.11, -20.42, -21.10, -21.55, -23.15, -23.41. UV-vis (CH₂Cl₂): λ_{max} (log ε) 429 (Soret), 521 nm. IR (KBr pellet): 1002 cm⁻¹ (oxidation state marker band). FAB MS: *m/z* 1170 [M]⁺, 1002 [M – PH₂Ad], 834 [M – 2PH₂Ad]. Anal. Calcd for C₆₈H₇₀N₄O₄P₂Ru: C, 69.79; H, 6.03; N, 4.79. Found: C, 69.32; H, 6.01; N, 5.04.

[**Ru**^{II}(**F**₂₀-**TPP**)(**PH**₂**Ad**)₂] (2c). Yield: 27%. ¹H NMR (400 MHz, CDCl₃): δ 8.28 (s, 8H), 0.97 (s, 12H), 0.59 (m, 6H), -1.26 (s, 12H), -1.78 (s), -1.91 (s), -2.05 (s), -2.28 (br), -2.43 (s), -2.55 (s) (a total of 4H). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -21.14. ³¹P NMR (162 MHz, CDCl₃): δ -17.07, -17.30, -18.95, -19.23, -19.89, -20.19, -20.47, -21.14, -21.81, -22.09, -22.38, -23.06, -23.33, -24.97, -25.21. UV-vis (CH₂Cl₂): λ_{max} (log ε) 429 (Soret), 513 nm. FAB MS: *m/z* 1410 [M]⁺, 1242 [M - PH₂Ad], 1074 [M - 2PH₂Ad]. Anal. Calcd for C₆₄H₄₂F₂₀N₄P₂Ru·1.5CH₂Cl₂: C, 51.17; H, 2.95; N, 3.64. Found: C, 51.13; H, 3.26; N, 3.40.

[**Ru^{II}(TTP)(PH₂Bu^t)₂] (3a).** Yield: 70%. ¹H NMR (400 MHz, CDCl₃): δ 8.32 (s, 8H), 7.92 (d, J = 7.6 Hz, 8H), 7.44 (d, J = 7.6 Hz, 8H), 2.65 (s, 12H), -1.41 (m, 18H), -1.49 (s), -1.62 (s), -1.77 (br), -1.98 (br), -2.12 (s), -2.25 (s) (a total of 4H). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -14.44. ³¹P NMR (162 MHz, CDCl₃): δ -14.44. ³¹P NMR (162 MHz, CDCl₃): δ -10.2, -10.5, -12.0, -12.5, -13.2, -13.7, -14.4, -15.1, -15.6, -16.3, -16.8, -18.4, -18.7. UV-vis (CH₂Cl₂): λ_{max} (log ε) 427 (Soret), 521 nm. IR (KBr pellet): 1003 cm⁻¹ (oxidation state marker band). FAB MS: m/z 950 [M]⁺, 860 [M - PH₂Bu^t], 770 [M - 2PH₂Bu^t]. Anal. Calcd for C₅₆H₅₈N₄P₂Ru·CH₂Cl₂: C, 66.14; H, 5.84; N, 5.41. Found: C, 66.02; H, 5.89; N, 5.46.

[Ru^{II}(4-MeO-TPP)(PH₂Bu^t)₂] (3b). Yield: 51%. ¹H NMR (300 MHz, CDCl₃): δ 8.34 (s, 8H), 7.95 (d, J = 7.6 Hz, 8H), 7.17 (d, J = 7.6 Hz, 8H), 4.05 (s, 12H), -1.41 (m, 18H), -1.37 (s), -1.53 (s), -1.73 (br), -2.01 (br), -2.21 (s), -2.38 (s) (a total of 4H). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -14.39. ³¹P NMR (162 MHz, CDCl₃): δ -10.1, -10.4, -11.9, -12.5, -13.2, -13.7, -14.4, -15.1, -15.5, -16.2, -16.8, -18.3, -18.7. UV-vis (CH₂Cl₂): λ_{max} (log ε) 429 (Soret), 522 nm. IR (KBr pellet): 1004 cm⁻¹

(oxidation state marker band). FAB MS: m/z 1014 [M]⁺, 924 [M – PH₂Bu^t], 834 [M – 2PH₂Bu^t]. Anal. Calcd for C₅₆H₅₈N₄O₄P₂Ru·2CH₂Cl₂: C, 58.84; H, 5.28; N, 4.73. Found: C, 58.75; H, 5.10; N, 4.78.

[**Ru**^{II}(**TTP**)(**PH₂Bu**^{*sec*})₂] (4a). Yield: 65%. ¹H NMR (300 MHz, CDCl₃): δ 8.31 (s, 8H), 7.92 (d, J = 7.6 Hz, 8H), 7.45 (d, J = 7.6 Hz, 8H), 2.65 (s, 12H), -0.63 (t, J = 14.7 Hz, 6H), -0.98 (m, 2H), -1.41 (m, 6H), -1.54 (m, 2H), -1.88 (m, 2H), -1.33 (m), -1.70 (br), -1.98 (br), -2.17 (br), -2.35 (m) (the remaining PH₂ signal is overlapped by the multiplet at δ -1.54 ppm). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -44.44. ³¹P NMR (162 MHz, CDCl₃): δ -40.0, -40.4, -41.9, -42.5, -43.2, -43.7, -44.4, -45.1, -45.6, -46.3, -46.9, -48.5, -48.8. UV-vis (CH₂Cl₂): λ_{max} (log ε) 427 (Soret), 524 nm. IR (KBr pellet): 1003 cm⁻¹ (oxidation state marker band). FAB MS: m/z 950 [M]⁺, 860 [M – PH₂Bu^{*sec*}], 770 [M – 2PH₂Bu^{*sec*}]. Anal. Calcd for C₅₆H₅₈N₄P₂Ru: C, 70.97; H, 6.15; N, 5.90. Found: C, 70.99; H, 6.20; N, 5.80.

[Ru^{II}(4-MeO-TPP)(PH₂Bu^{sec})₂] (4b). Yield: 58%. ¹H NMR (400 MHz, CDCl₃): δ 8.33 (s, 8H), 7.95 (d, J = 7.6 Hz, 8H), 7.18 (d, J = 7.6 Hz, 8H), 4.05 (s, 12H), -0.63 (t, J = 14.7 Hz, 6H), -0.98 (m, 2H), -1.42 (m, 6H), -1.55 (m, 2H), -1.87 (m, 2H), -1.74 (br), -1.95 (br), -2.09 (br), -2.22 (m) (the remaining two signals of PH₂ are overlapped by the multiplets at δ -1.42 and -1.55 ppm). ³¹P{¹H} NMR (162 MHz, CDCl₃): δ -44.48. ³¹P NMR (162 MHz, CDCl₃): δ -40.1, -40.5, -42.0, -42.6, -43.3, -43.8, -44.5, -45.2, -45.7, -46.4, -47.0, -48.5, -48.8. UV-vis (CH₂Cl₂): λ_{max} (log ε) 429 (Soret), 525 nm. IR (KBr pellet): 1002 cm⁻¹ (oxidation state marker band). FAB MS: *m/z* 1014 [M]⁺, 924 [M - PH₂Bu^{sec}], 834 [M - 2PH₂Bu^{sec}]. Anal. Calcd for C₅₆H₅₈N₄O₄P₂Ru·H₂O: C, 65.17; H, 5.86; N, 5.43. Found: C, 65.03; H, 5.81; N, 5.53.

NMR Simulation. Simulation of the ¹H and ³¹P NMR spectra of 1–4 was performed by employing gNMR 4.1 program (Cherwell Scientific Publishing, 1999) and was focused on the PH₂ signals only. Complex 1 can be considered as an $A_2A'_2XX'$ system, the calculated spectra upon assignment iteration feature sharp spectral patterns and are essentially identical to the observed spectra, with resultant coupling constants of ${}^{1}J_{P,H} = 323$ (1a,b), 331 Hz (1c) and ${}^{2}J_{P,P} = 545$ (1a,b), 527 Hz (1c). For 2–4, there are three-bond P-H couplings in their axial PH₂R ligands. Including such couplings (which should be much weaker than the one-bond P-H and two-bond P-P couplings) in the simulation (for example, by considering 2 and 3 as A₂A'₂M₆M'₆XX' and A₂A'₂M₉M'₉XX' systems, respectively) rendered the program unable to run assignment iteration. Therefore, the simulation for 2-4 was approximately done using A₂A'₂XX' system by ignoring any weak couplings, which gave coupling constants of ${}^{1}J_{\rm PH} \approx 303$ (2a,b), 309 (2c), 302 (3a), 298 (3b), 304 (4a), 301 Hz (4b) and ${}^{2}J_{PP} \approx 487$ (2a), 485 (2b), 461 (2c), 498 (3a), 491 (3b), 518 (4a), 515 Hz (4b) upon assignment iteration. The chemical shifts in the calculated spectra for 2-4 are essentially identical to those in the observed ones, but the spectra patterns are as sharp as those of 1. Addition of the weak couplings in the axial PH_2R ligands to the $A_2A'_2XX'$ system to form, for example, A₂A'₂M₆M'₆XX' and A₂A'₂M₉M'₉XX' systems for 2 and 3, respectively, and setting ${}^{3}J_{\rm PH} \approx 5$ Hz for 2 and 10 Hz for 3 did not appreciably change the chemical shifts but broadened the spectral patterns, rendering the calculated spectra similar to the observed ones in both chemical shift and line shape.

X-ray Crystal Structure Determinations. Diffraction-quality crystals of 1c ($0.4 \times 0.25 \times 0.1 \text{ mm}^3$) and 2a·2C₅H₁₂ ($0.6 \times 0.3 \times 0.15 \text{ mm}^3$) were obtained by laying pentane on the top of dichloromethane solutions. The crystals were mounted in glass capillaries for data collection at 28 °C on a MAR diffractometer with a 300-mm image plate detector using graphite monochromatized Mo-K_a radiation ($\lambda = 0.71073$ Å). A total of 100 images were collected with 2° oscillation step of φ , 420- (1c) or 480-second (2a·2C₅H₁₂) exposure time, and 120-mm scanner distance. The images were interpreted and intensities integrated using program DENZO.⁷ The structures were solved by direct methods employing

SHELXS-97 program⁸ on PC. Ru, P and many non-H atoms were located according to the direct methods. The positions of the other non-hydrogen atoms were found after successful refinement by full-matrix least-squares using SHELXL-97 program⁹ on PC. One crystallographic asymmetric unit consists of half of formula unit, and the asymmetric unit for $2a \cdot 2C_5H_{12}$ contains one *n*-pentane molecule. In the final stage of least-squares refinement, all non-H atoms were refined anisotropically, except the C atoms of the *n*-pentane in $2a \cdot 2C_5H_{12}$ (which were refined isotropically). For both 1c and $2a \cdot 2C_5H_{12}$, their PH₂ hydrogen atoms were located in the difference Fourier map and refined isotropically; the positions of other H atoms were calculated based on riding mode with thermal parameters equal to 1.2 times that of the associated C atoms, and participated in the calculation of final R-indices.

References

- (1) Stetter, H.; Last, W. D. Chem. Ber. 1969, 102, 3364.
- (2) Slowinski, F.; Aubert, C.; Malacria, M. J. Org. Chem. 2003, 68, 378.
- (3) Mitrasov, Y. N.; Anisimova, E. A.; Vasileva, T. V.; Kormachev, V. V. *Zhurnal Obshchei Khimii*, **1996**, *66*, 786.
- (4) Nief, F.; Mathey, F. *Tetrahedron* **1991**, *47*, 6673.
- (5) Rillema, D. P.; Nagle, J. K.; Barringer, L. F., Jr.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 56.
- (6) Groves, J. T.; Bonchio, M.; Carofiglio, T.; Shalyaew, K. J. Am. Chem. Soc. 1996, 118, 8961.
- (7) Otwinowski, Z.; Minor, W. in *Methods in Enzymology, Vol. 276: Macromolecular Crystallography, Part A.*, (Eds: Carter, C. W., Jr.; Sweet, R. M.), Academic Press, **1997**, p. 307.
- (8) Sheldrick, G. M. SHELXS-97. Program for the Solution of Crystal Structures. University of Götingen, Germany, 1997.
- (9) Sheldrick, G. M. SHELXL-97. Program for the Refinement of Crystal Structures. University of Götingen, Germany, **1997**.

1c			
Ru1–N1	2.044(3)	Ru1–N2	2.059(25)
Ru1–P1	2.358(20)	P1-C23	1.813(18)
N1-Ru1-N2	89.68(9)	N1-Ru1-N1'	180.00(9)
N2-Ru1-N2'	179.98(9)	P1-Ru1-N1	95.35(7)
P1-Ru1-N2	90.82(7)	P1-Ru1-N1'	84.65(7)
P1-Ru1-N2'	89.18(7)	Ru1-P1-C23	120.41(11)
$2\mathbf{a} \cdot 2\mathbf{C}_5 \mathbf{H}_{12}$			
Ru1–N1	2.053(45)	Ru1–N2	2.058(34)
Ru1–P1	2.349(26)	P1-C25	1.845(21)
N1-Ru1-N2	89.25(9)	N1-Ru1-N1'	179.98(9)
N2-Ru1-N2'	180.00(9)	P1-Ru1-N1	96.81(7)
P1-Ru1-N2	90.66(6)	P1-Ru1-N1'	83.19(6)
P1-Ru1-N2'	89.34(6)	Ru1-P1-C25	128.34(10)

Table S1. Selected Bond Distances (Å) and Angles (deg) for $[Ru^{II}(F_{20}-TPP)(PH_2Mes)_2]$ (1c) and $[Ru^{II}(TTP)(PH_2Ad)_2] \cdot 2C_5H_{12}$ (2a·2C₅H₁₂)

Figure S1. ¹H NMR spectra of $[Ru^{II}(TTP)(PH_2Mes)_2]$ (**1a**) and $[Ru^{II}(TTP)(PH_2Ad)_2]$ (**2a**, CH_2Cl_2 solvate) in CDCl₃. The water came from the deuterated solvent.

Figure S2. ¹H NMR spectra of $[Ru^{II}(TTP)(PH_2Bu^t)_2]$ (**3a**, CH₂Cl₂ solvate) and $[Ru^{II}(TTP)(PH_2Bu^{sec})_2]$ (**4a**) in CDCl₃. The water came from the deuterated solvent.

Figure S3. ORTEP drawing of $[Ru^{II}(F_{20}-TPP)(PH_2Mes)_2]$ (1c) with omission of C-H hydrogen atoms (thermal ellipsoid probability: 30%).