Supporting Information

One-Pot Synthesis of Metal Primary Phosphine Complexes from $\mathrm{O}=\mathrm{PCl}_{2} \mathrm{R}$ or $\mathrm{PCl}_{2} \mathrm{R}$. Isolation and Characterization of Primary Alkylphosphine Complexes of a Metalloporphyrin

Jie-Sheng Huang,* Guang-Ao Yu, Jin Xie, Nianyong Zhu, and Chi-Ming Che*
Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong

Experimental Section

General. All manipulations were performed under argon by using standard Schlenk techniques unless otherwise specified. Dichloromethane and hexane were distilled from CaH_{2}. All other solvents were of AR grade and were used without purification. $\mathrm{O}=\mathrm{PCl}_{2} \mathrm{Ad},{ }^{1} \mathrm{O}=\mathrm{PCl}_{2} \mathrm{Bu}^{\mathrm{t}},{ }^{2} \mathrm{O}=\mathrm{PCl}_{2} \mathrm{Bu}^{\text {sec } 3}, \mathrm{PCl}_{2} \mathrm{Mes}$, ${ }^{4}$ and $\left[\mathrm{Ru}^{\mathrm{II}}(\right.$ Por $\left.)(\mathrm{CO})\right]$ (Por $=\mathrm{TTP}, 4-\mathrm{MeO}-\mathrm{TPP},{ }^{5} \mathrm{~F}_{20}-\mathrm{TPP}{ }^{6}$) were prepared according to the literature methods. UV-vis spectra were recorded on a Hewlett-Packard 8453 diode array spectrophotometer (interfaced with an IBM compatible PC). ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded with a Bruker DPX-300 or 400 spectrometer; the chemical shifts (δ, ppm) are relative to tetramethylsilane (TMS) for ${ }^{1} \mathrm{H}$ NMR and 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}$ NMR. Infrared spectra were obtained with a Nicolet 20 SXC FT-IR spectrometer. IR spectra were obtained on a Bio-Rad FT-IR spectrometer. Fast atom bombardment mass spectra (FAB MS) were recorded on a Finnigan MAT 95 mass spectrometer using 3-nitrobenzyl alcohol as matrix. Elemental analyses were performed by the Institute of Chemistry, the Chinese Academy of Sciences.

Preparation of Bis(primary phosphine)ruthenium(II) Porphyrins [$\mathbf{R u} \mathbf{u}^{\mathbf{I I}}(\mathbf{P o r})\left(\mathbf{P H}_{\mathbf{2}} \mathbf{R}\right)_{\mathbf{2}}$]. LiAlH_{4} $(200 \mathrm{mg})$ was added to a solution of $\left[\mathrm{Ru}{ }^{\mathrm{II}}(\mathrm{Por})(\mathrm{CO})\right](0.1 \mathrm{mmol})$ and $\mathrm{O}=\mathrm{PCl}_{2} \mathrm{R}$ or $\mathrm{PCl}_{2} \mathrm{R}(0.24 \mathrm{mmol})$ in diethyl ether $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min and then treated with methanol at $0^{\circ} \mathrm{C}$ until no H_{2} bubbles evolved. After filtration, the filtrate was evaporated to dryness to give a red solid. The solid was collected, washed with hexane, and then recrystallized from dichloromethane/hexane.
$\left.\left[\mathbf{R u}{ }^{\mathbf{I I}} \mathbf{(T T P}\right)\left(\mathbf{P H}_{\mathbf{2}} \mathbf{M e s}\right)_{\mathbf{2}}\right] \mathbf{(1 a)}$. Yield: 64%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24$ (s, 8 H), $7.68(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.42(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 5.92(\mathrm{~s}, 4 \mathrm{H}), 2.65(\mathrm{~s}, 12 \mathrm{H}), 1.93(\mathrm{~s}, 6 \mathrm{H}),-0.26(\mathrm{~s}, 12 \mathrm{H}),-0.25(\mathrm{~s})$, $-0.39(\mathrm{~s}),-0.54(\mathrm{br}),-0.76(\mathrm{~s}),-0.91(\mathrm{~s}),-1.06(\mathrm{~s})(\mathrm{a}$ total of 4 H$) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ -84.94. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-80.33,-80.68,-82.33,-82.95,-83.69,-84.05,-84.23$, $-84.96,-85.69,-85.88,-86.23,-86.97,-87.59,-89.24,-89.60$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon) 428$ (Soret), 529 nm . IR (KBr pellet): $1003 \mathrm{~cm}^{-1}$ (oxidation state marker band). FAB MS: $m / z 1074[\mathrm{M}]^{+}$, 922 [M $\left.-\mathrm{PH}_{2} \mathrm{Mes}\right], 770\left[\mathrm{M}-2 \mathrm{PH}_{2} \mathrm{Mes}\right]$. Anal. Calcd for $\mathrm{C}_{66} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Ru}^{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 69.42 ; \mathrm{H}, 5.56 ; \mathrm{N}$, 4.83. Found: C, 69.51; H, 5.59; N, 5.06.
[$\left.\left.\mathbf{R u}{ }^{\text {II }} \mathbf{(4 - M e O}-\mathbf{T P P}\right)\left(\mathbf{P H}_{\mathbf{2}} \mathbf{M e s}\right)_{\mathbf{2}}\right] \mathbf{(1 b)}$. Yield: $65 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.26(\mathrm{~s}, 8 \mathrm{H}), 7.70$ (d, $J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.14(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 5.92(\mathrm{~s}, 4 \mathrm{H}), 4.05(\mathrm{~s}, 12 \mathrm{H}), 1.92(\mathrm{~s}, 6 \mathrm{H}),-0.27(\mathrm{~s}, 12 \mathrm{H})$, -0.25 (s), -0.40 (s), -0.55 (s), -0.77 (s), -0.92 (s), -1.06 (s) (a total of 4 H$).{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-84.96 .{ }^{31} \mathrm{P}$ NMR (162 MHz, CDCl_{3}): $\delta-80.32,-80.68,-82.33,-82.95,-83.68,-84.04$, $-84.22,-84.96,-85.69,-85.87,-86.23,-86.96,-87.58,-89.24,-89.60 . \mathrm{UV}$-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)$ 428 (Soret), 530 nm . IR (KBr pellet): $1004 \mathrm{~cm}^{-1}$ (oxidation state marker band). FAB MS: $m / z 1138$
[M] ${ }^{+}, 986\left[\mathrm{M}-\mathrm{PH}_{2} \mathrm{Mes}\right], 834$ [M $\left.-2 \mathrm{PH}_{2} \mathrm{Mes}\right]$. Anal. Calcd for $\mathrm{C}_{66} \mathrm{H}_{62} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}^{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{C}, 65.79 ; \mathrm{H}$, 5.27; N, 4.58. Found: C, 65.66; H, 5.28; N, 4.72.
 4 H), $1.80(\mathrm{~s}, 6 \mathrm{H}),-0.28(\mathrm{~s}, 12 \mathrm{H}),-0.38(\mathrm{~s}),-0.51(\mathrm{~s}),-0.67(\mathrm{~s}),-0.91(\mathrm{~s}),-1.07(\mathrm{~s}),-1.21(\mathrm{~s})$ (a total of 4 H$).{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-86.82 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-82.22,-82.57$, $-84.27,-84.74,-85.48,-85.82,-86.06,-86.80,-87.53,-87.78,-88.12,-88.85,-89.31,-91.02$, -91.36. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\text {max }}(\log \varepsilon) 429$ (Soret), 516 nm . FAB MS: $m / z 1378[\mathrm{M}]^{+}, 1226[\mathrm{M}-$ $\left.\mathrm{PH}_{2} \mathrm{Mes}\right], 1074$ [M - $\left.2 \mathrm{PH}_{2} \mathrm{Mes}\right]$. Anal. Calcd for $\mathrm{C}_{62} \mathrm{H}_{34} \mathrm{~F}_{20} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Ru} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 51.73; H, 2.48; N, 3.83. Found: C, 51.27; H, 2.50; N, 4.13.
$\left.\left[\mathbf{R u}{ }^{\text {II }} \mathbf{(T T P}\right)\left(\mathbf{P H}_{\mathbf{2}} \mathbf{A d}\right)_{\mathbf{2}}\right] \mathbf{(2 a)}$. Yield: $43 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.31(\mathrm{~s}, 8 \mathrm{H}), 7.91(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 8 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 2.65(\mathrm{~s}, 12 \mathrm{H}), 0.99(\mathrm{~s}, 12 \mathrm{H}), 0.64(\mathrm{~m}, 6 \mathrm{H}),-1.27(\mathrm{~s}, 12 \mathrm{H}),-1.71(\mathrm{~s})$, $-1.84(\mathrm{~s}),-1.98(\mathrm{~s}),-2.20(\mathrm{~s}),-2.34(\mathrm{~s}),-2.47(\mathrm{~s})(\mathrm{a}$ total of 4 H$) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ -19.26. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-15.02,-15.34,-16.92,-17.37,-18.04,-18.35,-18.57$, $-19.25,-19.92,-20.14,-20.45,-21.13,-21.58,-23.14,-23.45$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon) 428$ (Soret), $521 \mathrm{~nm} . \operatorname{IR}$ (KBr pellet): $1002 \mathrm{~cm}^{-1}$ (oxidation state marker band). FAB MS: $m / z 1106[\mathrm{M}]^{+}$, 938 [M - $\left.\mathrm{PH}_{2} \mathrm{Ad}\right], 770$ [M - 2 $\left.\mathrm{PH}_{2} \mathrm{Ad}\right]$. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Ru}^{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 69.57; H, 6.09; N, 4.70. Found: C, 70.11 ; H, 6.27; N, 4.94.
[$\left.\left.\left.\mathbf{R u}{ }^{\mathbf{I I}}{ }^{\mathbf{4}} \mathbf{4} \mathbf{- M e O} \mathbf{- T P P}\right)\left(\mathbf{P H}_{\mathbf{2}} \mathbf{A d}\right)_{2}\right] \mathbf{(2 b}\right)$. Yield: $54 \%{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.33(\mathrm{~s}, 8 \mathrm{H}), 7.88(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 8 \mathrm{H}), 4.06(\mathrm{~s}, 12 \mathrm{H}), 0.99(\mathrm{~s}, 12 \mathrm{H}), 0.64(\mathrm{~m}, 6 \mathrm{H}),-1.27(\mathrm{~s}, 12 \mathrm{H})$, -1.71 (s), -1.84 (s), -1.99 (s), -2.20 (s), -2.35 (s), -2.47 (s) (a total of 4 H$).{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz , CDCl_{3}): $\delta-19.22 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-15.04,-15.30,-16.90,-17.34,-18.02,-18.33$, $-18.55,-19.22,-19.90,-20.11,-20.42,-21.10,-21.55,-23.15,-23.41 . \mathrm{UV}$-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon)$ 429 (Soret), 521 nm . IR (KBr pellet): $1002 \mathrm{~cm}^{-1}$ (oxidation state marker band). FAB MS: $m / z 1170$ $[\mathrm{M}]^{+}, 1002\left[\mathrm{M}-\mathrm{PH}_{2} \mathrm{Ad}\right], 834\left[\mathrm{M}-2 \mathrm{PH}_{2} \mathrm{Ad}\right]$. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{70} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 69.79 ; \mathrm{H}, 6.03 ; \mathrm{N}$, 4.79. Found: C, 69.32; H, 6.01; N, 5.04.
[$\left.\left.\mathbf{R u}^{\mathbf{I I}} \mathbf{(F}_{\mathbf{2 0}} \mathbf{- T P P}\right)\left(\mathbf{P H}_{\mathbf{2}} \mathbf{A d}\right)_{\mathbf{2}}\right] \mathbf{(2 c)}$. Yield: $27 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.28(\mathrm{~s}, 8 \mathrm{H}), 0.97(\mathrm{~s}$, $12 \mathrm{H}), 0.59(\mathrm{~m}, 6 \mathrm{H}),-1.26(\mathrm{~s}, 12 \mathrm{H}),-1.78(\mathrm{~s}),-1.91(\mathrm{~s}),-2.05(\mathrm{~s}),-2.28(\mathrm{br}),-2.43(\mathrm{~s}),-2.55(\mathrm{~s})(\mathrm{a}$ total of 4 H$).{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (162 MHz, CDCl_{3}): $\delta-21.14 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-17.07$, $-17.30,-18.95,-19.23,-19.89,-20.19,-20.47,-21.14,-21.81,-22.09,-22.38,-23.06,-23.33$, -24.97, -25.21. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\lambda_{\max }(\log \varepsilon) 429$ (Soret), 513 nm. FAB MS: $m / z 1410[\mathrm{M}]^{+}, 1242[\mathrm{M}$ $\left.-\mathrm{PH}_{2} \mathrm{Ad}\right], 1074$ [M - $\left.2 \mathrm{PH}_{2} \mathrm{Ad}\right]$. Anal. Calcd for $\mathrm{C}_{64} \mathrm{H}_{42} \mathrm{~F}_{20} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Ru} \cdot 1.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 51.17; H, 2.95; N, 3.64. Found: C, 51.13; H, 3.26; N, 3.40.
$\left.\left[\mathbf{R u} \mathbf{u}^{\mathbf{I I}} \mathbf{(T T P}\right)\left(\mathbf{P H}_{2} \mathbf{B u}^{\mathbf{t}}\right)_{2}\right] \mathbf{(3 a)}$. Yield: $70 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32(\mathrm{~s}, 8 \mathrm{H}), 7.92(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 8 \mathrm{H}$), $7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 2.65(\mathrm{~s}, 12 \mathrm{H}),-1.41(\mathrm{~m}, 18 \mathrm{H}),-1.49(\mathrm{~s}),-1.62(\mathrm{~s}),-1.77(\mathrm{br}),-1.98$ (br), -2.12 (s), -2.25 (s) (a total of 4 H). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-14.44 .{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-10.2,-10.5,-12.0,-12.5,-13.2,-13.7,-14.4,-15.1,-15.6,-16.3,-16.8,-18.4$, -18.7. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon) 427$ (Soret), 521 nm . IR (KBr pellet): $1003 \mathrm{~cm}^{-1}$ (oxidation state marker band). FAB MS: m/z $950[\mathrm{M}]^{+}, 860\left[\mathrm{M}-\mathrm{PH}_{2} \mathrm{Bu}^{\mathrm{t}}\right], 770\left[\mathrm{M}-2 \mathrm{PH}_{2} \mathrm{Bu}^{\mathrm{t}}\right]$. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Ru} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 66.14; H, 5.84; N, 5.41. Found: C, 66.02; H, 5.89; N, 5.46.
[$\left.\mathbf{R u}^{\mathbf{I I}} \mathbf{(4 - M e O}^{\mathbf{M}} \mathbf{- T P P}\right)\left(\mathbf{P H}_{\mathbf{2}} \mathbf{B u}^{\mathrm{t}}\right)_{2}$] (3b). Yield: $51 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.34(\mathrm{~s}, 8 \mathrm{H}), 7.95$ (d, $J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.17(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 4.05(\mathrm{~s}, 12 \mathrm{H}),-1.41(\mathrm{~m}, 18 \mathrm{H}),-1.37(\mathrm{~s}),-1.53(\mathrm{~s}),-1.73$ (br), -2.01 (br), -2.21 (s), -2.38 (s) (a total of 4 H$).{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-14.39 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-10.1,-10.4,-11.9,-12.5,-13.2,-13.7,-14.4,-15.1,-15.5,-16.2$, $-16.8,-18.3,-18.7$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon) 429$ (Soret), 522 nm . IR (KBr pellet): $1004 \mathrm{~cm}^{-1}$
(oxidation state marker band). FAB MS: m/z $1014[\mathrm{M}]^{+}, 924\left[\mathrm{M}-\mathrm{PH}_{2} \mathrm{Bu}^{\mathrm{t}}\right], 834\left[\mathrm{M}-2 \mathrm{PH}_{2} \mathrm{Bu}^{\mathrm{t}}\right]$. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $58.84 ; \mathrm{H}, 5.28$; N, 4.73. Found: C, $58.75 ; \mathrm{H}, 5.10 ; \mathrm{N}, 4.78$.
 $7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 2.65(\mathrm{~s}, 12 \mathrm{H}),-0.63(\mathrm{t}, J=14.7 \mathrm{~Hz}, 6 \mathrm{H}),-0.98(\mathrm{~m}, 2 \mathrm{H}),-1.41$ $(\mathrm{m}, 6 \mathrm{H}),-1.54(\mathrm{~m}, 2 \mathrm{H}),-1.88(\mathrm{~m}, 2 \mathrm{H}),-1.33(\mathrm{~m}),-1.70(\mathrm{br}),-1.98(\mathrm{br}),-2.17(\mathrm{br}),-2.35(\mathrm{~m})$ (the remaining PH_{2} signal is overlapped by the multiplet at $\left.\delta-1.54 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta-44.44 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-40.0,-40.4,-41.9,-42.5,-43.2,-43.7,-44.4,-45.1$, $-45.6,-46.3,-46.9,-48.5,-48.8$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\text {max }}(\log \varepsilon) 427$ (Soret), 524 nm . IR (KBr pellet): $1003 \mathrm{~cm}^{-1}$ (oxidation state marker band). FAB MS: $m / z 950[\mathrm{M}]^{+}, 860\left[\mathrm{M}-\mathrm{PH}_{2} \mathrm{Bu}^{\text {sec }}\right], 770[\mathrm{M}-$ $2 \mathrm{PH}_{2} \mathrm{Bu}^{\text {sec }}$. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C}, 70.97$; H, 6.15; N, 5.90. Found: C, 70.99; H, 6.20; N, 5.80 .
[$\left.\mathbf{R u}^{\mathbf{I I}} \mathbf{(4 - M e O}^{\mathbf{M}} \mathbf{T P P}\right)\left(\mathbf{P H}_{\mathbf{2}} \mathbf{B u}^{\text {sec }}\right)_{\mathbf{2}}$] (4b). Yield: 58%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33(\mathrm{~s}, 8 \mathrm{H}), 7.95$ (d, $J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 4.05(\mathrm{~s}, 12 \mathrm{H}),-0.63(\mathrm{t}, J=14.7 \mathrm{~Hz}, 6 \mathrm{H}),-0.98(\mathrm{~m}, 2 \mathrm{H})$, $-1.42(\mathrm{~m}, 6 \mathrm{H}),-1.55(\mathrm{~m}, 2 \mathrm{H}),-1.87(\mathrm{~m}, 2 \mathrm{H}),-1.74$ (br), -1.95 (br), -2.09 (br), -2.22 (m) (the remaining two signals of PH_{2} are overlapped by the multiplets at $\delta-1.42$ and $\left.-1.55 \mathrm{ppm}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-44.48 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-40.1,-40.5,-42.0,-42.6,-43.3$, $-43.8,-44.5,-45.2,-45.7,-46.4,-47.0,-48.5,-48.8$. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \lambda_{\max }(\log \varepsilon) 429$ (Soret), 525 nm . IR (KBr pellet): $1002 \mathrm{~cm}^{-1}$ (oxidation state marker band). FAB MS: m/z $1014[\mathrm{M}]^{+}, 924[\mathrm{M}-$ $\left.\mathrm{PH}_{2} \mathrm{Bu}^{\text {sec }}\right], 834\left[\mathrm{M}-2 \mathrm{PH}_{2} \mathrm{Bu}^{\text {sec }}\right]$. Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.17$; H, 5.86; $\mathrm{N}, 5.43$. Found: C, 65.03; H, 5.81; N, 5.53.

NMR Simulation. Simulation of the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of $\mathbf{1 - 4}$ was performed by employing gNMR 4.1 program (Cherwell Scientific Publishing, 1999) and was focused on the PH_{2} signals only. Complex 1 can be considered as an $\mathrm{A}_{2} \mathrm{~A}^{\prime}{ }_{2} \mathrm{XX}^{\prime}$ system, the calculated spectra upon assignment iteration feature sharp spectral patterns and are essentially identical to the observed spectra, with resultant coupling constants of ${ }^{1} J_{\mathrm{P}, \mathrm{H}}=323(\mathbf{1 a , b}), 331 \mathrm{~Hz}(\mathbf{1 c})$ and ${ }^{2} J_{\mathrm{P}, \mathrm{P}}=545(\mathbf{1 a}, \mathbf{b}), 527 \mathrm{~Hz}(\mathbf{1 c})$. For 2-4, there are three-bond $\mathrm{P}-\mathrm{H}$ couplings in their axial $\mathrm{PH}_{2} \mathrm{R}$ ligands. Including such couplings (which should be much weaker than the one-bond P-H and two-bond P-P couplings) in the simulation (for example, by considering 2 and 3 as $\mathrm{A}_{2} \mathrm{~A}^{\prime}{ }_{2} \mathrm{M}_{6} \mathrm{M}_{6}^{\prime} \mathrm{XX}^{\prime}$ and $\mathrm{A}_{2} \mathrm{~A}^{\prime}{ }_{2} \mathrm{M}_{9} \mathrm{M}^{\prime}{ }_{9} \mathrm{XX}^{\prime}$ systems, respectively) rendered the program unable to run assignment iteration. Therefore, the simulation for $\mathbf{2 - 4}$ was approximately done using $\mathrm{A}_{2} \mathrm{~A}^{\prime}{ }_{2} \mathrm{XX}^{\prime}$ system by ignoring any weak couplings, which gave coupling constants of ${ }^{1} J_{\mathrm{P}, \mathrm{H}} \approx 303$ (2a,b), 309 (2c), 302 ($\mathbf{3 a}$), 298 ($\mathbf{3 b}$), 304 (4a), $301 \mathrm{~Hz}(\mathbf{4 b})$ and ${ }^{2} J_{\mathrm{P}, \mathrm{P}} \approx 487$ (2a), 485 (2b), 461 (2c), 498 (3a), 491 ($\mathbf{3 b}$), 518 (4a), $515 \mathrm{~Hz}(\mathbf{4 b})$ upon assignment iteration. The chemical shifts in the calculated spectra for 2-4 are essentially identical to those in the observed ones, but the spectra patterns are as sharp as those of $\mathbf{1}$. Addition of the weak couplings in the axial $\mathrm{PH}_{2} \mathrm{R}$ ligands to the $\mathrm{A}_{2} \mathrm{~A}^{\prime}{ }_{2} \mathrm{XX}^{\prime}$ system to form, for example, $\mathrm{A}_{2} \mathrm{~A}^{\prime}{ }_{2} \mathrm{M}_{6} \mathrm{M}^{\prime}{ }_{6} \mathrm{XX}^{\prime}$ and $\mathrm{A}_{2} \mathrm{~A}^{\prime}{ }_{2} \mathrm{M}_{9} \mathrm{M}^{\prime}{ }_{9} \mathrm{XX}^{\prime}$ systems for $\mathbf{2}$ and $\mathbf{3}$, respectively, and setting ${ }^{3} J_{\mathrm{P}, \mathrm{H}} \approx 5 \mathrm{~Hz}$ for 2 and 10 Hz for $\mathbf{3}$ did not appreciably change the chemical shifts but broadened the spectral patterns, rendering the calculated spectra similar to the observed ones in both chemical shift and line shape.

X-ray Crystal Structure Determinations. Diffraction-quality crystals of $\mathbf{1 c}\left(0.4 \times 0.25 \times 0.1 \mathrm{~mm}^{3}\right)$ and $\mathbf{2 a} \cdot 2 \mathrm{C}_{5} \mathrm{H}_{12}\left(0.6 \times 0.3 \times 0.15 \mathrm{~mm}^{3}\right)$ were obtained by laying pentane on the top of dichloromethane solutions. The crystals were mounted in glass capillaries for data collection at $28{ }^{\circ} \mathrm{C}$ on a MAR diffractometer with a $300-\mathrm{mm}$ image plate detector using graphite monochromatized $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71073 \AA)$. A total of 100 images were collected with 2° oscillation step of $\varphi, 420-(1 \mathrm{c})$ or $480-$ second $\left(\mathbf{2 a} \cdot 2 \mathrm{C}_{5} \mathrm{H}_{12}\right)$ exposure time, and $120-\mathrm{mm}$ scanner distance. The images were interpreted and intensities integrated using program DENZO. ${ }^{7}$ The structures were solved by direct methods employing

SHELXS-97 program ${ }^{8}$ on PC. Ru, P and many non-H atoms were located according to the direct methods. The positions of the other non-hydrogen atoms were found after successful refinement by fullmatrix least-squares using SHELXL-97 program ${ }^{9}$ on PC. One crystallographic asymmetric unit consists of half of formula unit, and the asymmetric unit for $\mathbf{2 a} \cdot 2 \mathrm{C}_{5} \mathrm{H}_{12}$ contains one n-pentane molecule. In the final stage of least-squares refinement, all non-H atoms were refined anisotropically, except the C atoms of the n-pentane in $\mathbf{2 a} \cdot 2 \mathrm{C}_{5} \mathrm{H}_{12}$ (which were refined isotropically). For both $\mathbf{1 c}$ and $\mathbf{2 a} \cdot 2 \mathrm{C}_{5} \mathrm{H}_{12}$, their PH_{2} hydrogen atoms were located in the difference Fourier map and refined isotropically; the positions of other H atoms were calculated based on riding mode with thermal parameters equal to 1.2 times that of the associated C atoms, and participated in the calculation of final R-indices.

References

(1) Stetter, H.; Last, W. D. Chem. Ber. 1969, 102, 3364.
(2) Slowinski, F.; Aubert, C.; Malacria, M. J. Org. Chem. 2003, 68, 378.
(3) Mitrasov, Y. N.; Anisimova, E. A.; Vasileva, T. V.; Kormachev, V. V. Zhurnal Obshchei Khimii, 1996, 66, 786.
(4) Nief, F.; Mathey, F. Tetrahedron 1991, 47, 6673.
(5) Rillema, D. P.; Nagle, J. K.; Barringer, L. F., Jr.; Meyer, T. J. J. Am. Chem. Soc. 1981, 103, 56.
(6) Groves, J. T.; Bonchio, M.; Carofiglio, T.; Shalyaew, K. J. Am. Chem. Soc. 1996, 118, 8961.
(7) Otwinowski, Z.; Minor, W. in Methods in Enzymology, Vol. 276: Macromolecular Crystallography, Part A., (Eds: Carter, C. W., Jr.; Sweet, R. M.), Academic Press, 1997, p. 307.
(8) Sheldrick, G. M. SHELXS-97. Program for the Solution of Crystal Structures. University of Götingen, Germany, 1997.
(9) Sheldrick, G. M. SHELXL-97. Program for the Refinement of Crystal Structures. University of Götingen, Germany, 1997.

Table S1. Selected Bond Distances (\AA) and Angles (deg) for $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{F}_{20}-\mathrm{TPP}\right)\left(\mathrm{PH}_{2} \mathrm{Mes}\right)_{2}\right]$ (1c) and $\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{TTP})\left(\mathrm{PH}_{2} \mathrm{Ad}\right)_{2}\right] \cdot 2 \mathrm{C}_{5} \mathrm{H}_{12}\left(\mathbf{2 a} \cdot 2 \mathrm{C}_{5} \mathrm{H}_{12}\right)$

1c			
Ru1-N1	$2.044(3)$	Ru1-N2	$2.059(25)$
Ru1-P1	$2.358(20)$	P1-C23	$1.813(18)$
N1-Ru1-N2	$89.68(9)$	N1-Ru1-N1'	$180.00(9)$
N2-Ru1-N2'	$179.98(9)$	P1-Ru1-N1	$95.35(7)$
P1-Ru1-N2	$90.82(7)$	P1-Ru1-N1'	$84.65(7)$
P1-Ru1-N2'	$89.18(7)$	Ru1-P1-C23	$120.41(11)$
2a-2C ${ }_{5} H_{12}$			
Ru1-N1	$2.053(45)$	Ru1-N2	$2.058(34)$
Ru1-P1	$2.349(26)$	P1-C25	$1.845(21)$
N1-Ru1-N2	$89.25(9)$	N1-Ru1-N1'	$179.98(9)$
N2-Ru1-N2'	$180.00(9)$	P1-Ru1-N1	$96.81(7)$
P1-Ru1-N2	$90.66(6)$	P1-Ru1-N1'	$83.19(6)$
P1-Ru1-N2'	$89.34(6)$	Ru1-P1-C25	$128.34(10)$

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{Ru}{ }^{\mathrm{II}}(\mathrm{TTP})\left(\mathrm{PH}_{2} \mathrm{Mes}\right)_{2}\right](\mathbf{1 a})$ and $\left[\mathrm{Ru}{ }^{\mathrm{II}}(\mathrm{TTP})\left(\mathrm{PH}_{2} \mathrm{Ad}\right)_{2}\right]\left(\mathbf{2 a}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solvate) in CDCl_{3}. The water came from the deuterated solvent.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectra of $\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{TTP})\left(\mathrm{PH}_{2} \mathrm{Bu}^{\mathrm{t}}\right)_{2}\right]\left(\mathbf{3 a}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solvate) and $\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{TTP})\left(\mathrm{PH}_{2} \mathrm{Bu}^{\text {sec }}\right)_{2}\right]$ $(\mathbf{4 a})$ in CDCl_{3}. The water came from the deuterated solvent.

Figure S3. ORTEP drawing of $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{F}_{20}-\mathrm{TPP}\right)\left(\mathrm{PH}_{2} \mathrm{Mes}\right)_{2}\right](\mathbf{1 c})$ with omission of C-H hydrogen atoms (thermal ellipsoid probability: 30\%).

