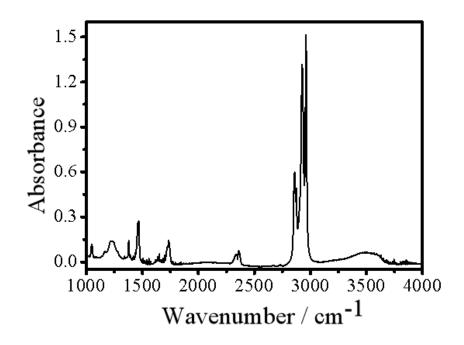
Supporting Information

Size-dependent Carrier Dynamics in CdS Nanoparticles by Femtosecond Visible-pump/IR-probe Measurements


Ichizo YAGI,^{1,2,3} Kensuke MIKAMI,¹ Kojiro EBINA,¹ Masayuki OKAMURA¹ and Kohei UOSAKI^{1,*}

¹Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, N10W8 Kita-ku, Sapporo 060-0810, Japan ²PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan ³FC-Cubic, AIST, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan

Results and Discussion Section:

Figure 1S shows an FT-IR spectrum of the as-prepared CdS nanocluster dispersions in n-heptane (W = 8). A broad peak around 3500 cm⁻¹ is assigned to be due to O-H stretching vibration of water. The FT-IR spectra of the reversed micelle dispersion containing (a) Cd²⁺ and (b) S²⁻ were also measured. The intensity and shape of the O-H stretching peak of the three spectra were identical. These results indicate that the structure of water in the reverse micelle of Cd²⁺ and S²⁻ was maintained even after the formation of CdS nanoparticles, i.e., water remained in the reversed micelle and no phase separation of water from n-heptane occurred after the formation of CdS nanoparticles.

The schematic structural model of CdS nanoparticles based on the above discussions is shown in Figure 2S.

Figure 1S. Transmission FT-IR spectrum (optical path length is ca. 20 μ m) of dispersion of CdS nanoparticle prepared by reversed micelle method (W = 8).

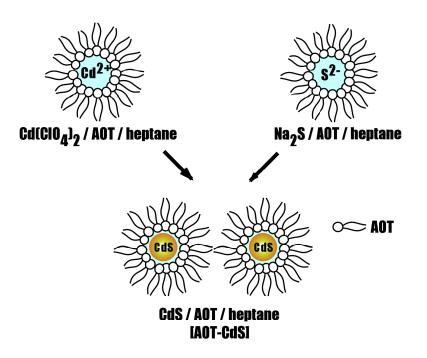


Figure 2S. Scheme of preparation of CdS nanoparticles in AOT/n-heptane reversed micelle.