Carbon-Oxygen Bond Formation between a Terminal Alkoxo Ligand and a ## Coordinated Olefin. Evidence for Olefin Insertion into a Rhodium-Alkoxide Pinjing Zhao, Christopher D. Incarvito and John F. Hartwig* Department of Chemistry, Yale University, PO Box 208107, New Haven CT, 06520-8107 # **Supporting Information** ## **Table of Contents** | General Experimental Procedure and Reagent Availability. | S2 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| | Preparation of 1,1-Diphenyl-2-methyl-4-penten-1-ol (1c). | S 3 | | Independent Preparation of 2,2-Disubstituted-5-Methylenetetrahydrofurans (3a-d). | S 3 | | General Procedure for the Generation and in situ NMR Characerization of Unstable | S 7 | | Bis(triethylphosphine) Rh(I) γ,ω-Olefinic Alkoxides (2a-d). | | | General Procedure for the Preparation of Isolable Rh(I) Alkoxides. | S11 | | Preparation of [(PEt ₃) ₂ RhOC(Me) ₂ CH ₂ CH=CH ₂] (2e). | S11 | | Preparation of [(PEt ₃) ₂ RhOC(Me)(Ph)CH ₂ CH=CH ₂] (2f). | S12 | | Cylizations of <i>in situ</i> Generated Rh(I) γ , ω -olefinic Alkoxide Complexes 2a-d . | S 13 | | β -Allyl Eliminations of Rh(I) β ,ω-olefinic Alkoxide Complexes 2e and 2f . | S14 | | Representative Procedure for the Kinetic Experiments Conducted on Cyclizations of in | S15 | | situ Generated [(PEt ₃) ₂ RhOCPh ₂ CH ₂ CH ₂ CH=CH ₂] (2c) in the Presence of Added PEt ₃ . | | | Figure S1. Representative Kinetic Plot for Cyclizations of in situ Generated | S16 | | [(PEt ₃) ₂ RhOCPh ₂ CH ₂ CH ₂ CH=CH ₂] (2c) in the with Added PEt ₃ . | | | Table S1. Rate and yield dependences of cyclization of 2c on added [PEt ₃]. | S17 | | Preparation of Stereochemically Defined, ² H-Labeled Alcohol <i>trans-5-d-</i> 1a . | S18 | | References. | S19 | | Figure S2-S3 . NMR spectra of 2,2-Diphenyl-5-methylenetetrahydrofuran (3c). | S20 | | Experimental Procedure for the X-ray Diffraction of [(PEt ₃) ₂ RhOCMe ₂ CH ₂ CH=CH ₂] (2e). | S22 | | Table S2. Crystal Data and Structure Refinement for 2e . | S24 | | Table S3. Atomic Coordinates (x 10 ⁴) and Equivalent Isotropic Displacement Parameters | S25 | | $(Å^2 \times 10^3)$ for 2e . | | | Table S4. Bond Lengths and Angles for 2e . | S26 | | Table S5. Anisotropic Displacement Parameters (Å ² x 10 ³) for 2e . | S27 | | Table S6. Hydrogen Coordinates (x 10 ⁴) and Isotropic Displacement Parameters (Å ² x | S28 | | 10^3) for 2e . | | | Figure S4. ORTEP diagram of 2e . | S30 | General. Unless noted otherwise, all manipulations were carried out under an inert atmosphere using a nitrogen-filled glovebox or standard Schlenk techniques. All glassware was oven-dried for approximately 1 h prior to use. THF, Et₂O, toluene, benzene and pentane were collected from a solvent purification system containing a 1 m column of activated alumina. C₆D₆, C₆D₁₂ and THF-d₈ were dried over sodium benzophenone ketyl and vacuum transferred prior to use. ¹H NMR spectra were obtained on a 400- or 500-MHz spectrometer, and chemical shifts were recorded relative to residual protiated solvent. ¹³C NMR spectra were obtained at 100.6 or 125.8 MHz on a 400- or 500-MHz instrument, and chemical shifts were recorded relative to the solvent resonance. Both ¹H NMR and ¹³C NMR chemical shifts are reported in parts per million downfield from tetramethylsilane. ³¹P NMR spectra were obtained at 161.9 MHz, and chemical shifts are reported in parts per million downfield of 85% H₃PO₄. PEt₃, tetramethylsilane, methylmagnesium bromide, phenylmagnesium bromide, 2-methyl-4-penten-2-ol (**1e**), 2-phenyl-4-penten-2-ol (**1f**), 5-hexen-2-one, ethyl 4-pentenoate, ethyl 2-methyl-4-pentenoate, *N*-bromosuccinimide, KO'Bu, CaH₂, 9-BBN, ethyl 4-pentynoate and deuterated acetic acid (AcOD) were commercially available and used as received. {[(COE)₂Rh(μ-Cl)]₂}, [(PEt₃)₂RhN(SiMe₃)₂], [(PEt₃)₂Rh(η³-allyl)]² and [(PEt₃)₄RhH]³ were prepared according to literature procedures. 2-Methyl-5-hexen-2-ol (**1a**), 2-phenyl-5-hexen-2-ol (**1b**), 1,1-diphenyl-4-penten-1-ol (**1c**), and 2,2-dimethyl-5-bromomethyltetrahydrofuran were prepared using general procedures reported for the preparation of similar compounds. Kinetic studies of samples heated in an oil bath were conducted with a thermostated bath in which the temperature fluctuation was ±0.1 °C. The temperature of the samples of reactions monitored by NMR spectroscopy was measured with a thermocouple inserted through the instrument into a toluene solution in an NMR sample tube. Preparation of 1,1-diphenyl-2-methyl-4-penten-1-ol (1c).⁴ Into a 25 mL round bottom flask equipped with a magnetic stir bar was added PhMgBr (3.0 M in Et₂O; 3.7 mL, 11 mmol) and 5 mL of dry Et₂O. The mixture was stirred at 0 °C for 10 min. At 0 °C with vigorous stirring and N₂ flow, ethyl 2-methyl-4-pentenoate (710 mg, 5.00 mmol) was added dropwise as an Et₂O solution (3 mL). The resulting mixture was stirred at 0 °C for 30 minstir and then 8 h at room temperature, at which time the starting materials were fully consumed, as determined by GC. The reaction mixture was cooled to 0 °C and quenched by slow addition of a saturated aqueous solution of NH₄Cl (20 mL) at 0 °C. The resulting mixture was stirred at room temperature for 30 min and was then extracted with Et₂O (30 mL x 3). The organic layers were combined, washed with saturated aqueous NaHCO₃ (20 mL x 2) and brine (20 mL x 2), dried over Na₂SO₄, and concentrated in vacuo. Further purification by flash column chromatography (15% EtOAc/Hexanes) afforded **1c** as a pale-yellow oil (795 mg, 63%). ¹H NMR (400 MHz, C₆D₆): δ 0.84 (d, J=6.7 Hz, 3H), 1.71-1.79 (m, 1H), 1.83 (s, 1H), 2.19-2.23 (m, 1H), 2.54-2.61 (m, 1H), 4.90-4.97 (m, 2H), 5.70-5.80 (m, 1H), 6.96-7.01 (m, 2H), 7.11 (brd t, J=7.7 Hz, 4H), 7.44-7.50 (m, 4H). ¹³C NMR (125.8 MHz, C_6D_6): δ 13.8, 36.2, 40.4, 80.8, 115.9, 125.91, 125.98, 126.36, 126.48, 128.14, 128.24, 137.8, 146.93, 146.95. Anal. Calcd for C₁₈H₂₀O: C, 85.67; H, 7.99. Found: C, 85.45; H, 7.72. General Procedure for the Independent Preparation of 2,2-Disubstituted-5-Methylenetetrahydrofurans (3a-d). (a) Intramolecular bromoetherifications of γ,ω-olefinic alcohols (1a-d).³ Into a 50 mL round bottom flask equipped with a magnetic stir bar was placed the corresponding γ,ω-olefinic alcohol (10.0 mmol), N-bromosuccinimide (1.10 equiv, 1.96 g) and CCl₄ (20 mL). The suspension was then stirred at room temperature for 3-10 h, and conversions were checked by TLC or GC. The mixture was then combined with pentane (30 mL) and filtered. NaOAc (20 mg) was added to the filtrate before it was concentrated *in vacuo* to afford the 2,2-disubstituted-5-bromomethyltetrahydrofuran derivatives that were used without further purification. Preparation of 2-Methyl-2-Phenyl-5-Bromomethyltetrahydrofuran. The general procedure for intramolecular bromoetherification of γ ,ω-olefinic alcohol **1b** afforded 2-methyl-2-phenyl-5-bromomethyltetrahydrofuran as a mixture of 3.5:1 diastereomers (sticky yellow oil; 2.22 g, 87%). ¹H NMR (400 MHz, C_6D_6), major isomer: δ 1.31 (s, 3H), 1.32-1.40 (m, 1H), 1.60-1.75 (m, 2H), 1.83-1.88 (m, 1H), 2.89-2.93 (m, 1H), 3.13-3.18 (m, 1H), 4.11 (quintet, J=6.3 Hz, 1H), 7.08 (t, J=7.6 Hz, 1H), 7.19 (t, J=7.7 Hz, 2H), 7.39 (d, J=7.8 Hz, 2H). Minor isomer: δ 1.51 (s, 3H), 1.48-1.55 (m, 1H), 3.02-3.08 (m, 1H), 3.96 (quintet, J=5.5 Hz, 1H), 7.30 (d, J=7.7 Hz, 2H). Other proton signals for the minor isomer were not observed or partially obstructed by signals of the major isomer. ¹³C NMR (125.8 MHz, C_6D_6), major isomer: δ 29.7, 30.40, 35.7, 39.0, 78.4, 85.4, 124.7, 126.6, 128.2, 148.7. Minor isomer: 30.0, 30.50, 36.2, 38.7, 77.7, 85.7, 124.5, 128.3, 148.0. The signal for one of the aromatic carbons for the minor isomer was not observed. Preparation of 2,2-Diphenyl-5-Bromomethyltetrahydrofuran. The general procedure for intramolecular bromoetherification of γ ,ω-olefinic alcohol 1c afforded 2,2-diphenyl-5-bromomethyltetrahydrofuran as a sticky yellow gel (2.79 g, 88%). ¹H NMR (400 MHz, C_6D_6): δ 1.46-1.53 (m, 1H), 1.59-1.68 (m, 1H), 2.15-2.31 (m, 2H), 2.95-2.30 (m, 1H), 3.11-3.15 (m, 1H), 4.05 (quintet, J=6.2 Hz, 1H), 6.97-7.05 (m, 2H), 7.08-7.15 (m, 4H), 7.39 (d, J=7.9 Hz, 2H), 7.45 (d, J=7.8 Hz, 2H). ¹³C NMR (125.8 MHz, C_6D_6): δ 30.1, 35.9, 38.2, 77.8, 89.1, 125.9 (two overlapping resonances), 126.8 (two overlapping resonances), 128.1, 128.3, 146.1, 146.8. Preparation of 2,2-Diphenyl-3-Methyl-5-Bromomethyltetrahydrofuran. The general procedure for intramolecular bromoetherification of γ ,ω-olefinic alcohol 1d afforded 2,2-diphenyl-3-methyl-5-bromomethyltetrahydrofuran as a mixture of 1.4:1 diastereomers (sticky brown gel; 2.72 g, 82%). ¹H NMR (400 MHz, C_6D_6), major isomer: δ 0.64 (d, J=7.4 Hz, 3H), 1.21-1.28 (m, 1H), 1.80-1.84 (m, 1H), 2.71-2.77 (m, 1H), 3.13-3.17 (m, 1H), 3.26-3.30 (m, 1H), 3.81 (quintet, J=6.3 Hz, 1H), 6.98 (t, J=6.8 Hz, 2H), 7.07-7.14 (m, 4H), 7.40 (d, J=7.8 Hz, 2H), 7.45 (d, J=7.9 Hz, 2H). Minor isomer: δ 0.63 (d, J=7.4 Hz, 3H), 1.58-1.65 (m, 2H), 2.77-2.81 (m, 2H), 3.12-3.16 (m, 1H), 4.40 (quintet, J=6.8 Hz, 1H), 7.29 (d, J=7.8 Hz, 2H). Other aromatic proton signals for the minor isomer were partially obstructed by signals of the major isomer. ¹³C NMR (125.8 MHz, C_6D_6), alphatic region of the major isomer: δ 20.0, 35.4, 38.58, 40.5, 75.6, 90.96. Aliphatic region of the minor isomer: 16.9, 36.1, 38.53, 40.1, 77.9, 91.19. The signals for the aromatic carbons of the two isomers could not be resolved due to partial overlapping and similar ratios of the major and minor diastereomers. General Procedure for the Independent Preparation of 2,2-Disubstituted-5-Methylenetetrahydrofurans (3a-d). (b) Dehydrobromination of the 2,2-Disubstituted-5-Bromomethyltetrahydrofurans.³ Into a 25 mL round bottom flask equipped with a magnetic stir bar was placed the corresponding 2,2-disubstituted-5-bromomethyltetrahydrofuran (1.0 mmol), KO'Bu (1.0 equiv, 112 mg) and dry THF (10 mL). The mixture was then stirred at 60 °C for 3-6 h, and conversions were checked by TLC or GC. The mixture was then cooled to room temperature and all volatile materials were evaporated *in vacuo*. The residue was mixed with pentane (20 mL) and filtered. The filtrate was concentrated *in vacuo* to afford the crude 2,2-disubstituted-5-methylenetetrahydrofuran derivatives 3a-d. Further purifications were achieved by flash column chromatography or recrystallization. **2,2-Dimethyl-5-methylenetetrahydrofuran**. Into a 50 mL round bottom flask equipped with a magnetic stir bar was placed 2,2-dimethyl-5-bromomethyltetrahydrofuran (193 mg, 1.00 mmol), KO'Bu (2.00 equiv, 224 mg), CaH₂ (2.2 equiv, 92 mg) and dry Et₂O (20 mL). The mixture was then stirred at room temperature for 20 h, at which point the substrate was fully consumed, as determined by GC. All volatile materials were then transferred to a flask in a –95 °C bath by vacuum transfer without heating. The mixture was then carefully concentrated *in vacuo* (300 mbar, no heating) to remove most of the Et₂O. This procedure afforded crude **3a** as a colorless oil (55 mg, still containing small amount of Et₂O). This compound is highly volatile and decomposes above 60 °C, presumably by isomerization to form the more stable 2,2-dimethyl-5-methyl-2,3-dihydrofuran. This compound was, therefore, characterized by NMR spectroscopy without further purification. ¹H NMR (500 MHz, C₆D₆): δ 1.09 (s, 6H, partially obstructed by the proton signals of the Et₂O), 1.36 (t, J=7.7 Hz, 2H), 2.34 (t, J=7.7 Hz, 2H), 3.87 (s, 1H), 4.47 (s, 1H). ¹³C NMR (125.8 MHz, C₆D₆): δ 27.3, 29.6, 37.1, 79.0, 84.0, 162.7. **2-Methyl-2-Phenyl-5-Methylenetetrahydrofuran** (**3b**) via Dehydrobromination of **2-Methyl-2-Phenyl-5-Bromomethyltetrahydrofuran**. The general procedure for dehydrobromination with 2-methyl-2-phenyl-5-bromomethyltetrahydrofuran, followed by purification by flash column chromatography (5% EtOAc/Hexanes), afforded 2-methyl-2-phenyl-5-methylenetetrahydrofuran (**3b**) as light-yellow oil (138 mg, 78%). ¹H NMR (500 MHz, C_6D_6): δ 1.42 (s, 3H), 1.64-1.70 (m, 1H), 1.81-1.86 (m, 1H), 2.15-2.29 (m, 2H), 3.95 (s, 1H), 4.65 (s, 1H), 7.05 (t, J=7.7 Hz, 1H), 7.15 (t, J=7.0 Hz, 2H), 7.33 (d, J=8.1 Hz, 2H). ¹³C NMR (125.8 MHz, C_6D_6): δ 28.9, 29.1, 79.8, 87.5, 124.9, 127.1, 128.5, 147.0, 162.7. Anal. Calcd for $C_{12}H_{14}O$: C, 82.72; H, 8.10. Found: C, 82.78; H, 8.32. 2,2-Diphenyl-5-Methylenetetrahydrofuran (3c) via Dehydrobromination of 2,2-Diphenyl-5-Bromomethyltetrahydrofuran. The general procedure for dehydrobromination with 2,2-diphenyl-5-bromomethyltetrahydrofuran, followed by purification by recrystallization in cold pentane, afforded 2,2-diphenyl-5-methylenetetrahydrofuran (3c) as light-brown crystals (145 mg, 61%). Although the analytical data for most of the new compounds in this work was acceptable and the spectral data of 3c indicated similar purity, suitable analytical data were not obtained on this complex. NMR spectra are provided below to demonstrate purity (Figures S2-S3). 1 H NMR (500 MHz, C_6D_6): δ 2.24 (brd s, 4H), 3.99 (s, 1H), 4.73 (s, 1H), 7.00 (t, J=7.3 Hz, 2H), 7.09 (t, J=7.7 Hz, 4H), 7.42 (t, J=7.5 Hz, 4H). 13 C NMR (125.8 MHz, C_6D_6): δ 28.8, 37.7, 80.2, 90.6, 125.9, 127.0, 128.2, 145.2, 162.0. **2,2-Diphenyl-3-Methyl-5-Methylenetetrahydrofuran** (**3d**) **via Dehydrobromination of 2,2-Diphenyl-3-Methyl-5-Bromomethyltetrahydrofuran.** The general procedure for dehydrobromination with 2,2-diphenyl-3-methyl-5-bromomethyltetrahydrofuran, followed by purification by recrystallization in cold pentane, afforded 2,2-diphenyl-3-methyl-5-methylenetetrahydrofuran (**3d**) as white crystals (133 mg, 53%). ¹H NMR (500 MHz, C_6D_6): δ 0.70 (d, J=6.9 Hz, 3H), 2.06 (dd, J=15.5 Hz, 5.0 Hz, 1H), 2.43 (dd, J=15.0 Hz, 6.5 Hz, 1H), 2.79 (hexet, J=6.4 Hz, 1H), 4.00 (s, 1H), 4.74 (s, 1H), 6.97 (t, J=7.8 Hz, 1H), 7.02 (t, J=7.8 Hz, 1H), 7.07 (t, J=7.9 Hz, 2H), 7.11 (t, J=7.9 Hz, 2H), 7.38 (d, J=7.7 Hz, 2H), 7.48 (d, J=7.7 Hz, 2H). ¹³C NMR (125.8 MHz, C_6D_6): δ 16.8, 37.7, 40.0, 81.0, 92.9, 126.55, 126.63, 127.0, 127.5, 128.1, 128.6, 143.3, 145.7, 161.2. Anal. Calcd for $C_{18}H_{18}O$: C, 86.36; H, 7.25. Found: C, 86.46; H, 7.11. General Procedure for the Generation and in situ NMR Characterization of Bis(triethylphosphine) Rh(I) γ,ω-Olefinic Alkoxides (2a-d). Into a small vial equipped with a magnetic stir bar was placed (PEt₃)₂RhN(SiMe₃)₂ (50 mg, 0.10 mmol) and toluene- d_8 (0.50 mL). The resulting solution was stirred briefly at room temperature before being transferred to a thick-walled NMR tube equipped with a screw cap and a Teflon seal, and was cooled to -78 °C. The γ , ω -olefinic alcohol (0.10 mmol, 1.0 equiv) was dissolved in toluene- d_8 (0.30 mL) and syringed into the NMR tube at -78 °C under a nitrogen flow. The mixture was allowed to sit at -78 °C for 10 min before being mixed by shaking several times for less than 10 s. An color change from deep purple to orange was observed, indicating full conversion of the starting silylamido precursor. The NMR tube was then immediately placed in the cold NMR probe (<-40 °C), and the subsequent NMR characterization was carried out at low temperatures to avoid decomposition. Generation **NMR** Characerization and of in situ $[(PEt_3),RhOC(Me),CH,CH,CH=CH_2]$ (2a). The general procedure for generation of bis(triethylphosphine) Rh(I) γ,ω-olefinic alkoxides with 2-methyl-5-hexen-2-ol (1a) gave an orange solution of **2a** in quantitative yield. ¹H NMR (400 MHz, toluene- d_8 , -40 °C): δ 0.75-1.05 (m, 24H, CH₃ signals for both PEt₃ ligands and CH₂ signals for one PEt₃ ligand), 1.53 (s, 3H, α -CH₃), 1.56 (s, 3H, α -CH₃), 1.50-1.76 (m, 6H, CH₂ signals for a PEt₃ ligand), 1.82 (d, J=10.8 Hz, 1H, CH₂CH=CH₂), 2.22 (t, J=12.4 Hz, 2H, CMe₂CH₂), 2.78 (t, J=15.1, 1H, CH₂CH=CH₂), 3.68 (brd s, 1H, CH=C H_2), 3.83 (brd s, 1H, CH=C H_2), 4.58 (d, J=13.6 Hz, 1H, CH=C H_2). ¹³C NMR (125.8 MHz, toluene- d_8 , -40 °C): δ 8.56, 8.95, 14.4 (d, J=19.8 Hz), 16.3 (d, J=23.4 Hz), 27.9, 34.2, 37.1 (d, J=7.1 Hz), 39.9, 59.4 (t, J=14.8 Hz), 71.1 (dd, J=15.6, 9.9 Hz), 71.3. ³¹P NMR (161.9 MHz, toluene- d_8 , -40 °C): δ 15.3 (dd, J_{PRh} =153.1 Hz, J_{PP} =42.1 Hz), 32.4 (dd, J_{PRh} =147.5 Hz, $J_{pp}=42.4 Hz$). Generation and in situ **NMR** Characterization of $[(PEt_3)_2RhOC(Me)(Ph)CH_2CH_2CH=CH_2]$ (2b). The general procedure for generation of bis(triethylphosphine) Rh(I) γ,ω-olefinic alkoxides with 2-phenyl-5-hexen-2-ol (1b) gave an orange solution of **2b** as 1.0:0.7 mixture of diastereomers in quantitative overall yield. ¹H NMR (400 MHz, toluene- d_8 , -40 °C), major isomer: δ 0.75-1.05 (m, 24H, CH₃ signals for both PEt₃ ligands and CH₂ signals for one PEt₃ ligand), 1.50-1.72 (m, 6H, CH₂ signals for a PEt₃ ligand), 1.78 (s, 3H, α -CH₃), 2.05-1.18 (m, 2H, CH₂CH=CH₂ and C(Me)(Ph)CH₂), 2.28 (t, J=11.5 Hz, 1H, C(Me)(Ph)CH₂), 2.70 (t, J=12.8 Hz, 1H, CH₂CH=CH₂), 3.69 (brd s, 1H, CH=CH₂), 3.81 (brd s, 1H, CH=CH₂), 4.40 (d, J=13.4 Hz, 1H, CH=CH₂), 7.13 (t, J=7.2 Hz, 1H, para aromatic), 7.38 (t, J=7.7 Hz, 2H, meta aromatic), 7.89 (d, J=7.5 Hz, 2H, ortho aromatic). Minor isomer: 1.82 (s, 3H, α -CH₃), 2.31 (t, J=12.4 Hz, 1H, C(Me)(Ph)CH₂), 3.02 (brd s, 1H, CH=CH₂), 3.94 (brd s, 1H, $CH=CH_2$), 4.49 (d, J=13.4 Hz, 1H, $CH=CH_2$), 7.18 (t, J=7.1 Hz, 1H, para aromatic), 7.35 (t, J=7.7 Hz, 2H, meta aromatic), 7.98 (d, J=7.5 Hz, 2H, ortho aromatic). Other aliphatic proton signals for the minor isomer were partially obstructed by signals of the major isomer. ¹³C NMR (100.6 MHz, toluene- d_8 , -40 °C), major isomer: δ 7.13, 7.15, 13.1 (d, J=19.4 Hz), 14.8 (d, J=25.2 Hz), 26.7, 33.2, 41.5, 59.5 (t, J=9.8 Hz), 70.8 (dd, J=16.2 Hz, 10.0 Hz), 74.3, 123.56, 125.1, 126.23, 157.5 (d, J=5.4 Hz). Minor isomer: δ 7.07 (d, J=3.9 Hz), 7.52 (d, J=8.8 Hz), 13.4 (d, J=18.4 Hz), 15.2 (d, J=25.4 Hz), 25.2, 34.6, 38.4, 53.6 (d, J=11.6 Hz), 61.3 (dd, J=17.8 Hz, 9.2 Hz), 74.9, 123.72, 125.9, 126.34, 153.8. 31 P NMR (161.9 MHz, toluene- d_8 , -40 $^{\circ}$ C), major isomer: δ 15.0 (dd, J_{PRh} =156.6 Hz, J_{PP} =43.7 Hz), 33.4 (dd, J_{PRh} =140.2 Hz, J_{PP} =43.9 Hz). Minor isomer: δ 12.1 (dd, J_{PRh} =155.3 Hz, J_{PP} =44.8 Hz), 34.4 (dd, J_{PRh} =128.9 Hz, J_{PP} =44.4 Hz). Generation and in situ NMR Characterization of [(PEt₃),RhOC(Ph),CH₂CH₂CH=CH₂] (2c). The general procedure for generation of bis(triethylphosphine) Rh(I) γ,ω-olefinic alkoxides with 1,1-diphenyl-4-penten-1-ol (**1c**) gave an orange solution of **2c** in quantitative yield. ¹H NMR (400 MHz, toluene- d_8 , -40 °C): δ 0.75-1.02 (m, 24H, CH₃ signals for both PEt₃ ligands and CH₂ signals for one PEt₃ ligand), 1.30-1.65 (m, 6H, CH₂ signals for a PEt₃ ligand), 1.94 (brd s, 1H, CH₂CH=CH₂), 2.20 (brd s, 1H, CH₂CH=CH₂), 2.58-2.74 (m, 2H, CPh₂CH₂), 3.35 (brd s, 1H, CH=CH₂), 3.94 (brd s, 1H, CH=CH₂), 4.36 (d, J=13.3 Hz, 1H, CH=CH₂), 7.06 (t, J=7.1 Hz, 1H, DHz aromatic), 7.11 (t, D=7.3 Hz, 1H, DHz aromatic), 7.20 (t, D=7.5 Hz, 2H, DHz aromatic), 7.28 (t, D=7.5 Hz, 2H, DHz aromatic), 7.71 (d, D=7.7 Hz, 2H, DHz aromatic), 7.76 (d, D=7.6 Hz, 2H, DHz aromatic). ¹³C NMR (100.6 MHz, toluene-DHz, -40 °C): δ 7.06, 7.23, 13.4 (d, D=18.8 Hz), 14.9 (d, D=23.9 Hz), 25.4, 37.2, 57.8 (d, D=11.8 Hz), 66.4 (dd, D=17.8 Hz, 8.7 Hz), 79.6, 123.65, 123.80, 125.8, 126.2, 126.7, 127.2, 153.6, 155.0 (d, D=4.9 Hz). ³¹P NMR (161.9 MHz, toluene-D₈, -40 °C): δ 14.1 (dd, D_{PRh}=154.6 Hz, D_{PP}=45.3 Hz), 35.2 (dd, D_{PRh}=148.1 Hz, D_{PP}=45.0 Hz). Generation **NMR** and in situ Characterization of $[(PEt_3)_2RhOC(Ph)_2CH(Me)CH_2CH=CH_2]$ (2d). The general procedure for generation of bis(triethylphosphine) Rh(I) γ,ω-olefinic alkoxides with 1,1-diphenyl-2-methyl-4-penten-1-ol (1d) gave an orange solution of 2d as 5:1 mixture of diastereomers in quantitative overall yield. ¹H NMR (400 MHz, toluene- d_8 , -40 °C), major isomer: δ 0.65-0.95 (m, 24H, CH₃ signals for both PEt₃ ligands and CH₂ signals for one PEt₃ ligand), 1.42-1.60 (m, 6H, CH₂ signals for a PEt₃ ligand), 1.65-1.88 (m, 4H, β -CH₃ and CH₂CH=CH₂), 1.96 (brd s, 1H, CPh₂CHMe), 3.22 (brd s, 1H, $CH_2CH=CH_2$), 3.44 (brd s, 1H, $CH=CH_2$), 3.95 (brd s, 1H, $CH=CH_2$), 4.06 (d, J=17.2 Hz, 1H, CH=CH₂), 7.01 (t, J=7.1 Hz, 2H, para aromatic), 7.22 (t, J=7.5 Hz, 4H, meta aromatic), 7.76 (d, J=7.6 Hz, 4H, ortho aromatic). Minor isomer: 3.34 (brd s, 1H, CH=C H_2), 7.15 (t, J=7.9 Hz, 2H, para aromatic), 7.31 (t, J=6.1 Hz, 4H, meta aromatic), 7.55 (d, J=7.5 Hz, 4H, ortho aromatic). Other proton signals for the minor isomer were not observed or partially obstructed by signals of the major isomer. 13 C NMR (125.8 MHz, THF- d_8 , -40 °C), major isomer: δ 8.00, 8.28, 15.2 (d, J=19.4 Hz), 15.8 (d, J=25.6 Hz), 17.4, 31.9, 42.3, 63.1 (brd s), 70.8 (dd, J=17.7 Hz, 9.2 Hz), 82.6, 124.03, 124.19, 126.78, 126.99, 127.7 (brd s, two overlapping resonances), 154.5, 156.5. Minor isomer: δ 8.39, 8.72, 14.3 (d, J=19.0 Hz), 16.4 (d, J=25.0 Hz), 20.7, 34.8, 44.1, 62.1 (d, J=15.7 Hz), 65.3 (dd, J_{J} =18.2 Hz, J_{Z} =8.8 Hz), 84.0, 124.62, 124.76, 127.21, 127.37, 127.6 (brd s, two overlapping resonances), 151.4, 155.3. 31 P NMR (161.9 MHz, toluene- d_8 , -40 °C), major isomer: δ 17.1 (dd, J_{PRh} =154.6 Hz, J_{PP} =47.4 Hz), 35.2 (dd, J_{PRh} =148.5 Hz, J_{PP} =47.4 Hz). Minor isomer: δ 14.6 (dd, J_{PRh} =153.8 Hz, J_{PP} =47.6 Hz), 36.6 (dd, J_{PRh} =148.5 Hz, J_{PP} =47.4 Hz). General Procedure for the Preparation of Bis(triethylphosphine) Rh(I) β ,ω-Olefinic Alkoxides (2e, 2f). Into a 20 mL scintillation vial equipped with a magnetic stir bar was placed (PEt₃)₂RhN(SiMe₃)₂ (200 mg, 0.40 mmol) and Et₂O (5 mL). The corresponding β , ω-olefinic alcohol (0.40 mmol, 1.0 equiv) was dissolved in Et₂O (2 mL) and added dropwise under stirring. An instant color change from dark purple to red-orange was observed. The solution was stirred at room temperature for 5-10 min until the rhodium silylamide was fully converted, as determined by ³¹P NMR spectroscopy. The volatile materials were evaporated under reduced pressure, affording the crude rhodium alkoxide product as a precipitate. Further purification was achieved by crystallization from Et₂O or pentane at –35 °C. **Preparation of [(PEt₃)₂RhOC(Me)₂CH₂CH=CH₂] (2e).** The general procedure for the preparation of bis(triethylphosphine)-ligated rhodium β ,ω-olefinic alkoxide complexes, followed by crystallization from pentane at -35 °C, gave red-orange crystals of **2e** (134 mg, 77% yield). ¹H NMR (400 MHz, C₆D₆): δ 0.83-0.92 (m, 9H, CH₃ signals for PEt₃ ligands), 0.98-1.15 (m, 15 H, CH₂ and CH₃ signals for PEt₃ ligands), 1.63 (s, 3H, OC(CH_3)₂), 1.65-1.90 (m, 7H, CH₂ signals for PEt₃ ligands and CH₂CH=CH₂), 1.96 (s, 3H, OC(CH_3)₂), 2.55 (dd, J_1 =11.8 Hz, J_2 =6.3 Hz, 1H, CH₂CH=CH₂), 4.06 (hexet, J=6.5 Hz, 1H, CH₂CH= CH_2), 4.15 (dd, J=13.4 Hz, 2.6 Hz, 1H, CH₂CH= CH_2), 4.23 (dt, J=7.2 Hz, 3.1 Hz, 1H, CH₂CH=CH₂). ¹³C NMR (125.8 MHz, C₆D₆): δ 8.53, 8.68, 16.4 (d, J=20.4 Hz), 17.9 (d, J=23.1 Hz), 33.8 (d, J=5.3 Hz), 39.7, 48.5, 66.7 (d, J=13.1 Hz), 78.8 (dd, J=17.0 Hz, 7.0 Hz), 85.0 (d, J=6.5 Hz). ³¹P NMR (161.9 MHz, C₆D₆): δ 22.5 (dd, J_{PRh}=168.5 Hz, J_{PP}=46.3 Hz), 33.9 (dd, J_{PRh}=137.6 Hz, J_{PP}=46.6 Hz). Anal. Calcd for C₁₈H₄₁OP₂Rh: C, 49.32; H, 9.43. Found: C, 49.60; H, 9.19. Preparation of [(PEt₃)₂RhOC(Me)(Ph)CH₂CH=CH₂] (2f). The general procedure for the preparation of bis(triethylphosphine)-ligated rhodium β , ω -olefinic alkoxide complexes, followed by crystallization from Et₂O at -35 °C, gave orange crystals of 2f (131 mg, 66% overall yield) as a 6:1 mixture of diastereomers. ¹H NMR (400 MHz, toluene- d_8), major isomer: δ 0.95-1.18 (m, 24H, CH₃ signals for both PEt₃ ligands and CH₂ signals for one PEt₃ ligand), 1.51 (s, 3H, α -CH₃), 1.72-1.95 (m, 7H, CH₂ signals for another PEt₃ ligand and CH₂CH=CH₂), 2.53 (dd, J=13.8 Hz, 5.6 Hz, 1H, $CH_2CH=CH_2$), 3.52 (m, 1H, $CH_2CH=CH_2$), 3.75-3.88 (m, 2H, $CH_2CH=CH_2$ and $CH_2CH=CH_2$), 6.86 (t, J=7.2 Hz, 1H, para aromatic), 7.01 (t, J=7.6 Hz, 2H, meta aromatic), 7.40 (d, J=7.7 Hz, 2H, ortho aromatic). Minor isomer: 6.92 (t, J=7.2 Hz, 1H, para aromatic), 7.08 (t, J=7.7 Hz, 2H, meta aromatic), 7.76 (d, J=7.6 Hz, 2H, ortho aromatic). Other proton signals for the minor isomer were not observed or partially obstructed by signals of the major isomer. ${}^{13}\text{C NMR}$ (100.6 MHz, THF- d_8), major isomer: δ 8.16, 8.38, 16.2 (d, J=20.5 Hz), 17.4 (d, J=24.3 Hz), 39.1, 48.7, 65.3 (ddd, $J_1=13.0$ Hz, $J_2=5.8$ Hz, $J_3=2.5$ Hz), 78.7 (dd, J_1 =16.2 Hz, J_2 =7.9 Hz), 84.4 (d, J_1 =6.4 Hz), 124.1, 125.5, 126.9, 156.7. Minor isomer: 7.95, 16.8 (d, J=20.0 Hz), 18.3 (d, J=24.7 Hz), 50.4, 124.4, 125.5, 126.8. Other carbon signals of the minor isomer were not observed or partially obstructed by signals of the major isomer. ^{31}P NMR (161.9 MHz, C_6D_6), major isomer: δ 21.4 (dd, J_{PRh} =168.4 Hz, J_{PP} =46.5 Hz), 34.4 (dd, J_{PRh} =157.5 Hz, J_{PP} =46.0 Hz). Minor isomer: δ 19.1 (dd, J_{PRh} =169.7 Hz, J_{PP} =50.2 Hz), 35.0 (dd, J_{PRh} =132.6 Hz, J_{PP} =49.9 Hz). Anal. Calcd for $C_{23}H_{43}OP_2Rh$: C, 55.20; H, 8.66. Found: C, 54.89; C, 837. General Procedure for the Cyclizations of *in situ* Generated Rh(I) γ,ω-Olefinic Alkoxide Complexes 2a-d. Into a small vial was placed 1.0 mg of 1,3,5-trimethoxybenzene (internal standard), C₆D₆ (0.50 mL) and the corresponding γ,ω-olefinic alcohol (0.020 mmol). The mixture was stirred at room temperature until it was homogeneous before being transferred to an NMR tube equipped with a screw cap and a Teflon seal. An initial ¹H NMR spectrum was acquired. (PEt₃)₂RhN(SiMe₃)₂ (10.0 mg, 1.0 equiv) and PEt₃ (23.6 mg, 10.0 equiv) were quickly added as a C₆D₆ solution (0.20 mL) by syringe, and the mixture was briefly shaken (in less than 30 sec) to allow good mixing and quantitative generation of the rhodium alkoxide complex 2a-d. The solution was then heated in a thermostated oil bath at 25-35 °C for 10 - 90 min until the starting rhodium complex was fully consumed, as determined by ¹H or ³¹P NMR spectroscopy. A second ¹H NMR spectrum was acquired, and the yields of the cyclization products 3a-d were calculated. **Cyclization of** *in situ* **Generated Alkoxide 2a.** The reaction of *in situ* generated **2a** (with 2.3 mg of **1a**, 0.020 mmol) with added PEt₃ (23.6 mg, 10.0 equiv) and 1,3,5-trimethoxybenzene as internal standard in C_6D_6 (0.7 mL) at 35 °C for 5 min gave 70% yield of **3a**, as determined by ¹H NMR spectroscopy. The same reaction was carried out at 25 °C for 15 min and gave 68% of **3a**, as determined by ¹H NMR spectroscopy. Cyclization of *in situ* Generated Alkoxide 2b. The reaction of *in situ* generated 2b (with 3.5 mg of 1b, 0.020 mmol) with added PEt₃ (23.6 mg, 10.0 equiv) and 1,3,5- trimethoxybenzene as internal standard in C₆D₆ (0.7 mL) at 35 °C for 10 min gave 80% yield of **3b**, as determined by ¹H NMR spectroscopy. The same reaction was carried out at 25 °C for 30 min and gave 87% of **3b**, as determined by ¹H NMR spectroscopy. **Cyclization of** *in situ* **Generated Alkoxide 2c.** The reaction of *in situ* generated **2c** (with 4.8 mg of **1c**, 0.020 mmol) with added PEt₃ (23.6 mg, 10.0 equiv) and 1,3,5-trimethoxybenzene as internal standard in C_6D_6 (0.7 mL) at 35 °C for 1.5 h gave 92% yield of **3c**, as determined by ¹H NMR spectroscopy. **Cyclization of** *in situ* **Generated Alkoxide 2d.** The reaction of *in situ* generated **2d** (with 5.0 mg of **1d**, 0.020 mmol) with added PEt₃ (23.6 mg, 10.0 equiv) and 1,3,5-trimethoxybenzene as internal standard in C_6D_6 (0.7 mL) at 35 °C for 1 h gave 74% yield of **3c**, as determined by ¹H NMR spectroscopy. General Procedure for the β-Allyl Eliminations of Rh(I) β,ω-Olefinic Alkoxide Complexes 2e and 2f. Into a small vial was placed the rhodium alkoxide complex (0.010 mmol) and 1.0 mg of 1,3,5-trimethoxybenzene as internal standard. C_6D_6 (0.5 mL) was added, and the solution was stirred until it was homogeneous before being transferred to a thick-walled NMR tube equipped with a screw cap and a Teflon seal. An initial ¹H NMR spectrum was acquired. The solution was then heated in a thermostated oil bath at 90 °C for 1-2 h until the starting rhodium complex was fully consumed, as determined by ¹H or ³¹P NMR spectroscopy. A second ¹H NMR spectrum was acquired, and the yield of the ketone and the rhodium phenyl product (PEt₃)₃RhPh (4) were calculated. β -Allyl Elimination of [(PEt₃)₂RhOCMe₂CH₂CH=CH₂] (2e). The reaction of 2e (4.4 mg, 0.010 mmol) and 1,3,5-trimethoxybenzene as internal standard in C₆D₆ (0.5 mL) at 90 °C for 2 h gave 85% yield of (PEt₃)₂Rh(η³-allyl) and 74% yield of acetone, as determined by ¹H NMR spectroscopy. When the same reaction was carried out with added PEt₃ (9.5 mg, 8.0 equiv), similar yields (88% of (PEt₃)₂Rh(η^3 -allyl) and 71% of acetone) and reaction rate were measured (half-life ~ 20 min for both reactions). β-Allyl Elimination of [(PEt₃)₂RhOC(Me)(Ph)CH₂CH=CH₂] (2f). The reaction of 2f (5.0 mg, 0.010 mmol) and 1,3,5-trimethoxybenzene as internal standard in C_6D_6 (0.5 mL) at 90 °C for 1 h gave 81% yield of (PEt₃)₂Rh(η³-allyl) and 67% yield of acetophenone, as determined by ¹H NMR spectroscopy. When the same reaction was carried out with added PEt₃ (9.5 mg, 8.0 equiv), similar yields (84% of (PEt₃)₂Rh(η³-allyl) and 70% of acetophenone) and reaction rate were measured (half-life ~ 10 min for both reactions). Representative Procedure for the Kinetic Experiments Conducted on Cyclizations of *in situ* Generated [(PEt₃)₂RhOCPh₂CH₂CH₂CH₂CH₂CH₂CH₂(2c) in the Presence of Added PEt₃. Into a small vial was placed (PEt₃)₂RhN(SiMe₃)₂ (10.0 mg, 0.020 mmol) and 1.0 mg of 1,3,5-trimethoxybenzene (internal standard). C₆D₆ (0.30 mL) and PEt₃ (7.1 mg, 3.0 equiv) were added by syringe. The mixture was stirred at room temperature until it was homogeneous. The solution was transferred to an NMR tube equipped with a screw cap and a Teflon seal. 1,1-Diphenyl-4-penten-1-ol (1c, 4.8 mg, 1.0 equiv) was quickly added as a C₆D₆ solution (0.20 mL) by syringe, and the mixture was briefly shaken (in less than 30 sec) to allow good mixing. The sample was immediately placed into the heated NMR probe (35.0 °C) ,and a ¹H NMR spectrum was obtained at fixed intervals. This procedure was repeated using different initial concentrations of PEt₃ or in different deuterated solvents. **Figure S1.** Representative kinetic plot for the cyclization of *in situ* generated [(PEt₃)₂RhOCPh₂CH₂CH₂CH=CH₂] (**2c**, 0.040 M) in the presence of added PEt₃ (0.40 M) in THF- d_8 at 35 °C. The curve for the consumption of **2c** depicts the results of an unweighted least-square fit to y = a*exp(-b*x) + c ($a = 3.71 \pm 0.03$, $b = 0.00050 \pm 0.00001$, $c = -0.02 \pm 0.03$). The curve for the accumulation of 2,2-diphenyl-5-methylenetetrahydrofuran (**3c**) depicts the results of an unweighted least-square fit to y = -a*exp(-b*x) + c ($a = 1.15 \pm 0.02$, $b = 0.00044 \pm 0.00002$, $c = 1.25 \pm 0.02$). The differences between the integration values are due to various proton signal intensities used for integration: 4H for **2c** and 2H for **3c**. **Table S1.** Effect of [PEt₃] on the rate constants and yield for the cyclization of in *situ* generated **2c** (0.040 M in C_6D_6 , 35 °C). | $[PEt_3](M)$ | 0.12 | 0.40 | 1.20 | |-----------------------------------|---------|---------|---------| | $k_{\rm obsd}$ (s ⁻¹) | 0.00074 | 0.00079 | 0.00084 | | Yield of 3c | 49% | 74% | 82% | Preparation of Stereochemically Defined, ²H-Labeled Alcohol trans-5-d-1a. (a) trans-**5-d-Ethyl 4-Pentenoate.** At 0 °C and under a nitrogen flow, 9-BBN (0.5 M in THF, 5.0 mL, 2.5 mmol) was slowly added to a stirred solution of ethyl 4-pentynoate (630 mg, 5.0 mmol, 2.0 equiv) in THF (20 mL) by syringe. The mixture was stirred at 0 °C for 30 min and then stirred at room temperature for 2 h to allow full consumption of 9-BBN. The mixture was stirred at 0 °C and deuterated acetic acid (AcOD, 150 µL, 1.1 equiv) was slowly added as a THF solution (2 mL). The mixture was stirred at room temperature for another 1 h and concentrated in vacuo to give a crude oil. The desired product, trans-5-d-ethyl 4-pentenoate was separated as colorless oil (132 mg, 41%) by preparative TLC (10% Et₂O/pentane) and was pure enough for subsequent transformations. (b) trans-5-d-2-Methyl-5-hexen-2-ol (trans-5-d-1a). At 0 °C and under a nitrogen flow, trans-5-d-ethyl 4-pentenoate (65 mg, 0.50 mmol) was slowly added to a stirred solution of MeMgBr (2.0 M in Et₂O, 0.55 mL, 2.2 equiv) in Et₂O (5 mL) as a Et₂O solution (2 mL). The solution was stirred at 0 °C for 30 min and then stirred at room temperature for 3 h. The reaction mixture was then carefully quenched with saturated aqueous NH₄Cl (10 mL) at 0 °C and extracted with Et₂O (20 mL x 3). The organic layers were combined and subsequently washed with saturated aqueous NaHCO₃ (15 mL x 2) and brine (15 mL x 2), dried over Na₂SO₄, and concentrated in vacuo. Further purification by flash column chromatography (10% EtOAc/Hexanes) afforded *trans-5-d-1a* as a colorless oil (32 mg, 55%). ¹H and ²H NMR spectra indicated exclusive deuterium labeling at the *trans*-5 position (45% deuterium incorporation). ## References - 1) Van der Ent, A.; Onderdelinden, A. L. Inorg. Syn. 1973, 14, 92. - 2) Zhao, P.; Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 12066. - 3) Yoshida, T.; Thorn, D. L.; Okano, T.; Otsuka, S.; Ibers, J. A. J. Am. Chem. Soc. 1980, 102, 6451. - 4) Bloodworth, A. J.; Davies, A. G.; Hay-Motherwell, R. S. J. Chem. Soc., Perkin Trans. 2 1988, 4, 575. - 5) Dragoli, D. R.; Burdett, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2001, 123, 10127. - 6) Erker, G.; Engel, K.; Atwood, J. L.; Hunter, W. E. Angew. Chemie 1983, 95, 506. **Figure S2**. 1 H NMR spectrum (500 MHz, C_6D_6) of 2,2-diphenyl-5-methylenetetrahydrofuran (3c). **Figure S3**. 13 C NMR spectrum (125.8 MHz, C_6D_6) of 2,2-diphenyl-5-methylenetetrahydrofuran (**3c**). Experimental Procedure for the X-ray Diffraction of [(PEt₃)₂RhOCMe₂CH₂CH=CH₂] (**2e**) ### **Data Collection** An orange block crystal of $C_{18}H_{41}OP_2Rh$ having approximate dimensions of 0.20 x 0.20 x 0.15 mm³ was mounted with epoxy cement on the tip of a fine glass fiber. All measurements were made on a Nonius KappaCCD diffractometer with graphite monochromated Mo-K α radiation. Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions: $$a = 9.2811(19) \text{ Å}$$ $\alpha = 90 \text{ °}$ $b = 15.630(3) \text{ Å}$ $\beta = 98.85(3) \text{ °}$ $c = 15.370(3) \text{ Å}$ $\gamma = 90 \text{ °}$ $V = 2203.1(8) \text{ Å}^3$ For Z = 4 and F.W. = 438.36, the calculated density is 1.322 g/cm³. Based on a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be $P2_1/n$ (#14). The data were collected at a temperature of 173(2) K to a maximum 2θ value of 56.56°. Five omega scans consisting of 37, 29, 34, 29, and 17 data frames, respectively, were collected with a frame width of 2.0° and a detector-to-crystal distance, Dx, of 35.0 mm. Each frame was exposed twice (for the purpose of de-zingering) for a total of 50 s. The data frames were processed and scaled using the DENZO software package. #### Data Reduction A total of 9806 reflections were collected of which 5438 were unique and observed (R_{int} = 0.0312). The linear absorption coefficient, μ , for Mo-K α radiation is 9.21 cm⁻¹, and no absorption correction was applied. The data were corrected for Lorentz and polarization effects. ### Structure Solution and Refinement The structure was solved by direct methods and expanded using Fourier techniques². The non-hydrogen atoms were refined anisotropically and hydrogen atoms were treated as idealized contributions. The final cycle of full-matrix least-squares refinement³ on F was based on 5438 observed reflections (I > $2.00\sigma(I)$) and 199 variable parameters and converged with unweighted and weighted agreement factors of: $$\begin{split} R &= \Sigma \text{ ||Fo| - |Fc|| / } \Sigma \text{ ||Fo| = 0.0324} \\ R_W &= \{ \Sigma [w \ (F_o^{\ 2} - F_c^{\ 2})^2] \ / \ \Sigma [w (F_o^{\ 2})^2] \}^{1/2} = 0.0802 \end{split}$$ The maximum and minimum peaks on the final difference Fourier map corresponded to 0.541 and -0.791 e⁻/Å³ respectively. # References for the X-ray diffraction studies: - (1) Z. Otwinowski and W. Minor, "Processing of X-Ray Diffraction Data Collected in Oscillation Mode," Methods in Enzymology, vol. 276: Macromolecular Crystallography, part A, 307-326, 1997, C.W. Carter, Jr. & R.M. Sweet, Eds., Academic Press. - (2) Acta Cryst. A46 (1990) 467-473 - (3) Least Squares function minimized: $\Sigma w(F_o^2 F_c^2)^2$ Table S2. Crystal data and structure refinement for 2e. | Empirical formula | $C_{18}H_{41}OP_2Rh$ | | |-----------------------------------------|---------------------------------------------|-------------------------| | Formula weight | 438.36 | | | Temperature | 173(2) K | | | Wavelength | 0.71073 Å | | | Crystal system | Monoclinic | | | Space group | P2(1)/n | | | Unit cell dimensions | a = 9.2811(19) Å | α= 90°. | | | b = 15.630(3) Å | β = 98.85(3)°. | | | c = 15.370(3) Å | $\gamma = 90^{\circ}$. | | Volume | $2203.1(8) \text{ Å}^3$ | | | Z | 4 | | | Density (calculated) | 1.322 g/cm^3 | | | Absorption coefficient | 9.21 cm ⁻¹ | | | F(000) | 928 | | | Crystal size | $0.20 \times 0.20 \times 0.15 \text{ mm}^3$ | | | Theta range for data collection | 2.58 to 28.28°. | | | Index ranges | -12<=h<=12, -18<=k<=2 | 0, -20<=1<=20 | | Reflections collected | 9806 | | | Independent reflections | 5438 [R(int) = 0.0312] | | | Completeness to theta = 28.28° | 99.3 % | | | Absorption correction | Empirical | | | Max. and min. transmission | 0.8742 and 0.8372 | | | Refinement method | Full-matrix least-squares | on F ² | | Data / restraints / parameters | 5438 / 0 / 199 | | | Goodness-of-fit on F ² | 1.008 | | | Final R indices [I>2sigma(I)] | R1 = 0.0324, $wR2 = 0.08$ | 02 | | R indices (all data) | R1 = 0.0457, $wR2 = 0.08$ | 52 | | Largest diff. peak and hole | 0.541 and -0.791 e.Å-3 | | **Table S3**. Atomic coordinates ($x 10^4$) and equivalent isotropic displacement parameters ($\mathring{A}^2x 10^3$) for **2e**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor. | | Х | у | Z | U(eq) | |-------|---------|---------|---------|-------| | Rh(1) | 3413(1) | 1444(1) | 3191(1) | 21(1) | | P(1) | 2289(1) | 1475(1) | 1756(1) | 25(1) | | P(2) | 5603(1) | 999(1) | 2957(1) | 25(1) | | O(1) | 1553(2) | 2060(1) | 3417(1) | 29(1) | | C(1) | 2950(2) | 879(2) | 861(1) | 30(1) | | C(2) | 2014(3) | 891(2) | -41(2) | 54(1) | | C(3) | 1868(3) | 2542(2) | 1303(2) | 44(1) | | C(4) | 3161(3) | 3118(2) | 1289(2) | 52(1) | | C(5) | 449(2) | 1056(2) | 1750(2) | 36(1) | | C(6) | 411(3) | 116(2) | 1986(2) | 45(1) | | C(7) | 5850(2) | -31(2) | 2424(2) | 33(1) | | C(8) | 5204(3) | -780(2) | 2858(2) | 41(1) | | C(9) | 6516(3) | 1722(2) | 2273(2) | 38(1) | | C(10) | 6777(3) | 2620(2) | 2664(2) | 55(1) | | C(11) | 6937(2) | 931(2) | 3975(2) | 32(1) | | C(12) | 8482(2) | 622(2) | 3914(2) | 41(1) | | C(13) | 3402(2) | 577(1) | 4263(1) | 29(1) | | C(14) | 3718(3) | 1379(1) | 4638(2) | 27(1) | | C(15) | 2540(2) | 1917(2) | 4938(2) | 34(1) | | C(16) | 1850(2) | 2529(1) | 4206(2) | 30(1) | | C(17) | 2898(3) | 3263(2) | 4098(2) | 41(1) | | C(18) | 427(3) | 2898(2) | 4429(2) | 41(1) | Table S4. Bond lengths [Å] and angles [°] for 2e. | Rh(1)-O(1) | 2.0521(14) | P(2)-Rh(1)-P(1) | 98.19(3) | |-------------------|------------|-----------------------|------------| | Rh(1)-C(13) | 2.135(2) | C(3)-P(1)-C(5) | 100.40(12) | | Rh(1)-C(14) | 2.201(2) | C(3)-P(1)-C(1) | 104.66(12) | | Rh(1)-P(2) | 2.2297(7) | C(5)-P(1)-C(1) | 103.50(11) | | Rh(1)-P(1) | 2.2910(9) | C(3)-P(1)-Rh(1) | 115.14(9) | | P(1)-C(3) | 1.827(2) | C(5)-P(1)-Rh(1) | 106.53(9) | | P(1)-C(5) | 1.827(2) | C(1)-P(1)-Rh(1) | 123.62(8) | | P(1)-C(1) | 1.843(2) | C(7)-P(2)-C(9) | 100.58(12) | | P(2)-C(7) | 1.836(2) | C(7)-P(2)-C(11) | 102.38(11) | | P(2)-C(9) | 1.837(2) | C(9)-P(2)-C(11) | 102.28(11) | | P(2)-C(11) | 1.843(2) | C(7)-P(2)-Rh(1) | 121.66(8) | | O(1)-C(16) | 1.407(3) | C(9)-P(2)-Rh(1) | 114.39(9) | | C(1)- $C(2)$ | 1.518(3) | C(11)-P(2)-Rh(1) | 113.02(8) | | C(3)-C(4) | 1.503(4) | C(16)-O(1)-Rh(1) | 109.40(12) | | C(5)-C(6) | 1.515(4) | C(2)- $C(1)$ - $P(1)$ | 117.74(17) | | C(7)-C(8) | 1.517(4) | C(4)-C(3)-P(1) | 115.35(18) | | C(9)-C(10) | 1.531(4) | C(6)-C(5)-P(1) | 113.72(16) | | C(11)- $C(12)$ | 1.530(3) | C(8)-C(7)-P(2) | 113.34(17) | | C(13)-C(14) | 1.392(3) | C(10)-C(9)-P(2) | 113.44(19) | | C(14)-C(15) | 1.506(3) | C(12)-C(11)-P(2) | 118.71(17) | | C(15)-C(16) | 1.539(3) | C(14)-C(13)-Rh(1) | 73.87(13) | | C(16)-C(18) | 1.528(3) | C(13)-C(14)-C(15) | 120.8(2) | | C(16)-C(17) | 1.529(3) | C(13)-C(14)-Rh(1) | 68.73(13) | | O(1)-Rh(1)-C(13) | 93.61(8) | C(15)-C(14)-Rh(1) | 107.24(14) | | O(1)-Rh(1)-C(14) | 80.29(8) | C(14)-C(15)-C(16) | 111.35(18) | | C(13)-Rh(1)-C(14) | 37.41(8) | O(1)-C(16)-C(18) | 109.22(19) | | O(1)-Rh(1)-P(2) | 170.15(5) | O(1)-C(16)-C(17) | 109.94(19) | | C(13)-Rh(1)-P(2) | 92.26(7) | C(18)-C(16)-C(17) | 109.1(2) | | C(14)-Rh(1)-P(2) | 99.79(7) | O(1)-C(16)-C(15) | 108.04(18) | | O(1)-Rh(1)-P(1) | 83.28(5) | C(18)-C(16)-C(15) | 110.34(19) | | C(13)-Rh(1)-P(1) | 134.49(6) | C(17)-C(16)-C(15) | 110.2(2) | | C(14)-Rh(1)-P(1) | 160.51(7) | | | | | | | | **Table S5.** Anisotropic displacement parameters $(\mathring{A}^2x\ 10^3)$ for **2e**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\ h^2\ a^{*2}U^{11}+...+2\ h\ k\ a^*\ b^*\ U^{12}\]$ | | U11 | U^{22} | U^{33} | U23 | U^{13} | U12 | |-------|-------|----------|----------|--------|----------|--------| | Rh(1) | 21(1) | 26(1) | 16(1) | 1(1) | 1(1) | 0(1) | | P(1) | 24(1) | 32(1) | 18(1) | 1(1) | 0(1) | 5(1) | | P(2) | 21(1) | 34(1) | 20(1) | 4(1) | 2(1) | 0(1) | | O(1) | 27(1) | 37(1) | 23(1) | -7(1) | 4(1) | 5(1) | | C(1) | 26(1) | 43(1) | 20(1) | -4(1) | 3(1) | -1(1) | | C(2) | 44(2) | 90(2) | 26(2) | -12(2) | -1(1) | 2(2) | | C(3) | 55(2) | 39(1) | 35(2) | 7(1) | -3(1) | 13(1) | | C(4) | 77(2) | 34(2) | 45(2) | 11(1) | 11(2) | 7(1) | | C(5) | 23(1) | 58(2) | 27(1) | -7(1) | -1(1) | 2(1) | | C(6) | 33(1) | 59(2) | 45(2) | -11(1) | 8(1) | -14(1) | | C(7) | 27(1) | 45(1) | 26(1) | -2(1) | 4(1) | 8(1) | | C(8) | 45(2) | 36(1) | 41(2) | -5(1) | 8(1) | 6(1) | | C(9) | 27(1) | 55(2) | 31(1) | 14(1) | 7(1) | -3(1) | | C(10) | 54(2) | 59(2) | 49(2) | 15(2) | -5(1) | -26(1) | | C(11) | 25(1) | 44(1) | 26(1) | 5(1) | 0(1) | 0(1) | | C(12) | 28(1) | 60(2) | 35(2) | 6(1) | 0(1) | 5(1) | | C(13) | 32(1) | 35(1) | 22(1) | 8(1) | 6(1) | 1(1) | | C(14) | 28(1) | 37(1) | 15(1) | 3(1) | -1(1) | 1(1) | | C(15) | 37(1) | 43(1) | 22(1) | -2(1) | 5(1) | 3(1) | | C(16) | 32(1) | 34(1) | 22(1) | -4(1) | 5(1) | 1(1) | | C(17) | 43(1) | 37(1) | 42(2) | -2(1) | 6(1) | -2(1) | | C(18) | 40(1) | 53(2) | 30(1) | -5(1) | 10(1) | 13(1) | **Table S6**. Hydrogen coordinates (\times 10⁴) and isotropic displacement parameters (Å²x 10³) for **2e**. | | X | у | Z | U(eq) | |--------|------|-------|------|-------| | | | | | | | H(1A) | 3923 | 1108 | 796 | 35 | | H(1B) | 3087 | 275 | 1048 | 35 | | H(2A) | 2482 | 548 | -452 | 81 | | H(2B) | 1903 | 1481 | -254 | 81 | | H(2C) | 1052 | 651 | 3 | 81 | | H(3A) | 1350 | 2481 | 693 | 53 | | H(3B) | 1191 | 2824 | 1652 | 53 | | H(4A) | 2830 | 3671 | 1032 | 78 | | H(4B) | 3832 | 2854 | 934 | 78 | | H(4C) | 3663 | 3204 | 1891 | 78 | | H(5A) | -31 | 1388 | 2173 | 44 | | H(5B) | -120 | 1141 | 1157 | 44 | | H(6A) | -603 | -67 | 1970 | 68 | | H(6B) | 951 | 26 | 2579 | 68 | | H(6C) | 861 | -221 | 1561 | 68 | | H(7A) | 5390 | 1 | 1800 | 39 | | H(7B) | 6906 | -133 | 2436 | 39 | | H(8A) | 5369 | -1309 | 2545 | 61 | | H(8B) | 4154 | -691 | 2836 | 61 | | H(8C) | 5671 | -825 | 3473 | 61 | | H(9A) | 7465 | 1469 | 2193 | 45 | | H(9B) | 5914 | 1769 | 1684 | 45 | | H(10A) | 7261 | 2973 | 2268 | 83 | | H(10B) | 7397 | 2581 | 3239 | 83 | | H(10C) | 5841 | 2879 | 2734 | 83 | | H(11A) | 7017 | 1507 | 4247 | 38 | | H(11B) | 6527 | 547 | 4386 | 38 | | H(12A) | 9067 | 625 | 4502 | 62 | | H(12B) | 8929 | 1002 | 3525 | 62 | | H(12C) | 8441 | 39 | 3677 | 62 | | | | | | | | H(13A) | 2443 | 332 | 4333 | 35 | |--------|------|------|------|----| | H(13B) | 4202 | 152 | 4353 | 35 | | H(14A) | 4732 | 1468 | 4953 | 32 | | H(15A) | 2961 | 2253 | 5461 | 41 | | H(15B) | 1776 | 1539 | 5110 | 41 | | H(17A) | 2446 | 3650 | 3633 | 61 | | H(17B) | 3803 | 3031 | 3939 | 61 | | H(17C) | 3116 | 3579 | 4654 | 61 | | H(18A) | 2 | 3288 | 3960 | 61 | | H(18B) | 625 | 3211 | 4988 | 61 | | H(18C) | -259 | 2431 | 4484 | 61 | | | | | | | **Figure S4**. ORTEP diagram of [(PEt₃)₂RhOCMe₂CH₂CH=CH₂] (**2e**).