Ring Expansion of Functionalized Octahydroindoles to Enantiopure cis-Decahydroquinolines

Marisa Mena and Josep Bonjoch,*
Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII$\mathrm{s} / \mathrm{n}, 08028$-Barcelona, SpainDomingo Gomez Pardo and Janine Cossy
Laboratoire de Chimie Organique, associé au CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex05, Francejosep.bonjoch@ub.edu
Contents

- Table 1. ${ }^{13} \mathrm{C}$ NMR Chemical shifts of octahydroindoles 3-12 2-3
- Table 2. ${ }^{13} \mathrm{C}$ NMR Chemical shifts of decahydroquinolines 13-21 4
- Experimental and/or NMR data of compounds 3-21 5-14
- Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of all new compounds, including COSY and HSQC spectra for compounds 3, 5, 6, 9-14, 17, 18, and 21 15-94

Table 1. ${ }^{13}$ C NMR Chemical shifts of octahydroindoles 3-12 ${ }^{a}$

	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9 a}$	$\mathbf{1 0 a}$	$\mathbf{1 1 a}$
$\mathbf{C 2}$	66.2	62.9	66.2	61.7	74.9	70.8	71.0	72.5	66.1
$\mathbf{C 3}$	33.6	31.7	32.1	30.5	33.3	30.6	30.6	32.2	25.4
$\mathbf{C 3 a}$	35.7	35.2	35.0	35.6	35.6	35.6	34.6	34.8	35.6
$\mathbf{C 4}$	24.0	23.3	24.3	22.8	24.2	22.8	23.9	22.7	22.9
$\mathbf{C 5}$	31.0	29.9	31.0	28.9	31.0	29.2	27.5	29.3	28.9
$\mathbf{C 6}$	109.1	109.3	108.9	109.4	108.8	109.2	108.9	109.0	109.4
$\mathbf{C} 7$	37.5	31.9	37.8	30.6	38.2	30.9	38.2	38.8	30.4
$\mathbf{C 7 a}$	62.5	59.5	63.0	59.3	63.0	59.4	62.9	63.3	58.9
$\mathbf{N C H}$	58.8	53.4	58.8	51.7	60.0	53.4	58.9	63.2	51.4
$\boldsymbol{i p s}$-Ar	139.1	139.0	139.2	139.3	139.2	138.5	140.0	140.0	139.4
$\boldsymbol{0}-\mathbf{A r}$	129.1	128.8	128.9	128.4	129.4	128.7	129.1	128.3	128.4
$\boldsymbol{m}-\mathbf{A r}$	127.9	128.1	128.3	128.3	128.1	128.2	128.4	128.3	128.2
\boldsymbol{p}-Ar	126.8	126.9	127.2	127.0	127.1	127.1	127.2	127.0	127.0
$\mathbf{C - 1}$	175.0	174.2	61.2	62.4	213.2	216.4	63.5	71.9	64.7
$\mathbf{M e}$	51.6	51.6	---	---	24.9	24.9	18.2	20.8	18.2
OCH		64.3	64.3	64.1	64.3	64.0	64.3	64.0	64.1
	64.0	64.0	63.9	63.9	64.0	63.9	64.0	63.9	63.8

${ }^{a}$ Values for compounds $\mathbf{3}, \mathbf{5}, \mathbf{9 a}, \mathbf{1 0 a}$ and $\mathbf{1 1 a}$ were assigned on the basis of gHSQC spectra.

 $\begin{array}{ll}4 & \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me} \\ 6 & \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH} \\ 8 & \mathrm{R}=\mathrm{COCH}_{3} \\ \text { 11a } \mathrm{R}=(\mathrm{S})-\mathrm{CHOHCH}_{3}\end{array}$

Table 1 (continued). ${ }^{13} \mathrm{C}$ NMR Chemical shifts of octahydroindoles 3-12 ${ }^{b}$

	12a	9b	10b	11b	12b	$9 c^{c}$	$10 \mathbf{c}^{c}$	$11 c^{c}$	$12 c^{c}$
C2	66.5	72.1	71.6	66.7	66.4	69.1	68.8	64.4	62.9
C3	30.3	29.7	30.4	28.2	27.1	30.1	31.0	27.7	27.4
C3a	35.3	34.5	34.5	34.6	35.0	34.4	34.6	34.8	35.2
C4	22.7	23.0	23.3	22.8	22.8	23.3	23.2	22.9	22.8
C5	29.0	29.5	29.9	29.7	29.0	29.8	29.7	29.1	29.0
C6	109.4	109.2	109.1	109.5	109.4	109.2	109.1	109.5	109.5
C7	31.2	39.2	39.1	31.0	30.9	39.1	39.3	30.2	30.6
C7a	58.8	62.5	63.7	58.9	58.3	62.2	63.8	58.2	58.4
$\mathbf{N C H}_{2}$	53.9	61.4	61.3	52.2	52.7	60.4	61.8	52.0	52.5
$i p s-A r$	139.5	140.6	140.7	139.9	139.8	139.2	141.2	139.8	140.0
o-Ar	128.2	128.3	128.6	128.2	128.2	129.4	128.2	128.1	128.1
$m-A r$	127.8	128.1	128.2	128.2	128.1	128.1	128.0	128.0	128.0
$p-\mathrm{Ar}$	126.7	126.6	126.8	126.7	126.8	127.1	126.5	126.6	126.6
C-1'	71.1	63.4	60.6	60.9	59.8	71.1	75.2	70.7	72.3
Me	20.6	22.9	19.8	22.3	17.7	17.1	16.5	16.7	14.5
OCH_{2}	64.2	64.1	64.0	64.2	64.3	63.9	64.0	64.1	64.2
	63.8	63.8	63.9	63.9	63.9	63.8	63.8	63.8	63.9

${ }^{b}$ Values for compounds $\mathbf{1 2 a}, \mathbf{1 0 b}, \mathbf{1 1 b}, \mathbf{9 c}, \mathbf{1 1} \mathbf{c}$, and $\mathbf{1 2 c}$ were assigned on the basis of gHSQC spectra. ${ }^{c}$ OAc: 170.6 / 170.7 and $21.3 / 21.5$.

$$
\begin{aligned}
& \text { 9b } \quad R=C l\left(1^{\prime} R\right) \\
& \text { 10b } R=C l\left(1^{\prime} S\right) \\
& \text { 9c } \quad R=O A c\left(1^{\prime} R\right) \\
& \text { 10c } R=O A c\left(1^{\prime} S\right)
\end{aligned}
$$

[^0]Table 2. ${ }^{13}$ C NMR Chemical shifts of decahydroquinolines 13-21 ${ }^{a}$

	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}^{b}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}^{\boldsymbol{c}}$	$\mathbf{2 1}$
$\mathbf{C 2}$	52.0	50.6	57.1	56.0	53.0	51.9	53.2	55.7
$\mathbf{C 3}$	68.1	65.4	69.7	61.4	75.5	73.2	73.1	73.6
$\mathbf{C 4}$	33.1	30.5	26.8	33.1	29.6	27.0	24.2	33.3
$\mathbf{C 4 a}$	32.8	28.8	28.3	35.5	31.4	33.6	28.4	32.0
$\mathbf{C 5}$	26.9	26.6	26.4	26.7	26.6	25.0	26.8	26.9
$\mathbf{C 6}$	29.9	29.8	30.2	32.4	29.7	30.2	30.0	29.9
$\mathbf{C 7}$	109.9	109.8	109.3	109.6	109.8	109.4	109.3	109.9
$\mathbf{C 8}$	27.0	25.6	33.5	28.9	28.1	34.1	34.7	27.6
$\mathbf{C 8 a}$	57.0	57.7	56.6	56.2	55.8	56.1	56.9	56.5
Me	---	---	14.9	18.4	16.8	11.5	15.7	16.9
NCH	58.3	58.5	55.3	52.7	52.6	55.7	55.9	52.8
Ar	126.8	127.2	127.1	126.5	126.5	126.9	140.2	126.5
	128.1	128.4	128.3	127.6	127.7	128.2	128.3	127.9
	129.5	128.7	128.5	128.1	128.2	128.2	127.9	128.1
	139.3	139.0	n.0.	141.1	141.2	139.8	126.6	140.6
OCH $\mathbf{2}$	64.2	64.3	63.9	64.0	64.1	64.2	64.2	64.1
	64.1	64.1	64.2	63.7	64.0	63.9	63.9	64.0
Other					170.6	170.4	170.7	

${ }^{a}$ Values for compounds 13, 17, 18, $\mathbf{1 9}$ and $\mathbf{2 1}$ were assigned on the basis of gHSQC spectra ${ }^{b}$ Values taken from an NMR spectrum of a mixture of $\mathbf{9 b}$ and $\mathbf{1 6}$. ${ }^{c}$ Values taken from an NMR spectrum of a mixture of 11c and 19 .

13

14

$15 \mathrm{R}=\mathrm{H}$
$19 R=A c$

$16 \mathrm{R}=\mathrm{Cl}$
$17 R=O A c$
$21 \mathrm{R}=\mathrm{OH}$

18

Experimental Section

General: All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents under anhydrous conditions. Analytical thin-layer chromatography was performed on SiO_{2} (silica gel $60 \mathrm{~F}_{254}$) or $\mathrm{Al}_{2} \mathrm{O}_{3}\left(\mathrm{ALOX} \mathrm{N} / \mathrm{UV}_{254}\right)$, and the products were located with iodoplatinate spray. Chromatography refers to flash chromatography and was carried out on SiO_{2} (silica gel 60 , 230-240 mesh ASTM) or $\mathrm{Al}_{2} \mathrm{O}_{3}$ (aluminium oxide 90). Drying of organic extracts was performed over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvent was accomplished with a rotatory evaporator. Chemical shifts of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm downfield (δ) from $\mathrm{Me}_{4} \mathrm{Si}$. Only noteworthy IR absorptions $\left(\mathrm{cm}^{-1}\right)$ are listed.

Methyl (2S,3aS,7aS)-1-Benzyl-6-oxooctahydroindole-2-carboxylate ethylene acetal (3). To a solution of ketone $1(3.28 \mathrm{~g}, 11 \mathrm{mmol})$ in toluene $(350 \mathrm{~mL})$ were added a catalytic amount of TsOH and ethyleneglycol ($1.84 \mathrm{~mL}, 33 \mathrm{mmol}$), and the reaction mixture was heated at reflux temperature for 4 h in a flask incorporating a Dean-Stark apparatus. The cooled solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with aqueous saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. The organic phase was dried and concentrated to give 3.64 g of $\mathbf{3}$ as a yellowish oil, which was used in the next step without further purification. An analytical sample was obtained by chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. $R_{f}=0.37\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 3:2); $[\alpha]_{\mathrm{D}}{ }^{20}-41\left(c=0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, gCOSY) 1.46-1.58 (m, 1H), 1.64-1.85 (m, 5H), 1.87-1.95 (m, 1H), 2.02-2.11 (m, 1H), 2.13-2.26 (m, 1H), $2.99(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.41(\mathrm{dd}, J=9.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.74-3.92 (m, 6H), 7.18-7.40 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT, gHSQC), see Table 1. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4}$: C 68.86, H 7.60, N 4.22. Found: C 68.48, H 7.55, N 4.20.

Methyl (2S,3aR,7aR)-1-Benzyl-6-oxooctahydroindole-2-carboxylate ethylene acetal (4).

 Operating as above, from ketone $2(1.03 \mathrm{~g}, 3.6 \mathrm{mmol})$, acetal $\mathbf{4}$ was obtained $(1.12 \mathrm{~g})$ as yellowish crystals and used in the next step without further purification. An analytical sample was obtained by chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): R_{f}=0.24\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc 3:2); mp 64-66 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-53\left(c \quad 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.44-1.72 (m, 4H), 1.79-1.94 (m, 3H), 2.12(dt, $J=12.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.58(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{dt}, J=10.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.50(\mathrm{dd}, J=$ $10.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.74(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.83-3.96 (m, 4H), 7.18-7.40 (m, 5H, ArH). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4}$: C 68.86, H 7.60, N 4.22. Found: C 68.56, H 7.85, N 4.24.
(2S,3aS,7aS)-1-Benzyl-2-hydroxymethyl-6-oxooctahydroindole ethylene acetal (5). Ester 3 ($603 \mathrm{mg}, 1.82 \mathrm{mmol}$) was dissolved in THF $\left(9 \mathrm{~mL}\right.$) and then cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{LiBH}_{4}(2 \mathrm{M}$ in THF, $2.8 \mathrm{~mL}, 5.46 \mathrm{mmol}, 3$ equiv) was slowly added, and the reaction mixture was stirred at rt for 24 h . The reaction was quenched by adding $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the organic layer was dried and concentrated to give a residue, which was purified by chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford $441 \mathrm{mg}\left(80 \%\right.$ from 1) of 5 as a colourless oil: $R_{f}=0.31\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;[\alpha]_{\mathrm{D}}{ }^{20}-15(c$ $0.2, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{gCOSY}$) 1.49 (dddd, $J=12.0,5.0,5.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5eq), 1.65 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5$ and H-7), 1.75 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4$), 1.85 (dd, $J=12.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 2.20 (m, 1H, H-3a), 2.40 (brs, 1H, OH), 2.98 (dddd, $J=8.0,7.5,5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.02 (q, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 3.33 (dd, $J=11.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 3.42 (dd, $J=11.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OH}$), 3.69-3.88 (m, 6H, OCH_{2} and NCH_{2}), 7.26-7.32 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}, gHSQC), see Table 1. HRFABMS calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} 304.1906\left(\mathrm{MH}^{+}\right)$, found 304.1913.
(2S,3aR,7aR)-1-Benzyl-2-hydroxymethyl-6-oxooctahydroindole ethylene acetal (6). Operating as above from ester $4(627 \mathrm{mg}, 1.89 \mathrm{mmol})$, alcohol $6(464 \mathrm{mg}, 81 \%$ from 2) was obtained after chromatography $\left(\mathrm{SiO}_{2}, 1 \% \mathrm{MeOH}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, as white crystals: $R_{f}=0.40\left(\mathrm{SiO}_{2}\right.$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$; mp $72-74{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-72$ (c 0.25, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (400 MHz , COSY, $\left.\mathrm{CDCl}_{3}\right) 1.46(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{ax}), 1.52(\mathrm{dq}, J=12.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{eq}), 1.63(\mathrm{dm}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}), 1.64(\mathrm{td}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{ax}), 1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{ax}), 1.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \beta)$, $1.83(\mathrm{dd}, J=12.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{eq}), 2.05(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \alpha), 2.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.99$ (dt, $J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.24(\mathrm{ddd}, J=12.0,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.38(\mathrm{dm} J=10.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), $3.55\left(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.64$ and $3.71(2 \mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}$ each,
NCH_{2}), 3.77-3.93 (m, 4H, OCH_{2}), 7.26-7.32 (m, $\left.5 \mathrm{H}, \mathrm{ArH}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$: C 71.26, H 8.31, N 4.62. Found: C 71.05, H 8.20, N 4.57.
(2S,3aS,7aS)-2-Acetyl-1-benzyloctahydroindol-6-one ethylene acetal (7). To a solution of ester $3(2.45 \mathrm{~g}, 7.4 \mathrm{mmol})$ in THF (140 mL) cooled to $-20^{\circ} \mathrm{C}$ was added $\mathrm{Me}(\mathrm{MeO}) \mathrm{NH} . \mathrm{HCl}(1.82 \mathrm{~g}$, $18.5 \mathrm{mmol}, 2.5 \mathrm{eq})$ and then over 30 min was added a solution of $i-\mathrm{PrMgCl}$ in $\mathrm{THF}(18.5 \mathrm{~mL}, 2.0$ $\mathrm{M}, 5$ equiv) maintaining the temperature at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 40 min and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(50 \mathrm{~mL})$. The organic layer was dried and concentrated to afford 2.65 g of the corresponding Weinreb amide as a yellow oil, which was used without purification: $R_{f}=0.21\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 96: 4\right)$. To a solution of the aforementioned Weinreb amide ($2.65 \mathrm{~g}, 7.4 \mathrm{mmol}$) in THF $(95 \mathrm{~mL})$ cooled to $0^{\circ} \mathrm{C}$ was added dropwise MeMgBr in $\mathrm{Et}_{2} \mathrm{O}(6.4 \mathrm{~mL}, 3 \mathrm{M}, 19.24 \mathrm{mmol}, 2.6 \mathrm{eq})$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). The organic layer was dried and concentrated to give ketone $7(2.32 \mathrm{~g})$ as an oil, which was used without further purification. $R_{f}=$ $0.52\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.85(\mathrm{~m}, 6 \mathrm{H})$, $2.02(\mathrm{dt}, J=12.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 3.02(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 7a), $3.29(\mathrm{dd}, J=9.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.63$ and $3.83\left(2 \mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.75-$ $3.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}),{ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.
(2S,3aR,7aR)-2-Acetyl-1-benzyloctahydroindol-6-one ethylene acetal (8). The above procedure was applied to ester $4(1.12 \mathrm{~g})$ to afford the corresponding Weinreb amide $(1.30 \mathrm{~g}): R_{f}=$ $0.16\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right)$. The Weinreb amide was treated with MeMgBr in $\mathrm{Et}_{2} \mathrm{O}$ (3.12 mL , $3 \mathrm{M}, 9.36 \mathrm{mmol}, 2.6 \mathrm{eq})$ and operating as in the formation of ketone $7,1.21 \mathrm{~g}$ of ketone $\mathbf{8}$ was isolated, which was used without further purification. $R_{f}=0.49\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.40(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{ax}), 1.50-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.90(\mathrm{~m}, 3 \mathrm{H})$, $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.16(\mathrm{dt}, J=13.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 3.36(\mathrm{ddd}, J=11.4,5.7,5.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.35$ (dd, $J=11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.57$ and 3.71 ($2 \mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\left.\mathrm{CH}_{2} \mathrm{Ar}\right)$, 3.75-3.94 (m, 4H, OCH_{2}), 7.20-7.35 (m, 5H, Ar); ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$, DEPT), see Table 1.

Reduction of ketone 7. To a solution of amino ketone $7(2.29 \mathrm{~g}, 7.25 \mathrm{mmol})$ in $\mathrm{MeOH}(85 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(571 \mathrm{mg}, 14.5 \mathrm{mmol})$ in small portions. The resulting mixture was maintained at this temperature for 6 h . Then, water (25 mL) was added and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 50 \mathrm{~mL}$). The organic extracts were washed with brine, dried, and concentrated. Purification of the residue by chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane to hexane/EtOAc 1:1) provided $1.05 \mathrm{~g}(46 \%)$ of alcohol 9 a as a colourless oil and $862 \mathrm{mg}(37 \%)$ of alcohol 10a as a colorless oil, after two succesive purifications. Overall yield for three steps $(\mathbf{3} \rightarrow \mathbf{9 a}+\mathbf{1 0 a})$: 83\%; 1.2:1 ratio of alcohols $\mathbf{9 a}: \mathbf{1 0 a}$.
(2S,3aS,7aS)-1-Benzyl-2-[(1'R)-(1-hydroxyethyl)]octahydroindol-6-one ethylene acetal (9a): $R_{f}=0.30\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;[\alpha]_{\mathrm{D}}{ }^{20}-41\left(c 1.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}, g COSY $) 1.09\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43-1.81(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$, and H-7), $2.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3a), 2.80 (ddd, $J=9.3,6.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.02 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 3.66-3.85 (m, 7H, H$1^{\prime}, \mathrm{NCH}_{2} \mathrm{Ar}$, and OCH_{2}), $7.26-7.32(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{gHSQC}$), see Table 1. HRFABMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} 318.2069\left(\mathrm{MH}^{+}\right)$, found 318.2070.
(2S,3aS,7aS)-1-Benzyl-2-[(1'S)-(1-hydroxyethyl)]octahydroindol-6-one ethylene acetal (10a): $R_{f}=0.30\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5\right) ;[\alpha]_{\mathrm{D}}{ }^{20}-32\left(c 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{gCOSY}\right) 1.16\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-7), 1.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-5), 1.63(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{ax}), 1.77$ (m, 2H, H-4), 1.88 (ddd, $J=12.0,8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3), 2.34 (m, 1H, H-3a), 2.82 (q, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 2.97 (dt, $J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.54$ (quint, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 3.74-3.86 (m, $6 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{NCH}_{2} \mathrm{Ar}$), 7.20-7.40 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, gHSQC), see Table 1. HRFABMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} 318.2069\left(\mathrm{MH}^{+}\right)$, found 318.2074.

Reduction of ketone 8. The above procedure was followed using ketone $\mathbf{8}(1.06 \mathrm{~g}, 3.36 \mathrm{mmol})$. Purification by chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane to hexane-EtOAc 1:1) afforded $622 \mathrm{mg}(54 \%)$ of alcohol 11a as a white solid and then $365 \mathrm{mg}(32 \%)$ of alcohol 12a as a white solid. Overall yield for three steps $(\mathbf{4} \rightarrow \mathbf{1 1 a}+\mathbf{1 2 a})$: 86\%; 1.7:1 ratio of alcohols 11a and 12a. (11a): $R_{f}=0.22\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right) ; \mathrm{mp} 73-75{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-100\left(c 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{gCOSY}$) 1.13 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.41(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{ax}), 1.50$ $(\mathrm{dm}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.90(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.76(\mathrm{dq}, J=$ $10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.21$ (ddd, $J=12.0,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.61$ and 3.77 ($2 \mathrm{~d}, J=14.0 \mathrm{~Hz}$, 1 H each, $\mathrm{NCH}_{2} \mathrm{Ar}$), 3.78-3.93 (m, $5 \mathrm{H}, \mathrm{OCH}_{2}$ and $\mathrm{H}-1$ '), 7.20-7.40 (m, $\left.5 \mathrm{H}, \mathrm{ArH}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, gHSQC), see Table 1. HRFABMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} 318.2069\left(\mathrm{MH}^{+}\right)$, found 318.2074.
(2S,3aR,7aR)-1-Benzyl-2-[(1'R)-(1-hydroxyethyl)]octahydroindol-6-one ethylene acetal (12a): $R_{f}=0.11\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98: 2\right) ; \mathrm{mp} 91-93{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-36\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, g \mathrm{COSY}$) $1.22\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $1.43(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{ax}), 1.50-$ 1.75 (m, 4H, H-3, H-4, H-5, H-7), 1.80 (m, 2H, H-4 and H-5), 2.15 (m, 1H, H-3), $2.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3a), 2.88 (ddd, $J=9.8,4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.22 (ddd, $J=11.0,5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.69$ (m, $\left.1 \mathrm{H}, \mathrm{H}-1 \mathrm{l}^{\prime}\right), 3.73-3.92\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH}_{2}\right.$ and $\left.\mathrm{OCH}_{2}\right), 3.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, gHSQC), see Table 1. HRFABMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} 318.2069\left(\mathrm{MH}^{+}\right)$, found 318.2063 .

Conversion of alcohols 9a-12a to their corresponding chlorides 9b-12b.
Compounds $\mathbf{9 b} \mathbf{- 1 2 b}$ were prepared according to the following procedure: to a solution of alcohol (9a-12a, $50 \mathrm{mg}, 0.16 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{MsCl}(0.014 \mathrm{~mL}, 0.18 \mathrm{mmol}, 1.1$ equiv), followed by $E t_{3} \mathrm{~N}$ ($0.09 \mathrm{~mL}, 0.64 \mathrm{mmol}, 4.0$ equiv). After 4 h at reflux, the reaction mixture was poured into an aqueous 2.5 M NaOH solution (1 mL). After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$, the organic phase was dried and concentrated to afford compounds $\mathbf{9 b} \mathbf{- 1 2 b}$, which were used without further purification.
(2S,3aS,7aS)-1-Benzyl-2-[(1'R)-(1-chloroethyl)]octahydroindol-6-one ethylene acetal (9b). This compound was obtained together with the expanded chloride $\mathbf{1 6} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.53\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.40-2.10(\mathrm{~m}, 8 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.85-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.80-4.00(\mathrm{~m}$,
$7 \mathrm{H})$, 7.20-7.40 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$), see Table 1. HRFABMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27}{ }^{35} \mathrm{ClNO}_{3} 336.1730\left(\mathrm{MH}^{+}\right)$, found 336.1731.
(2S,3aS,7aS)-1-Benzyl-2-[(1'S)-(1-chloroethyl)]octahydroindol-6-one ethylene acetal (10b): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{gCOSY}$) $1.49\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.55-1.65(\mathrm{~m}, 4 \mathrm{H}$, H-5 and H-7), 1.70-1.80 (m, 3H, H-3, H-4), 1.88 (ddd, $J=12.0,8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.25(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-3 \mathrm{a}), 2.94(\mathrm{dt}, J=10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.15(\mathrm{dt}, J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.73$ and 3.87 (2d, J $=13.5 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.70-3.84\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.95\left(\mathrm{dq}, J=11.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 7.20-7.38 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, gHSQC), see Table 1). HRFABMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27}{ }^{35} \mathrm{ClNO}_{3} 336.1730\left(\mathrm{MH}^{+}\right)$, found 336.1727.
(2S,3aR,7aR)-1-Benzyl-2-[(1'S)-(1-chloroethyl)]octahydroindol-6-one ethylene acetal (11b): white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, g \mathrm{COSY}$) $1.39(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{ax}), 1.44(\mathrm{~d}, J=6.8$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ 1.50-1.65 (m, 4H, H-3 and H-4), 1.75-1.95 (m, 3H, H-7eq and H-5), $2.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3a), 2.96 (dt, $J=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.23 (ddd, $J=11.6,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.72$ and 3.84 ($2 \mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}$ each, NCH_{2}), 3.78-3.90 (m, 4H, OCH_{2}), $4.05\left(\mathrm{qd}, J=6.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 7.20-7.40 (m, 5H, ArH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, g \mathrm{HSQC}$), see Table 1. HRFABMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27}{ }^{35} \mathrm{ClNO}_{3}$ 336.1730 (MH ${ }^{+}$), found 336.1741.
(2S,3aR,7aR)-1-Benzyl-2-[(1'R)-(1-chloroethyl)]octahydroindol-6-one ethylene acetal (12b): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.48\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.40-2.05(\mathrm{~m}, 8 \mathrm{H}), 2.25(\mathrm{~m}$, $1 \mathrm{H}), 3.20(\mathrm{~m}, 2 \mathrm{H}), 3.6-4.0(\mathrm{~m}, 7 \mathrm{H}), 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, see Table 1.

Ring expansion of chlorides 9b-12b

Method \boldsymbol{A}. A solution of the appropriate chloride derivative $\mathbf{9 b - 1 2 b}(0.16 \mathrm{mmol})$ in THF (1 mL) was treated with AgOAc ($0.48 \mathrm{mmol}, 3$ equiv) at reflux for 4 h . The reaction mixture was filtered through a bed of Celite and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried and concentrated to afford the corresponding mixture of acetates $\mathbf{9 c - 1 2 c}$ and 17-20. (See Table 1 in the main paper for results in each series and below for the NMR data of formed acetates).

- From $\mathbf{9 b}$, a mixture of acetates $\mathbf{9 c}$ and $\mathbf{1 7}$ was obtained (80% overall yield) in a 1:1.3 ratio according to the NMR spectrum. Purification and separation of the compounds was performed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} ; 9: 1\right)$.
- From 10b, a mixture of acetates $\mathbf{1 0 c}$ and $\mathbf{1 8}$ was obtained (70% overall yield) in a 2.9:1 ratio according to the NMR spectrum. Purification and separation of the compounds was performed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} ; 9: 1\right)$.
- From 11b, a non-separable mixture of acetates $11 \mathbf{c}$ and 19 was obtained (80% overall yield) in a 5.7:1 ratio according to the NMR spectrum and GC-MS analysis. Purification of the mixture of compounds was performed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right)$.
- From 12b, a non-separable mixture of acetates $\mathbf{1 2 c}$ and $\mathbf{2 0}$ was formed (60% overall yield) in a 13:1 ratio according to the NMR spectrum. Purification of the mixture of compounds was performed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right)$.

Ring expansion of alcohols 9a-12a

Method B. A solution of the appropriate alcohol derivative 9a-12a (0.16 mmol) in THF (1 mL) was treated with MsCl ($0.19 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.64 \mathrm{mmol}, 4$ equiv) under an argon atmosphere at $-20^{\circ} \mathrm{C}$ for 1 h . AgOAc ($0.48 \mathrm{mmol}, 3$ equiv) was added and the resulting mixture was warmed to rt over a period of 1 h . The reaction mixture was filtered through a bed of Celite and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with a saturated aqueous NaHCO_{3} solution (10 $\mathrm{mL})$, dried and concentrated to afford the corresponding mixture of acetates.

From 9a. A mixture of acetates $\mathbf{9 c}$ and $\mathbf{1 7}$ was obtained in a 1:2.2 ratio according the NMR spectrum in 78% yield. Purification and separation of the compounds was performed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right)$. For analytical data of $\mathbf{9 c}$ and $\mathbf{1 7}$, see the main text and Tables 1 and 2.

From 10a. A mixture of acetates $\mathbf{1 0 c}$ and $\mathbf{1 8}$ was obtained in a 1.1:1 ratio according the NMR spectrum in 66% yield. Purification and separation of the compounds was performed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right)$.

(2S,3aS,7aS)-1-Benzyl-2-[(1'S)-(1-acetoxyethyl)]octahydroindol-6-one ethylene acetal (10c):

 Colourless oil. $R_{\mathrm{f}}=0.26\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right) .[\alpha]_{\mathrm{D}}{ }^{20}-57\left(c 0.2, \mathrm{CHCl}_{3}\right) ;$ IR $1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, gCOSY) $1.21\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.50(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5)$, $1.50-1.80(\mathrm{~m}, 7 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}), 2.85(\mathrm{dt}, J=11.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a})$, $3.00(\mathrm{dt}, J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.70$ and $3.94\left(2 \mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$ each, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.74-3.86$ (m, 4H, OCH 2), 4.91 (quint, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $7.20-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}), see Table 1. HRFABMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{4} 360.2175\left(\mathrm{MH}^{+}\right)$, found 360.2163 .(2R,3R,4aS,8aS)-3-Acetoxy-1-benzyl-2-methyl-7-oxodecahydroquinoline ethylene acetal (18): Colourless oil. $R_{\mathrm{f}}=0.58\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right) .[\alpha]_{\mathrm{D}}{ }^{20}-24\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ IR $1733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, gCOSY) $1.10\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 1.52(\mathrm{~m}, 1 \mathrm{H}$, H-4), 1.59 (m, 2H, H-6), 1.72 (t, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 1.80$ (m, 1H, H-5), 1.87 (brt, $J=13.0$ Hz, 1H, H-4ax), 1.94 (dm, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{eq}), 2.00$ (s, 3H, OAc), 2.08 (m, 1H, H-4a), 3.00 (dt, $J=12.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 3.20(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2) ; 3.78$ and $3.84(2 \mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{NCH}_{2} \mathrm{Ar}$), 3.86-3.95 (m, 4H, OCH_{2}), 4.99 (ddd, $J=12.0,5.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.20-7.35 (m, $5 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, gHSQC), see Table 2 HRFABMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{4}$ $360.2175\left(\mathrm{MH}^{+}\right)$, found 360.2171 .

From 11a. 11c and 19 were obtained in a 2.2:1 ratio according the NMR spectrum in 76% yield as a unseparable mixture. Purification of the mixture of compounds was performed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right)$.
(2S,3aR,7aR)-1-Benzyl-2-[(1'S)-(1-acetoxyethyl)]octahydroindol-6-one ethylene acetal (11c): Colourless oil. $R_{\mathrm{f}}=0.31\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{gCOSY}\right) 1.23(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.35(\mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{ax}), 1.45-2.05(\mathrm{~m}, 7 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3a), 2.89 (dt, $J=10.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.08$ (dt, $J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}), 3.52$ and 3.88 (2d, J $=13.6 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\left.\mathrm{NCH}_{2}\right), 3.80-4.00\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.14(\mathrm{qd}, J=6.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), 7.157.35 (m, $5 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{gHSQC}$), see Table 1. HRFABMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{4} 360.2175\left(\mathrm{MH}^{+}\right)$, found 360.2158 .
($2 R, 3 R, 4 \mathrm{a} R, 8 \mathrm{aR}$)-3-Acetoxy-1-benzyl-2-methyl-7-oxodecahydroquinoline ethylene acetal (19): Colourless oil. $R_{\mathrm{f}}=0.31\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.45-2.05 (m, 8H), $2.07(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OAc}), 2.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.89(\mathrm{qd}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2 \mathrm{ax}), 3.09(\mathrm{dt}, J=11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 3.68-3.80\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}\right.$ and $\left.\mathrm{OCH}_{2}\right), 4.82(\mathrm{q}, J=$ $2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{eq})$, 7.15-7.30 (m, $5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, see Table 2. HRFABMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{4} 360.2175\left(\mathrm{MH}^{+}\right)$, found 360.2158 .

From 12a. Acetate 12c and traces of $\mathbf{2 0}$ were formed in a 13:1 ratio, according the NMR spectrum and GC-MS analysis, in 40% yield as a unseparable mixture. Purification of the mixture of compounds was performed by chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 9: 1\right)$.
(2S,3aR,7aR)-1-Benzyl-2-[(1'R)-(1-acetoxyethyl)]octahydroindol-6-one ethylene acetal (12c): White Solid. $R_{\mathrm{f}}=0.31\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{gCOSY}\right) 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{ax}), 1.49(\mathrm{dm}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{eq}), 1.60-1.70(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-5$ and $\mathrm{H}-4$), 1.75 (m, 1H, H-3), 1.80-1.90 (m, 2H, H-3 and H-7eq), 1.96 (s, 3H, OAc), 2.28 (m, $1 \mathrm{H}, \mathrm{H}-3 \mathrm{a}$), 3.05 (ddd, $J=8.8,6.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.15 (ddd, $J=11.2,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$), 3.69 and 3.88 ($2 \mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{NCH}_{2} \mathrm{Ar}$), 3.73-3.90 (m, 4H, OCH_{2}), 4.95 (quint, $J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1$ '), $7.20-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$), see Table 1. HRFABMS: calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{4} 360.2175\left(\mathrm{MH}^{+}\right)$, found 360.2163 .

Ring expansion of octahydroindole 9a using silver trifluoroacetate. A solution of alcohol 9a $(62 \mathrm{mg}, 0.2 \mathrm{mmol})$ in THF $(1.4 \mathrm{~mL})$ was treated with $\mathrm{MsCl}(0.019 \mathrm{~mL}, 0.24 \mathrm{mmol}, 1.2$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.11 \mathrm{~mL}, 0.8 \mathrm{mmol}, 4\right.$ equiv) under argon atmosphere at $-20{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{Ag}$ was added ($221 \mathrm{mg}, 1 \mathrm{mmol}, 5$ equiv) and the resulting mixture was warmed to room temperature over a period of 1 h . The mixture was treated with $2.5 \mathrm{~N} \mathrm{NaOH}(1 \mathrm{~mL})$ and stirred for 3 h . The reaction mixture was filtered through a bed of Celite and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried and concentrated to afford a mixture of $\mathbf{9 a}$ and $\mathbf{2 1}$, which was purified by chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, hexane/EtOAc 9:1) to give $16 \mathrm{mg}(26 \%)$ of 9a and $36 \mathrm{mg}(58 \%)$ of ($2 S, 3 R, 4 \mathrm{aS}, 8 \mathrm{aS}$)-1-Benzyl-3-hydroxy-2-methyl-7-oxodecahydroquinoline ethylene acetal (21): Colourless oil. $R_{\mathrm{f}}=0.10\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$, Hexane/EtOAc 8:2). $[\alpha]_{\mathrm{D}}{ }^{20}+1.5\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{COSY}$) $1.17(\mathrm{~d}, J=$ S13
$6.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$), 1.43-1.49 (m, 2H, H-5 and H-6), 1.55-1.74 (m, 5H, H-4, H-5, H-6, and H-8eq), $1.88(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{ax}), 2.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{a}), 2.57(\mathrm{dq}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{ax}), 2.93$ (dt, $J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{a}), 3.36(\mathrm{td}, J=9.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{ax}), 3.57$ and $3.90(2 \mathrm{~d}, J=14.4$ Hz each, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right)$, 3.79-3.94 (m, 4H, OCH_{2}), 7.18-7.35 (m, $5 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, gHSQC), see Table 2. HRFABMS: calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} 318.2069\left(\mathrm{MH}^{+}\right)$, found 318.2064.

12a

 pulse sequence: s2pul

$\stackrel{\cap}{7}$

=-

alse sequence: s2pul

28I. T\%
국
$6 z L \cdot \angle z \tau$
TVI•8zT

8
®
96L.60T

$889.9 L$
$000 \cdot L 5$
902. LL
0てE. $\llcorner\llcorner$

[^0]: 12a $\mathrm{R}=\mathrm{OH}\left(1^{\prime} R\right)$
 11b $\mathrm{R}=\mathrm{Cl}(1$ 'S)
 12b $\mathrm{R}=\mathrm{Cl}(1$ 'R)
 11c $R=O A c(1 ' S)$
 12c $R=O A c(1 ' R)$

