Supporting Information

Ring Expansion of Functionalized Octahydroindoles to Enantiopure *cis*-Decahydroquinolines

Marisa Mena and Josep Bonjoch,*

Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona , Av. Joan XXIII s/n, 08028-Barcelona, Spain

Domingo Gomez Pardo and Janine Cossy

Laboratoire de Chimie Organique, associé au CNRS, ESPCI, 10 rue Vauquelin, 75231 Paris Cedex

05, France

josep.bonjoch@ub.edu

Contents

- Table 1. ¹³ C NMR Chemical shifts of octahydroindoles 3-12	2-3
- Table 2. ¹³ C NMR Chemical shifts of decahydroquinolines 13-21	4
- Experimental and/or NMR data of compounds 3-21	5-14
- Copies of ¹ H NMR and ¹³ C NMR spectra of all new compounds, including COSY and HSQC spectra for compounds 3 , 5 , 6 , 9-14 , 17 , 18 , and 21	15-94

	3	4	5	6	7	8	9a	10a	11a	
C2	(()	(2.0	(()	(17	74.0	70.0	71.0	70.5	((1	
C2	66.2	62.9	66.2	61.7	74.9	70.8	71.0	72.5	66.1	
C3	33.6	31.7	32.1	30.5	33.3	30.6	30.6	32.2	25.4	
C3a	35.7	35.2	35.0	35.6	35.6	35.6	34.6	34.8	35.6	
C4	24.0	23.3	24.3	22.8	24.2	22.8	23.9	22.7	22.9	
C5	31.0	29.9	31.0	28.9	31.0	29.2	27.5	29.3	28.9	
C6	109.1	109.3	108.9	109.4	108.8	109.2	108.9	109.0	109.4	
C7	37.5	31.9	37.8	30.6	38.2	30.9	38.2	38.8	30.4	
C7a	62.5	59.5	63.0	59.3	63.0	59.4	62.9	63.3	58.9	
NCH ₂	58.8	53.4	58.8	51.7	60.0	53.4	58.9	63.2	51.4	
<i>ips</i> -Ar	139.1	139.0	139.2	139.3	139.2	138.5	140.0	140.0	139.4	
<i>o</i> -Ar	129.1	128.8	128.9	128.4	129.4	128.7	129.1	128.3	128.4	
<i>m</i> -Ar	127.9	128.1	128.3	128.3	128.1	128.2	128.4	128.3	128.2	
<i>p</i> -Ar	126.8	126.9	127.2	127.0	127.1	127.1	127.2	127.0	127.0	
C-1'	175.0	174.2	61.2	62.4	213.2	216.4	63.5	71.9	64.7	
Me	51.6	51.6			24.9	24.9	18.2	20.8	18.2	
OCH ₂	64.3	64.3	64.1	64.3	64.0	64.3	64.0	64.1	64.1	
	64.0	64.0	63.9	63.9	64.0	63.9	64.0	63.9	63.8	

 Table 1. ¹³C NMR Chemical shifts of octahydroindoles 3-12^a

^{*a*} Values for compounds **3**, **5**, **9a**, **10a** and **11a** were assigned on the basis of gHSQC spectra.

	12a	9b	10b	11b	12b	9c ^c	10c ^c	11c ^c	12c ^c
C2	66.5	72.1	71.6	66.7	66.4	69.1	68.8	64.4	62.9
C3	30.3	29.7	30.4	28.2	27.1	30.1	31.0	27.7	27.4
C3a	35.3	34.5	34.5	34.6	35.0	34.4	34.6	34.8	35.2
C4	22.7	23.0	23.3	22.8	22.8	23.3	23.2	22.9	22.8
C5	29.0	29.5	29.9	29.7	29.0	29.8	29.7	29.1	29.0
C6	109.4	109.2	109.1	109.5	109.4	109.2	109.1	109.5	109.5
C7	31.2	39.2	39.1	31.0	30.9	39.1	39.3	30.2	30.6
C7a	58.8	62.5	63.7	58.9	58.3	62.2	63.8	58.2	58.4
NCH ₂	53.9	61.4	61.3	52.2	52.7	60.4	61.8	52.0	52.5
<i>ips</i> -Ar	139.5	140.6	140.7	139.9	139.8	139.2	141.2	139.8	140.0
<i>o</i> -Ar	128.2	128.3	128.6	128.2	128.2	129.4	128.2	128.1	128.1
<i>m</i> -Ar	127.8	128.1	128.2	128.2	128.1	128.1	128.0	128.0	128.0
<i>p</i> -Ar	126.7	126.6	126.8	126.7	126.8	127.1	126.5	126.6	126.6
C-1'	71.1	63.4	60.6	60.9	59.8	71.1	75.2	70.7	72.3
Me	20.6	22.9	19.8	22.3	17.7	17.1	16.5	16.7	14.5
OCH ₂	64.2	64.1	64.0	64.2	64.3	63.9	64.0	64.1	64.2
	63.8	63.8	63.9	63.9	63.9	63.8	63.8	63.8	63.9

Table 1 (continued). ¹³C NMR Chemical shifts of octahydroindoles 3-12^b

^b Values for compounds **12a**, **10b**, **11b**, **9c**, **11c**, and **12c** were assigned on the basis of gHSQC spectra. ^c OAc: 170.6 / 170.7 and 21.3 /21.5.

	13	14	15	16 ^b	17	18	19 ^c	21
C2	52.0	50.6	57.1	56.0	53.0	51.9	53.2	55.7
C3	68.1	65.4	69.7	61.4	75.5	73.2	73.1	73.6
C4	33.1	30.5	26.8	33.1	29.6	27.0	24.2	33.3
C4a	32.8	28.8	28.3	35.5	31.4	33.6	28.4	32.0
C5	26.9	26.6	26.4	26.7	26.6	25.0	26.8	26.9
C6	29.9	29.8	30.2	32.4	29.7	30.2	30.0	29.9
C7	109.9	109.8	109.3	109.6	109.8	109.4	109.3	109.9
C8	27.0	25.6	33.5	28.9	28.1	34.1	34.7	27.6
C8a	57.0	57.7	56.6	56.2	55.8	56.1	56.9	56.5
Me			14.9	18.4	16.8	11.5	15.7	16.9
NCH ₂	58.3	58.5	55.3	52.7	52.6	55.7	55.9	52.8
Ar	126.8	127.2	127.1	126.5	126.5	126.9	140.2	126.5
	128.1	128.4	128.3	127.6	127.7	128.2	128.3	127.9
	129.5	128.7	128.5	128.1	128.2	128.2	127.9	128.1
	139.3	139.0	n.o.	141.1	141.2	139.8	126.6	140.6
OCH ₂	64.2	64.3	63.9	64.0	64.1	64.2	64.2	64.1
	64.1	64.1	64.2	63.7	64.0	63.9	63.9	64.0
Other					170.6	170.4	170.7	
					21.3	21.3	21.4	

 Table 2. ¹³C NMR Chemical shifts of decahydroquinolines 13-21^a

^{*a*} Values for compounds **13**, **17**, **18**, **19** and **21** were assigned on the basis of gHSQC spectra ^{*b*} Values taken from an NMR spectrum of a mixture of **9b** and **16**. ^{*c*} Values taken from an NMR spectrum of a mixture of **11c** and **19**.

Experimental Section

General: All reactions were carried out under an argon atmosphere with dry, freshly distilled solvents under anhydrous conditions. Analytical thin-layer chromatography was performed on SiO₂ (silica gel 60 F₂₅₄) or Al₂O₃ (ALOX N/UV₂₅₄), and the products were located with iodoplatinate spray. Chromatography refers to flash chromatography and was carried out on SiO₂ (silica gel 60, 230-240 mesh ASTM) or Al₂O₃ (aluminium oxide 90). Drying of organic extracts was performed over anhydrous Na₂SO₄. Evaporation of solvent was accomplished with a rotatory evaporator. Chemical shifts of ¹H and ¹³C NMR spectra are reported in ppm downfield (δ) from Me₄Si. Only noteworthy IR absorptions (cm⁻¹) are listed.

Methyl (2*S*,3*aS*,7*aS*)-1-Benzyl-6-oxooctahydroindole-2-carboxylate ethylene acetal (3). To a solution of ketone 1 (3.28 g, 11 mmol) in toluene (350 mL) were added a catalytic amount of TsOH and ethyleneglycol (1.84 mL, 33 mmol), and the reaction mixture was heated at reflux temperature for 4 h in a flask incorporating a Dean-Stark apparatus. The cooled solution was diluted with CH₂Cl₂ and washed with aqueous saturated NaHCO₃ (100 mL). The organic phase was dried and concentrated to give 3.64 g of **3** as a yellowish oil, which was used in the next step without further purification. An analytical sample was obtained by chromatography (SiO₂, 1% MeOH in CH₂Cl₂). $R_f = 0.37$ (SiO₂, hexane/EtOAc 3:2); $[\alpha]_D^{20}$ -41 (c = 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.46-1.58 (m, 1H), 1.64-1.85 (m, 5H), 1.87-1.95 (m, 1H), 2.02-2.11 (m, 1H), 2.13 -2.26 (m, 1H), 2.99 (q, J = 7.5 Hz, 1H, H-7a), 3.41 (dd, J = 9.1, 7.7 Hz, 1H, H-2), 3.54 (s, 3H, OCH₃), 3.74-3.92 (m, 6H), 7.18-7.40 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, DEPT, gHSQC), see Table 1. Anal. Calcd for C₁₉H₂₅NO₄: C 68.86, H 7.60, N 4.22. Found: C 68.48, H 7.55, N 4.20.

Methyl (2*S*,3*aR*,7*aR*)-1-Benzyl-6-oxooctahydroindole-2-carboxylate ethylene acetal (4). Operating as above, from ketone 2 (1.03 g, 3.6 mmol), acetal 4 was obtained (1.12 g) as yellowish crystals and used in the next step without further purification. An analytical sample was obtained by chromatography (SiO₂, 1% MeOH in CH₂Cl₂): $R_f = 0.24$ (SiO₂, hexane/EtOAc 3:2); mp 64-66 °C; $[\alpha]_D^{20}$ -53 (*c* 0.4, CHCl₃); ¹H NMR (300 MHz, CDCl₃) 1.44-1.72 (m, 4H), 1.79-1.94 (m, 3H), 2.12 (dt, J = 12.9, 10.7 Hz, 1H), 2.46 -2.58 (m, 1H), 3.37 (dt, J = 10.5, 5.3 Hz, 1H, H-7a), 3.50 (dd, J = 10.2, 3.6 Hz, 1H, H-2), 3.55 (s, 3H, OCH₃), 3.74 (d, J = 13.2 Hz, 1H), 3.81 (d, J = 13.2 Hz, 1H), 3.83 -3.96 (m, 4H), 7.18-7.40 (m, 5H, ArH). ¹³C NMR (75 MHz, CDCl₃, DEPT), see Table 1. Anal. calcd for C₁₉H₂₅NO₄: C 68.86, H 7.60, N 4.22. Found: C 68.56, H 7.85, N 4.24.

(2*S*,3*aS*,7*aS*)-1-Benzyl-2-hydroxymethyl-6-oxooctahydroindole ethylene acetal (5). Ester 3 (603 mg, 1.82 mmol) was dissolved in THF (9 mL) and then cooled to 0 °C. LiBH₄ (2 M in THF, 2.8 mL, 5.46 mmol, 3 equiv) was slowly added, and the reaction mixture was stirred at rt for 24 h. The reaction was quenched by adding H₂O (5 mL) and the organic layer was dried and concentrated to give a residue, which was purified by chromatography (SiO₂, 1% MeOH in CH₂Cl₂) to afford 441 mg (80% from 1) of 5 as a colourless oil: R_f = 0.31 (SiO₂, CH₂Cl₂/MeOH 95:5); [α]_D²⁰ -15 (*c* 0.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.49 (dddd, *J* = 12.0, 5.0, 5.0, 1.2 Hz, 1H, H-5eq), 1.65 (m, 3H, H-5 and H-7), 1.75 (m, 3H, H-3 and H-4), 1.85 (dd, *J* = 12.4, 7.2 Hz, 1H, H-3), 2.20 (m, 1H, H-3a), 2.40 (brs, 1H, OH), 2.98 (dddd, *J* = 8.0, 7.5, 5.4, 1.8 Hz, 1H, H-2), 3.02 (q, *J* = 7.2 Hz, 1H, H-7a), 3.33 (dd, *J* = 11.0, 1.2 Hz, 1H, CH₂OH), 3.42 (dd, *J* = 11.0, 3.6 Hz, 1H, CH₂OH), 3.69-3.88 (m, 6H, OCH₂ and NCH₂), 7.26-7.32 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 1. HRFABMS calcd for C₁₈H₂₆NO₃ 304.1906 (MH⁺), found 304.1913.

(2*S*,3*aR*,7*aR*)-1-Benzyl-2-hydroxymethyl-6-oxooctahydroindole ethylene acetal (6). Operating as above from ester **4** (627 mg, 1.89 mmol), alcohol **6** (464 mg, 81% from **2**) was obtained after chromatography (SiO₂, 1% MeOH in CH₂Cl₂), as white crystals: $R_f = 0.40$ (SiO₂, CH₂Cl₂/MeOH 95:5); mp 72-74 °C; $[\alpha]_D^{20}$ -72 (*c* 0.25, CHCl₃); ¹H NMR (400 MHz, COSY, CDCl₃) 1.46 (t, J = 12.0 Hz, 1H, H-7ax), 1.52 (dq, J = 12.5, 2.5 Hz, 1H, H-4eq), 1.63 (dm, J = 12.0 Hz, 1H, H-5eq), 1.64 (td, J = 10.0, 3.2 Hz, 1H, H-5ax), 1.78 (m, 1H, H-4ax), 1.80 (m, 1H, H-3 β), 1.83 (dd, J = 12.0, 5.5 Hz, 1H, H-7eq), 2.05 (q, J = 12.0 Hz, 1H, H-3 α), 2.30 (m, 1H, H-3a), 2.99 (dt, J = 10.0, 3.2 Hz, 1H, CH₂OH), 3.55 (dd, J = 10.8, 3.2 Hz, 1H, CH₂OH), 3.64 and 3.71 (2d, J = 13.6 Hz, 1H each, NCH₂), 3.77-3.93 (m, 4H, OCH₂), 7.26-7.32 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, DEPT), see Table 1. Anal. Calcd for C₁₈H₂₅NO₃: C 71.26, H 8.31, N 4.62. Found: C 71.05, H 8.20, N 4.57.

(2*S*,3a*S*,7a*S*)-2-Acetyl-1-benzyloctahydroindol-6-one ethylene acetal (7). To a solution of ester **3** (2.45 g, 7.4 mmol) in THF (140 mL) cooled to -20 °C was added Me(MeO)NH.HCl (1.82 g, 18.5 mmol, 2.5 eq) and then over 30 min was added a solution of *i*-PrMgCl in THF (18.5 mL, 2.0 M, 5 equiv) maintaining the temperature at -10 °C. The mixture was stirred for 40 min and quenched with saturated aqueous NH₄Cl solution (50 mL). The organic layer was dried and concentrated to afford 2.65 g of the corresponding Weinreb amide as a yellow oil, which was used without purification: $R_f = 0.21$ (SiO₂, CH₂Cl₂/MeOH 96:4). To a solution of the aforementioned Weinreb amide (2.65 g, 7.4 mmol) in THF (95 mL) cooled to 0 °C was added dropwise MeMgBr in Et₂O (6.4 mL, 3 M, 19.24 mmol, 2.6 eq). The reaction mixture was stirred at 0 °C for 1 h and quenched with saturated aqueous NH₄Cl solution (50 mL). The organic layer was dried and concentrated to give ketone **7** (2.32 g) as an oil, which was used without further purification. $R_f = 0.52$ (SiO₂, CH₂Cl₂/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃) 1.53 (m, 1H), 1.61-1.85 (m, 6H), 2.02 (dt, J = 12.3, 7.2 Hz, 1H), 2.04 (s, 3H, CH₃), 2.25 (m, 1H, H-3a), 3.02 (q, J = 6.9 Hz, 1H, H-7a), 3.29 (dd, J = 9.3, 7.8 Hz, 1H, H-2), 3.63 and 3.83 (2d, J = 13.5 Hz, 1H each, NCH₂Ar), 3.75-3.95 (m, 4H, OCH₂), 7.20-7.35 (m, 5H, Ar); ¹³C NMR (50 MHz, CDCl₃) DEPT), see Table 1.

(2*S*,3*aR*,7*aR*)-2-Acetyl-1-benzyloctahydroindol-6-one ethylene acetal (8). The above procedure was applied to ester **4** (1.12 g) to afford the corresponding Weinreb amide (1.30 g): $R_f = 0.16$ (SiO₂, CH₂Cl₂/MeOH 95:5). The Weinreb amide was treated with MeMgBr in Et₂O (3.12 mL, 3 M, 9.36 mmol, 2.6 eq) and operating as in the formation of ketone **7**, 1.21 g of ketone **8** was isolated, which was used without further purification. $R_f = 0.49$ (SiO₂, CH₂Cl₂/MeOH 95:5); ¹H NMR (300 MHz, CDCl₃) 1.40 (t, J = 12.0 Hz, 1H, H-5ax), 1.50-1.70 (m, 3H), 1.75-1.90 (m, 3H), 2.07 (s, 3H, CH₃), 2.16 (dt, J = 13.5, 11.4 Hz, 1H), 2.50 (m, 1H, H-3a), 3.36 (ddd, J = 11.4, 5.7, 5.7 Hz, 1H, H-7a), 3.35 (dd, J = 11.0, 1.5 Hz, 1H, H-2), 3.57 and 3.71 (2d, J = 13.2 Hz, 1H each, CH₂Ar), 3.75-3.94 (m, 4H, OCH₂), 7.20- 7.35 (m, 5H, Ar); ¹³C NMR (50 MHz, CDCl₃, DEPT), see Table 1.

Reduction of ketone 7. To a solution of amino ketone 7 (2.29 g, 7.25 mmol) in MeOH (85 mL) at -20 °C was added NaBH₄ (571 mg, 14.5 mmol) in small portions. The resulting mixture was maintained at this temperature for 6 h. Then, water (25 mL) was added and the mixture was extracted with Et₂O (3x50 mL). The organic extracts were washed with brine, dried, and concentrated. Purification of the residue by chromatography (SiO₂, hexane to hexane/EtOAc 1:1) provided 1.05 g (46%) of alcohol **9a** as a colourless oil and 862 mg (37%) of alcohol **10a** as a colourless oil, after two succesive purifications. Overall yield for three steps ($3 \rightarrow 9a + 10a$): 83%; 1.2:1 ratio of alcohols **9a**:10a.

(2S,3aS,7aS)-1-Benzyl-2-[(1'*R*)-(1-hydroxyethyl)]octahydroindol-6-one ethylene acetal (9a): $R_f = 0.30 \text{ (SiO}_2, \text{CH}_2\text{Cl}_2/\text{MeOH 95:5}); \quad [\alpha]_D^{20} - 41 \text{ (}c \text{ 1.3, CHCl}_3\text{)}; ¹\text{H NMR (}400 \text{ MHz, CDCl}_3\text{,}$ gCOSY) 1.09 (d, $J = 6.6 \text{ Hz}, 3\text{H}, \text{CH}_3$), 1.43-1.81 (m, 8H, H-3, H-4, H-5, and H-7), 2.20 (m, 1H, H-3a), 2.80 (ddd, J = 9.3, 6.9, 3.3 Hz, 1H, H-2), 3.02 (q, J = 7.2 Hz, 1H, H-7a), 3.66-3.85 (m, 7H, H-1', NCH₂Ar, and OCH₂), 7.26-7.32 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 1. HRFABMS: calcd for C₁₉H₂₈NO₃ 318.2069 (MH⁺), found 318.2070.

(2*S*,3a*S*,7a*S*)-1-Benzyl-2-[(1'*S*)-(1-hydroxyethyl)]octahydroindol-6-one ethylene acetal (10a): $R_f = 0.30$ (SiO₂, CH₂Cl₂/MeOH 95:5); $[\alpha]_D^{20} - 32$ (*c* 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.16 (d, J = 6.4 Hz, 3H, CH₃), 1.50 (m, 2H, H-5 and H-7), 1.60 (m, 2H, H-3 and H-5), 1.63 (t, J = 12.0 Hz, 1H, H-7ax), 1.77 (m, 2H, H-4), 1.88 (ddd, J = 12.0, 8.0, 7.0 Hz, 1H, H-3), 2.34 (m, 1H, H-3a), 2.82 (q, J = 7.5 Hz, 1H, H-2), 2.97 (dt, J = 12.0, 6.0 Hz, 1H, H-7a), 3.54 (quint, J = 6.2 Hz, 1H, H-1'), 3.74-3.86 (m, 6H, OCH₂, NCH₂Ar), 7.20-7.40 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 1. HRFABMS: calcd for C₁₉H₂₈NO₃ 318.2069 (MH⁺), found 318.2074.

Reduction of ketone 8. The above procedure was followed using ketone 8 (1.06 g, 3.36 mmol). Purification by chromatography (SiO₂, hexane to hexane-EtOAc 1:1) afforded 622 mg (54%) of alcohol **11a** as a white solid and then 365 mg (32%) of alcohol **12a** as a white solid. Overall yield for three steps $(4 \rightarrow 11a + 12a)$: 86%; 1.7:1 ratio of alcohols **11a** and **12a**. (2*S*,3*aR*,7*aR*)-1-Benzyl-2-[(1'*S*)-(1-hydroxyethyl)]octahydroindol-6-one ethylene acetal (11a): $R_f = 0.22$ (SiO₂, CH₂Cl₂/MeOH 98:2); mp 73-75 °C; $[\alpha]_D^{20}$ -100 (*c* 0.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.13 (d, J = 6.4 Hz, 3H, CH₃), 1.41 (t, J = 12.0 Hz, 1H, H-7ax), 1.50 (dm, J = 12.0 Hz, 1H), 1.60-1.68 (m, 2H), 1.73-1.90 (m, 4H), 2.21 (m, 1H, H-3a), 2.76 (dq, J = 10.0, 2.4 Hz, 1H, H-2), 3.21 (ddd, J = 12.0, 5.5, 5.5 Hz, 1H, H-7a), 3.61 and 3.77 (2d, J = 14.0 Hz, 1H each, NCH₂Ar), 3.78-3.93 (m, 5H, OCH₂ and H-1'), 7.20-7.40 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 1. HRFABMS: calcd for C₁₉H₂₈NO₃ 318.2069 (MH⁺), found 318.2074.

(2*S*,3*aR*,7*aR*)-1-Benzyl-2-[(1'*R*)-(1-hydroxyethyl)]octahydroindol-6-one ethylene acetal (12a): $R_f = 0.11$ (SiO₂, CH₂Cl₂/MeOH 98:2); mp 91-93 °C; $[\alpha]_D^{20}$ - 36 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃, *g*COSY) 1.22 (d, *J* = 6.6 Hz, 3H, CH₃), 1.43 (t, *J* = 12.0 Hz, 1H, H-7ax), 1.50-1.75 (m, 4H, H-3, H-4, H-5, H-7), 1.80 (m, 2H, H-4 and H-5), 2.15 (m, 1H, H-3), 2.32 (m, 1H, H-3a), 2.88 (ddd, *J* = 9.8, 4.8, 2.2 Hz, 1H, H-2), 3.22 (ddd, *J* = 11.0, 5.4, 5.4 Hz, 1H, H-7a), 3.69 (m, 1H, H-1'), 3.73-3.92 (m, 6H, NCH₂ and OCH₂), 3.96 (br s, 1H, OH), 7.20-7.40 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 1. HRFABMS: calcd for C₁₉H₂₈NO₃ 318.2069 (MH⁺), found 318.2063.

Conversion of alcohols 9a-12a to their corresponding chlorides 9b-12b.

Compounds **9b-12b** were prepared according to the following procedure: to a solution of alcohol (**9a-12a**, 50 mg, 0.16 mmol) in THF (1 mL) at 0 °C was added MsCl (0.014 mL, 0.18 mmol, 1.1 equiv), followed by Et_3N (0.09 mL, 0.64 mmol, 4.0 equiv). After 4 h at reflux, the reaction mixture was poured into an aqueous 2.5 M NaOH solution (1 mL). After extraction with CH_2Cl_2 (3 x 2 mL), the organic phase was dried and concentrated to afford compounds **9b-12b**, which were used without further purification.

(2S,3aS,7aS)-1-Benzyl-2-[(1'*R*)-(1-chloroethyl)]octahydroindol-6-one ethylene acetal (9b). This compound was obtained together with the expanded chloride 16; ¹H NMR (300 MHz, CDCl₃) 1.53 (d, J = 6.6 Hz, 3H, CH₃), 1.40-2.10 (m, 8H), 2.25 (m, 1H), 2.85-3.00 (m, 2H), 3.80-4.00 (m, 7H), 7.20-7.40 (m, 5H); ¹³C NMR (75 MHz, CDCl₃), see Table 1. HRFABMS calcd for $C_{19}H_{27}^{35}CINO_3 336.1730 (MH^+)$, found 336.1731.

(2*S*,3a*S*,7a*S*)-1-Benzyl-2-[(1'*S*)-(1-chloroethyl)]octahydroindol-6-one ethylene acetal (10b): yellow oil; ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.49 (d, J = 6.8 Hz, 3H, CH₃), 1.55-1.65 (m, 4H, H-5 and H-7), 1.70-1.80 (m, 3H, H-3, H-4), 1.88 (ddd, J = 12.0, 8.0, 7.0 Hz, 1H, H-3), 2.25 (m, 1H, H-3a), 2.94 (dt, J = 10.5, 6.8 Hz, 1H, H-7a), 3.15 (dt, J = 9.2, 6.4 Hz, 1H, H-2), 3.73 and 3.87 (2d, J = 13.5 Hz, 1H each, NCH₂Ar), 3.70-3.84 (m, 4H, OCH₂), 3.95 (dq, J = 11.5, 6.4 Hz, 1H, H-1'), 7.20-7.38 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 1) . HRFABMS calcd for C₁₉H₂₇³⁵ClNO₃ 336.1730 (MH⁺), found 336.1727.

(2*S*,3a*R*,7a*R*)-1-Benzyl-2-[(1'*S*)-(1-chloroethyl)]octahydroindol-6-one ethylene acetal (11b): white solid; ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.39 (t, J = 12.0 Hz, 1H, H-7ax), 1.44 (d, J = 6.8 Hz, 3H, CH₃) 1.50-1.65 (m, 4H, H-3 and H-4), 1.75-1.95 (m, 3H, H-7eq and H-5), 2.42 (m, 1H, H-3a), 2.96 (dt, J = 10.0, 3.0 Hz, 1H, H-2), 3.23 (ddd, J = 11.6, 5.6, 5.6 Hz, 1H, H-7a), 3.72 and 3.84 (2d, J = 14 Hz, 1H each, NCH₂), 3.78-3.90 (m, 4H, OCH₂), 4.05 (qd, J = 6.8, 3.2 Hz, 1H, H-1'), 7.20-7.40 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 1. HRFABMS calcd for C₁₉H₂₇³⁵ClNO₃ 336.1730 (MH⁺), found 336.1741.

(2*S*,3*aR*,7*aR*)-1-Benzyl-2-[(1'*R*)-(1-chloroethyl)]octahydroindol-6-one ethylene acetal (12b): yellow oil; ¹H NMR (300 MHz, CDCl₃) 1.48 (d, J = 6.6 Hz, CH₃), 1.40-2.05 (m, 8H), 2.25 (m, 1H), 3.20 (m, 2H), 3.6-4.0 (m, 7H), 7.20-7.35 (m, 5H); ¹³C NMR (75 MHz, CDCl₃), see Table 1.

Ring expansion of chlorides 9b-12b

Method A. A solution of the appropriate chloride derivative **9b-12b** (0.16 mmol) in THF (1 mL) was treated with AgOAc (0.48 mmol, 3 equiv) at reflux for 4 h. The reaction mixture was filtered through a bed of Celite and diluted with CH_2Cl_2 . The organic layer was washed with saturated NaHCO₃ (10 mL), dried and concentrated to afford the corresponding mixture of acetates **9c-12c** and **17-20**. (See Table 1 in the main paper for results in each series and below for the NMR data of formed acetates).

- From **9b**, a mixture of acetates **9c** and **17** was obtained (80% overall yield) in a 1:1.3 ratio according to the NMR spectrum. Purification and separation of the compounds was performed by chromatography (SiO₂, CH₂Cl₂/EtOAc; 9:1).
- From 10b, a mixture of acetates 10c and 18 was obtained (70 % overall yield) in a 2.9:1 ratio according to the NMR spectrum. Purification and separation of the compounds was performed by chromatography (SiO₂, CH₂Cl₂/EtOAc; 9:1).
- From **11b**, a non-separable mixture of acetates **11c** and **19** was obtained (80 % overall yield) in a 5.7:1 ratio according to the NMR spectrum and GC-MS analysis. Purification of the mixture of compounds was performed by chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1).
- From 12b, a non-separable mixture of acetates 12c and 20 was formed (60 % overall yield) in a 13:1 ratio according to the NMR spectrum. Purification of the mixture of compounds was performed by chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1).

Ring expansion of alcohols 9a-12a

Method B. A solution of the appropriate alcohol derivative 9a - 12a (0.16 mmol) in THF (1 mL) was treated with MsCl (0.19 mmol, 1.2 equiv) and Et₃N (0.64 mmol, 4 equiv) under an argon atmosphere at -20 °C for 1 h. AgOAc (0.48 mmol, 3 equiv) was added and the resulting mixture was warmed to rt over a period of 1 h. The reaction mixture was filtered through a bed of Celite and diluted with CH₂Cl₂. The organic layer was washed with a saturated aqueous NaHCO₃ solution (10 mL), dried and concentrated to afford the corresponding mixture of acetates.

From 9a. A mixture of acetates **9c** and **17** was obtained in a 1:2.2 ratio according the NMR spectrum in 78 % yield. Purification and separation of the compounds was performed by chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1). For analytical data of **9c** and **17**, see the main text and Tables 1 and 2.

From 10a. A mixture of acetates **10c** and **18** was obtained in a 1.1:1 ratio according the NMR spectrum in 66 % yield. Purification and separation of the compounds was performed by chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1).

(2*S*,3a*S*,7a*S*)-1-Benzyl-2-[(1'*S*)-(1-acetoxyethyl)]octahydroindol-6-one ethylene acetal (10c): Colourless oil. $R_{\rm f} = 0.26$ (SiO₂, CH₂Cl₂/EtOAc 9:1). [α]_D²⁰ - 57 (*c* 0.2, CHCl₃); IR 1732 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.21 (d, *J* = 6.0 Hz, 3H, CH₃), 1.50 (t, *J* = 11.0 Hz, 1H, H-5), 1.50-1.80 (m, 7H), 1.90 (s, 3H, OAc), 2.25 (m, 1H, H-3a), 2.85 (dt, *J* = 11.0, 6.4 Hz, 1H, H-7a), 3.00 (dt, *J* = 10.0, 7.0 Hz, 1H, H-2), 3.70 and 3.94 (2d, *J* = 14.0 Hz, 1H each, NCH₂Ar), 3.74-3.86 (m, 4H, OCH₂), 4.91 (quint, *J* = 6.2 Hz, 1H, H-1'), 7.20-7.35 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃), see Table 1. HRFABMS: calcd for C₂₁H₃₀NO₄ 360.2175 (MH⁺), found 360.2163.

(2*R*,3*R*,4a*S*,8a*S*)-3-Acetoxy-1-benzyl-2-methyl-7-oxodecahydroquinoline ethylene acetal (18): Colourless oil. $R_{\rm f} = 0.58$ (SiO₂, CH₂Cl₂/EtOAc 9:1). [α]_D²⁰ - 24 (*c* 1.0, CHCl₃); IR 1733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.10 (d, *J* = 7.0 Hz, 3H, CH₃), 1.48 (m, 1H, H-5), 1.52 (m, 1H, H-4), 1.59 (m, 2H, H-6), 1.72 (t, *J* = 12.4 Hz, 1H, H-8ax), 1. 80 (m, 1H, H-5), 1.87 (brt, *J* = 13.0 Hz, 1H, H-4ax), 1.94 (dm, *J* = 12.4 Hz, 1H, H-8eq), 2.00 (s, 3H, OAc), 2.08 (m, 1H, H-4a), 3.00 (dt, *J* = 12.8, 4.4 Hz, 1H, H-8a), 3.20 (q, *J* = 6.5 Hz, 1H, H-2); 3.78 and 3.84 (2d, *J* = 14.4 Hz, 1H each, NCH₂Ar), 3.86-3.95 (m, 4H, OCH₂), 4.99 (ddd, *J* = 12.0, 5.6, 4.4 Hz, 1H, H-3), 7.20-7.35 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 2 HRFABMS: calcd for C₂₁H₃₀NO₄ 360.2175 (MH⁺), found 360.2171.

From 11a. **11c** and **19** were obtained in a 2.2:1 ratio according the NMR spectrum in 76 % yield as a unseparable mixture. Purification of the mixture of compounds was performed by chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1).

(2*S*,3a*R*,7a*R*)-1-Benzyl-2-[(1'*S*)-(1-acetoxyethyl)]octahydroindol-6-one ethylene acetal (11c): Colourless oil. $R_f = 0.31$ (SiO₂, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.23 (d, J = 6.4 Hz, 3H, CH₃), 1.35 (t, J = 12.4 Hz, 1H, H-7ax), 1.45-2.05 (m, 7H), 2.07 (s, 3H, OAc), 2.25 (m, 1H, H-3a), 2.89 (dt, J = 10.0, 2.8 Hz, 1H, H-2), 3.08 (dt, J = 12.0, 6.0 Hz, 1H, H-7a), 3.52 and 3.88 (2d, J = 13.6 Hz, 1H each, NCH₂), 3.80-4.00 (m, 4H, OCH₂), 5.14 (qd, J = 6.4, 2.4 Hz, 1H, H-1'), 7.15-7.35 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃, gHSQC), see Table 1. HRFABMS: calcd for $C_{21}H_{30}NO_4 360.2175$ (MH⁺), found 360.2158. (2*R*,3*R*,4*aR*,8*aR*)-3-Acetoxy-1-benzyl-2-methyl-7-oxodecahydroquinoline ethylene acetal (19): Colourless oil. $R_f = 0.31$ (SiO₂, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) 1.04 (d, J = 7.2 Hz, 3H, CH₃), 1.45-2.05 (m, 8H), 2.07 (s, 3H, OAc), 2.34 (m, 1H, H-4a), 2.89 (qd, J = 7.2, 1.2 Hz, 1H, H-2ax), 3.09 (dt, J = 11.5, 4.4 Hz, 1H, H-8a), 3.68-3.80 (m, 6H, NCH₂Ar and OCH₂), 4.82 (q, J =2.8 Hz, 1H, H-3eq), 7.15-7.30 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃), see Table 2. HRFABMS: calcd for C₂₁H₃₀NO₄ 360.2175 (MH⁺), found 360.2158.

From 12a. Acetate **12c** and traces of **20** were formed in a 13:1 ratio, according the NMR spectrum and GC-MS analysis, in 40% yield as a unseparable mixture. Purification of the mixture of compounds was performed by chromatography (SiO₂, CH₂Cl₂/EtOAc 9:1).

(2*S*,3*aR*,7*aR*)-1-Benzyl-2-[(1'*R*)-(1-acetoxyethyl)]octahydroindol-6-one ethylene acetal (12c): White Solid. $R_f = 0.31$ (SiO₂, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃, gCOSY) 1.24 (d, J = 6.4 Hz, 3H, CH₃), 1.37 (t, J = 12.0 Hz, 1H, H-7ax), 1.49 (dm, J = 12.0 Hz, 1H, H-5eq), 1.60-1.70 (m, 3H, H-5 and H-4), 1.75 (m, 1H, H-3),1.80-1.90 (m, 2H, H-3 and H-7eq), 1.96 (s, 3H, OAc), 2.28 (m, 1H, H-3a), 3.05 (ddd, J = 8.8, 6.4, 2.8 Hz, 1H, H-2), 3.15 (ddd, J = 11.2, 5.6, 5.6 Hz, 1H, H-7a), 3.69 and 3.88 (2d, J = 14.4 Hz, 1H each, NCH₂Ar), 3.73-3.90 (m, 4H, OCH₂), 4.95 (quint, J = 6.4Hz, 1H, H-1'), 7.20-7.35 (m, 5H, ArH); ¹³C NMR (100 MHz, CDCl₃), see Table 1. HRFABMS: calcd for C₂₁H₃₀NO₄ 360.2175 (MH⁺), found 360.2163.

Ring expansion of octahydroindole 9a using silver trifluoroacetate. A solution of alcohol 9a (62 mg, 0.2 mmol) in THF (1.4 mL) was treated with MsCl (0.019 mL, 0.24 mmol, 1.2 equiv) and Et₃N (0.11 mL, 0.8 mmol, 4 equiv) under argon atmosphere at -20 °C for 1 h. CF₃CO₂Ag was added (221 mg, 1 mmol, 5 equiv) and the resulting mixture was warmed to room temperature over a period of 1 h. The mixture was treated with 2.5 N NaOH (1 mL) and stirred for 3 h. The reaction mixture was filtered through a bed of Celite and diluted with CH₂Cl₂. The organic layer was dried and concentrated to afford a mixture of 9a and 21, which was purified by chromatography (Al₂O₃, hexane/EtOAc 9:1) to give 16 mg (26%) of 9a and 36 mg (58%) of (2*S*,3*R*,4a*S*,8a*S*)-1-Benzyl-3-hydroxy-2-methyl-7-oxodecahydroquinoline ethylene acetal (21): Colourless oil. $R_f = 0.10$ (Al₂O₃, Hexane/EtOAc 8:2). $[\alpha]_D^{20}$ +1.5 (*c* 0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃, COSY) 1.17 (d, *J* =

6.0 Hz, 3H, CH₃), 1.43-1.49 (m, 2H, H-5 and H-6), 1.55-1.74 (m, 5H, H-4, H-5, H-6, and H-8eq), 1.88 (t, J = 12.6 Hz, 1H, H-8ax), 2.04 (m, 1H, H-4a), 2.57 (dq, J = 9.0, 6.0 Hz, 1H, H-2ax), 2.93 (dt, J = 12.6, 4.5 Hz, 1H, H-8a), 3.36 (td, J = 9.0, 7.2 Hz, 1H, H-3ax), 3.57 and 3.90 (2d, J = 14.4 Hz each, NCH₂Ar), 3.79-3.94 (m, 4H, OCH₂), 7.18-7.35 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃, gHSQC), see Table 2. HRFABMS: calcd for C₁₉H₂₈NO₃ 318.2069 (MH⁺), found 318.2064.

Тu

10a

I.

I

τu

III

I.

т

 $\mathbf{T}^{(i)}$

 \mathbf{T}'

ď

I

I.

₹

+ 20 +

ţ

Ι

Τ

ð

I.

L

+ č T

2

ţ

л Ч Т Т

T۲

HO

ТP

HO,

I,

Τ··

0 V O

٦ŀ

11 Me OAC

Š

OAc

τ··

24 BH-W

