SUPPLEMENTARY MATERIAL FOR

Polarization of Charge-Transfer Bands and Rectification in Hexadecylquinolinium 7,7,8-Tricyanoquinodimethanide and Its Tetrafluoro Analog

Andrei Honciuc [a], Akihiro Otsuka [b,c], Yu-Hsiang Wang [a], Samuel K. McElwee [a], Stephen A. Woski [a], Gunzi Saito [c], and Robert M. Metzger [a]*
[a] Laboratory for Molecular Electronics, Chemistry Department, University of Alabama, Tuscaloosa, AL 35487-0336, USA.
[b] Research Center for Low-Temperature and Materials Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
[c] Division of Chemistry, Graduate School of Science, Kyoto University, Kita-
Shirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
* Corresponding author. E-mail: rmetzger@bama.ua.edu

Submitted to J. Phys. Chem. on 23 April 2006

Synthesis

The synthesis of 5 [15] was improved here by using a two-fold excess of $\mathrm{Li}^{+} \mathrm{TCNQF}_{4}{ }^{\bullet-}$, as was suggested for $\mathbf{1}$ [4]. All the solvents were distilled prior to use. Compound 5 was synthesized from the reaction of N-(hexadecyl)lepidinium bromide $(0.503 \mathrm{~g}, 1.12 \mathrm{mmol})$ and $\mathrm{Li}^{+} \mathrm{TCNQF}_{4}{ }^{\bullet-}(0.633 \mathrm{~g}, 2.24 \mathrm{mmol})$ in dry DMSO (6 ml) in the presence of pyridine $(0.35 \mathrm{~mL})$. The above deep green mixture was heated at 105$110^{\circ} \mathrm{C}$ for 5 h under nitrogen atmosphere. The dark wine-red reaction mixture was cooled, and 25 ml of $\mathrm{CH}_{3} \mathrm{CN}$ was added, then stored overnight in a refrigerator at $5^{\circ} \mathrm{C}$. The resulting precipitate was filtered off, washed with chilled $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{~mL})$, pure water ($2 \mathrm{~mL} \times 2$), methanol (5 mL), and finally with hot methanol (50 mL), then dried in vacuo to separate compound 5 as a purple fine powder ($0.411 \mathrm{~g}, 59.6 \%$ yield). MALDIMS ($\mathrm{m} / \mathrm{Z}, \%$ relative intensity): 617 ($[\mathrm{M}+\mathrm{H}]^{+}, 100$), 597 (42), 553 (16), 550 (21). ${ }^{1} \mathrm{H}-$ NMR (DMSO-d ${ }_{6}$) $\delta 9.65$ (d, 1H, $J=5.99 \mathrm{~Hz}$), 8.51-8.68 (m, 4H), 8.32 (t, 1H, J = 7.99 $\mathrm{Hz}), 8.08-8.13(\mathrm{~m}, 1 \mathrm{H}), 5.01-5.09(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.40$ (broad s, 2H), 1.22 (m, 24H), $0.85(\mathrm{t}, 3 \mathrm{H}, J=6.59 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)(353 \mathrm{~K}) \delta-146.48(\mathrm{~d}, J=$ 13.91 Hz), -148.95 (d, $J=13.91 \mathrm{~Hz}$). Anal. Found: C, 72.13; H, 6.56; N, 9.05; F, 12.43; $\mathrm{Br}, 0.00 \%$. Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{~F}_{4}$: C, 72.04; H, 6.54; N, 9.09; F, 12.33; Br, 0.00\%. Compound 6 was similarly synthesized from N-[(12-mercaptoacetyl)dodecane]lepidinium iodide ($0.445 \mathrm{~g}, 0.867 \mathrm{mmol}$) and $\mathrm{Li}^{+} \mathrm{TCNQF}_{4}{ }^{\bullet}{ }^{-}(0.494 \mathrm{mg}$, 1.75 mmol) in dry DMSO (4.5 mL) in the presence of pyridine (0.27 mL) at around $100^{\circ} \mathrm{C}$ for 4 h under nitrogen atmosphere. The dark purple reaction mixture was cooled, and 25 mL of $\mathrm{CH}_{3} \mathrm{CN}$ and 10 mL of $(\mathrm{Et})_{2} \mathrm{O}$ were added, then the solution was stored in a refrigerator at $5^{\circ} \mathrm{C}$. The resultant purple precipitate was filtered off, washed with $\mathrm{CH}_{3} \mathrm{CN}$ (25 mL), pure water ($2 \mathrm{~mL} \times 2$), methanol (10 mL), and finally with hot methanol (50 mL), then dried in vacuo to separate compound 6 as a purple powder ($0.267 \mathrm{~g}, 48.5 \%$). MALDI-MS (m/Z, \% relative intensity): $635\left([\mathrm{M}+\mathrm{H}]^{+}, 100\right), 427$ (12), 387 (64). ${ }^{1} \mathrm{H}-$ NMR (DMSO-d d $_{6} \delta 9.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=5.84 \mathrm{~Hz}), 8.51-8.70(\mathrm{~m}, 4 \mathrm{H}), 8.33(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.66$ $\mathrm{Hz}), 8.09-8.14(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.09(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{t}, 2 \mathrm{H}, J=7.19 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.94-$ 2.03 (m, 2H), 1.43-1.50 (m, 2H), 1.21-1.28 (m, 16H). Anal. Found: C, 66.53; H, 5.49; N, 8.74; S, 4.74\%. Calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{OSF}_{4}$: C, 66.22; H, 5.40; N, 8.83; F, 11.98; S,
5.04\%. From additional doublet peaks in NMR (not listed above), both 5 and $\mathbf{6}$ seem to have a minor (presumed) rotamer and/or aggregates at room temperature, and even at higher temperatures (up to 373 K) in DMSO- d_{6}.

Theoretical calculations

The heats of formation of a methyl analog of 5 , computed by semi-empirical molecular orbital theory PM3 as a function of the torsion angle θ (illustrated in structure 1 of Fig. 1) yields (Fig. A) a global minimum ($-8976.8 \mathrm{kcal} / \mathrm{mol}$) at $\theta=+25$ to $+30^{\circ}$, a local maximum of $-8973.6 \mathrm{kcal} / \mathrm{mol}$ at $\theta=-10^{\circ}$, and a local minimum ($-8974.3 \mathrm{kcal} / \mathrm{mol}$) at $\theta=-30$ to -35°.

Figure A. Computed heats of formation of a methyl analog of 5, as a function of the torsion angle θ between the $3 \mathrm{CNQF}_{4}$ plane and the quinolinium plane, calculated at the PM3 level.

UV-Visible spectra of a mixed monolayer

We also studied a mixed multilayer. In Figure B we present the UV-Vis spectrum of a 14 -layer film of $\mathbf{1}$ deposited on quartz, with the first 7 or so layers transferred below the collapse point at $28 \mathrm{mN} \mathrm{m}^{-1}$, and the rest transferred at 35 mN m^{-1} (beyond the collapse point). The polarization dependence of bands B and C on the angle φ is clearly seen, although the band maxima are slightly displaced from those of Figure 6.

Figure B. Polarized UV-Vis spectra of 14 LB monolayers of 1, deposited (the first 7 layers or so) at $28 \mathrm{mN} \mathrm{m}^{-1}$ and (the rest) at $35 \mathrm{mN} \mathrm{m}^{-1}$ onto the same quartz substrate. The baseline increases with angle φ because the sampled area increases. The spectra clearly show the opposite polarization dependence of bands B and C.

If the spectra of Figure \mathbf{B} are re-measured after several days, the angular dependence (polarization) is lost; a thermodynamically more favorable arrangement is probably reached.

Temperature dependence of UV-Vis spectra of 5

Unpolarized UV-Vis spectra of LB multilayers of 5 as a function of temperature are shown in Figure C. A shoulder at 423 nm sharpens by $120^{\circ} \mathrm{C}$. A peak centered at 611 nm , invisible at $26^{\circ} \mathrm{C}$, grows to a broad band at $120^{\circ} \mathrm{C}$. Using the method used in [15], we obtained a Z-type 12-layer multilayer of 5 by alternate-layer deposition, but its UV-Vis spectrum at room temperature is identical to that of Figure C. The data reported for $\mathbf{5}$ in Ref. [15] may be due either to micelle formation, or to some artifact

Figure C. Unpolarized UV-Vis spectrum of a 12-layer Y-type 2-sided LB film of 5 on quartz (6 LB monolayers per side), as a function of temperature. A shoulder at 423 nm becomes distinct at $120^{\circ} \mathrm{C}$. A second, more prominent, peak shifts from 504 nm at $26^{\circ} \mathrm{C}$ to 515 nm at $120^{\circ} \mathrm{C}$. A band, invisible at $26^{\circ} \mathrm{C}$, grows to a broad but weak band, centered at 611 nm at $120^{\circ} \mathrm{C}$.

