Total Syntheses of (\pm)- β-Erythroidine and (\pm)-8-oxo- β Erythroidine by an Intramolecular Diels-Alder Cycloaddition of a 2-Amidoacrolein

Yong He and Raymond L. Funk*
Department of Chemistry, The Pennsylvania State University,
University Park, PA 16802
rlf@chem.psu.edu

General Methods. Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere using flame-dried glassware. All moisture sensitive reagents were added via a dry syringe or cannula where possible. Anhydrous acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, benzene, tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), toluene, triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, and dimethylformamide (DMF) were obtained from a solvent dispensing system. All other solvents and reagents were used as obtained from commercial sources without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Bruker 300 or 400 MHz spectrometers. Infrared spectra were obtained using a Perkin-Elmer 1600 FTIR. Chromatographic purification was performed using Sorbent Technologies silica gel 60 (230-400 mesh). Melting points were obtained on a Thomas Hoover melting point apparatus.

Amidodioxin (12). To a solution of 2,2-dimethyl-1,3-dioxan-5-one (9) ($4.23 \mathrm{~g}, 32.5 \mathrm{mmol}$) in anhydrous benzene (110 mL) was added anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(25.0 \mathrm{~g})$ followed by dropwise addition of a solution of 3-bromo-3-buten-1-amine ${ }^{1}(6.57 \mathrm{~g}, 36.7 \mathrm{mmol})$ in anhydrous benzene (10 mL) at rt. After stirring at rt for 7 hrs , the reaction mixture was filtered and concentrated to provide the imine ($8.50 \mathrm{~g}, 100 \%$) which was directly used in the next step. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.61(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (s, 2H), 4.18 (s, 2H), 3.40 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.73 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.38 (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8: 170.0,131.5,118.4,100.1$, $64.7,60.0,48.0,42.3,23.7$. To the freshly prepared imine (8.50 g , $32,4 \mathrm{mmol}$) in anhydrous THF (108 mL) at $-25^{\circ} \mathrm{C}$ was added (E)-3,5hexadienoyl chloride ${ }^{2}(4.28 \mathrm{~g}, 32.8 \mathrm{mmol})$ dropwise. The mixture was stirred at the same temperature for $10 \sim 15 \mathrm{~min}$ and then PhNEt_{2} (distilled from $\mathrm{CaH}_{2}, 6.71 \mathrm{~mL}, 42.2 \mathrm{mmol}$) was added dropwise. The reaction mixture was allowed to warm to rt slowly and stirred overnight. The mixture was then diluted with EtOAc and washed with sat. $\mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and brine. The organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification by silica-gel chromatography (hexane/EtOAc, 4/1) provided the amidodioxin 12 as a light-brown oil ($8.05 \mathrm{~g}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.51$ (t, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.32 (ddd, $J=16.9,10.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 6.11 (dd, $J=15.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ (dt, $J=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$,
5.46 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.15$ (d, $J=1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.59 (br s, 2H), 3.18 (d, $J=7.0 \mathrm{~Hz}$, 2H), 2.70 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.52 ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 171.7,142.4,136.3,133.7,130.7,127.2,118.7,116.5,115.0$, 99.4, 59.6, 46.3, 39.9, 37.2, 24.2; IR (neat) 2992, 2940, $1662 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{16} \mathrm{H}_{22}{ }^{79} \mathrm{BrNO}_{3} \mathrm{Na}^{+} 378.0675$, found 378.0669; calcd for $\mathrm{C}_{16} \mathrm{H}_{22}{ }^{81} \mathrm{BrNO}_{3} \mathrm{Na}^{+} 378.0655$, found 378.0650.

12

14

Endo cycloadduct 14 and exo cycloadduct 15 The amidodioxin 12 ($7.00 \mathrm{~g}, 19.6 \mathrm{mmol}$) was dissolved in toluene (660 mL) and then a catalytic amount of BHT ($\sim 50 \mathrm{mg}$) and PhNEt_{2} (distilled, 31 mL) were added. The solution was heated at reflux for 5 hrs and then concentrated. Purification by silica-gel chromatography (hexane/EtOAc, $3 / 1$ to $1 / 1$) provided the endo cycloadduct 14 as a yellow oil ($700 \mathrm{mg}, 12 \%$) and exo cycloadduct15 as a yellow oil ($3.85 \mathrm{~g}, 66 \%$) in the order of elution from chromatography.

Data for endo cycloadduct 14: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.52$ (s , 1 H), 5.89 (dddd, $J=9.6,2.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.71 (ddd, $J=9.6,6.8$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dt}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.54 (ddd, $J=14.0,7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.09 (ddd, $J=14.0,7.6,7.6 \mathrm{~Hz}$,

1H), 3.01 (m, 1H), 2.67 (ddd, $J=14.0,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60-2.42 (m, 5H), $2.30(\mathrm{~m}, 1 \mathrm{H}), 1.76$ (ddd, $J=14.0,8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.8,175.6,130.6,130.2,123.3,118.8,70.1$, 41.0, 40.5, 39.3, 33.1, 26.3, 23.4; IR (neat) 2934, $1724,1698 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{13} \mathrm{H}_{16}{ }^{79} \mathrm{BrNO}_{2} \mathrm{Na}^{+}$320.0257, found 320.0247; calcd for $\mathrm{C}_{13} \mathrm{H}_{16}{ }^{81} \mathrm{BrNO}_{2} \mathrm{Na}^{+}$322.0237, found 322.0219.

Data for exo cycloadduct $15:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53$ (s , 1 H), $5.85(\mathrm{~m}, 1 \mathrm{H}), 5.67$ (dt, $J=2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.54 (dddd, $J=$ $10.0,3.6,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ (ddd, $J=$ $15.2,9.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (ddd, $J=15.2,9.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (m, $1 \mathrm{H}), 2.80-2.61(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.2,175.3,130.2,127.2,126.1$, 119.0, 70.5, 40.3, 39.8, 36.3, 32.7, 22.5, 19.6; IR (neat) 2926, 1732, $1684 \mathrm{~cm}^{-1}$; HRMS (MNa+) calcd for $\mathrm{C}_{13} \mathrm{H}_{16}{ }^{79} \mathrm{BrNO}_{2} \mathrm{Na}^{+} 320.0257$, found 320.0248; calcd for $\mathrm{C}_{13} \mathrm{H}_{16}{ }^{81} \mathrm{BrNO}_{2} \mathrm{Na}^{+}$322.0237, found 322.0231.

2,4-Dinitrophenylhydrazone

derivative of endo cycloadduct 14 for X-ray analysis: 2,4-Dinitrophenylhydrazine (contains $\sim 30 \%$ water, $2.14 \mathrm{~g}, 7.56 \mathrm{mmol}$) in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(7.5 \mathrm{~mL}$) was added carefully to a mixture of water (10 mL) and EtOH (35 mL), providing a DNP solution ($\sim 0.13 \mathrm{M}$). To a solution of endo
cycloadduct 14 ($58 \mathrm{mg}, 0.19 \mathrm{mmol}$) in $\mathrm{EtOH}(1.2 \mathrm{~mL})$ at rt was added the above prepared DNP solution ($\sim 0.13 \mathrm{M}, 1.80 \mathrm{~mL}, 0.23$ mmol) dropwise and stirred at rt for $15-20 \mathrm{~min}$. Then it was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organics were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide the pure hydrazone derivative ($70 \mathrm{mg}, 93 \%$) as a yellow solid. mp : $140-142{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.1$ (s, 1H), 9.11 (d, $J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.44 (s, 1H), 5.84 (m, 1H), 5.74 (m, 1H), 5.64 (br s, 1H), 5.46 (d, $J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (dddd, $J=6.8,5.6,5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (ddd, $J=$ $14.4,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.60$ (dd, $J=$ $12.48 .0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=16.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (m, 1H), 2.35 (dd, $J=16.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.01 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0,146.9,144.7,138.4,130.8,130.3,129.7$, 129.4, 123.9, 123.3, 119.0, 116.3, 66.0, 42.8, 41.0, 39.7, 33.1, 29.7, 24.0. IR (neat) 3298, 2937, 1693, 1615, 1588, 1519, $1333 \mathrm{~cm}^{-1}$.

Z-Enolate (7). To a solution of $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}(4.09 \mathrm{~mL}$, $19.3 \mathrm{mmol})$ and 18 -crown-6 ($17.0 \mathrm{~g}, 64.3 \mathrm{mmol}$) in anhydrous THF $(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added KHMDS (0.5 M in toluene, 38.5 mL , 19.3 mmol) dropwise. After stirring for 20 min at the same temperature, a solution of aldehyde $15(3.83 \mathrm{~g}, 12.8 \mathrm{mmol})$ in anhydrous THF (140 mL) was added dropwise via cannula. The
reaction was allowed to warm to $0^{\circ} \mathrm{C}$ over 3 hrs and quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(250 \mathrm{~mL})$. The resulting solution was extracted with EtOAc $(350 \mathrm{~mL})$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification by silica-gel chromatography (hexane/EtOAc, 1/1) provided Z-enolate 7 (4.32 g , 95%) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.15$ (d, $J=12.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.94 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.80 (dddd, $J=10.0,3.9,3.9$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ (dt, $J=1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (dddd, $J=10.0,3.9$, 2.0, 2.0 Hz, 1H), 5.44 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (s, 3H), 3.36 (ddd, $J=$ $15.4,9.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (ddd, $J=15.4,9.8,5.5 \mathrm{z}, 1 \mathrm{H}$), 3.20 (m, 1 H), 2.88 (dddd, $J=14.2,9.8,5.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.66 (dddd, $J=14.2$, $9.8,5.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=16.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dt}, J=$ $13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=16.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H})$, 1.73 (dt, $J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.2$, $165.5,148.9,130.8,127.9,125.9,122.7,118.7,65.3,51.9,40.1$, 40.0, 39.2, 37.1, 28.5, 21.0; IR (neat) 2927, 1726, $1690 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{16} \mathrm{H}_{20}{ }^{79} \mathrm{BrNO}_{3} \mathrm{Na}^{+}$376.0519, found 376.0491; calcd for $\mathrm{C}_{16} \mathrm{H}_{20}{ }^{81} \mathrm{BrNO}_{3} \mathrm{Na}^{+}$378.0498, found 378.0464.

E-Dienolate (16). To a solution of Z-enolate 7 ($3.78 \mathrm{~g}, 10.7 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}(890 \mathrm{~mL})$ were added $\mathrm{Pd}(\mathrm{OAc})_{2}(241 \mathrm{mg}, 1.07$ $\mathrm{mmol}), \mathrm{PPh}_{3}(562 \mathrm{mg}, 2.14 \mathrm{mmol})$ and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(2.96 \mathrm{~g}$, $21.4 \mathrm{mmol})$. The solution was bubbled through N_{2} for 15 min and
heated under reflux for 16 hrs . The reaction mixture was filtered and concentrated. Purification of the residue by silica-gel chromatography (hexane/EtOAc, 1/1) provided 16 (2.66 g, 90\%) as a colorless solid. mp: 112-113 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.87-$ 5.79 (m, 2H), $5.65(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.21$ (ddd, $J=$ 13.2, 6.2, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 (s, 3H), 2.93 (dddd, $J=12.6,12.6,4.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.20$ (ddd, $J=16.0,10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.11-2.04 (m, 2H), 1.84 (m, 1H), $1.39(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,166.9,154.1,140.3$, $127.9,126.8,116.6,114.9,64.6,51.4,37.6,37.5,37.2,34.0,26.3$, 21.3; IR (neat) 2940, 1732, 1694, 1416, 1347, 1273, $1176 \mathrm{~cm}^{-1}$; HRMS (MNa+) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}^{+}$296.1257, found 296.1256.

E-Dienoic acid (6). To a solution of ester 16 ($1.56 \mathrm{~g}, 5.71 \mathrm{mmol}$) in THF (14 mL) at rt was added $\mathrm{LiOH}\left(1 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 14.3 \mathrm{~mL}, 14.3$ mmol) and stirred at rt for 3 hrs . The reaction mixture was concentrated to remove most of the THF and diluted with water. The resulting colorless solid was collected via filtration and rinsed with a small amount of water and $\mathrm{Et}_{2} \mathrm{O}$ to provide the pure acid $6(1.10 \mathrm{~g})$ as a colorless solid. The filtrate was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x) to provide additional batch of acid (300 mg). Total yield: 95%. $\mathrm{mp}: 162-163{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 12.37$ (br s, 1 H), 5.82-5.78 (m, 2H), 5.55 ($\mathrm{s}, 1 \mathrm{H}$), 5.17 (t, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ ($\mathrm{s}, 1 \mathrm{H}$),
3.96 (ddd, $J=13.2,6.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddd, $J=12.4,12.4,3.2$ Hz, 1H), 2.76 (dd, $J=9.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.53 (dd, $J=8.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.41 (ddd, $J=13.2,3.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.16 (m, 1H), 2.09-2.00 (m, 2 H), 1.91 (dd, $J=12.8,3.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (m, 1H), 1.39 (ddd, $J=$ 12.8, 11.2, $4.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO): $\delta 170.7,167.7$, 151.2, 140.6, 127.7, 127.1, 116.1, 63.8, 36.9, 36.7, 36.6, 33.8, 26.1, 21.0; IR (neat) 2918, 1727, $1646 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}^{+}$282.1101, found 282.1098.

Tetracyclic lactone (5). A solution of acid 6 ($1.26 \mathrm{~g}, 4.86 \mathrm{mmol}$) and BHT ($\sim 15 \mathrm{mg}$) in toluene (440 mL) was heated under reflux for 6 hrs. The reaction was then cooled to rt and concentrated. Purification by silica-gel chromatography (hexane/EtOAc, $1 / 4$, then EtOAc only) afforded the lactone $5(1.12 \mathrm{~g}, 89 \%)$ as a colorless solid. mp: 105-107 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88$ (br d, $J=9.2 \mathrm{~Hz}, 1$ H), 5.81 (br d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.74 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58$ (d, $J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (dd, 13.6, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (d, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (d, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (m, 1H), 2.68-2.61 (m, 2H), 2.30-2.17 (m, 3H), 2.05 (br d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.00(\mathrm{br} \mathrm{d}, ~ J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (br d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.9, 169.2, 130.4, 128.3, 127.3, 124.8, 70.0, 60.4, 38.1, 35.8, 32.9, 30.2, 29.8, 24.4, 22.1; IR (neat) 2923, 1738, $1685 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}^{+}$282.1101, found 282.1095.

Orthoester. To a solution of lactone $5(1.01 \mathrm{~g}, 4.08 \mathrm{mmol})$ in anhydrous THF (32 mL) at rt was added distilled ethylene glycol $(2.29 \mathrm{~mL}, 40.9 \mathrm{mmol}), \mathrm{CH}(\mathrm{OMe})_{3}(1.41 \mathrm{~mL}, 12.3 \mathrm{mmol})$ and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (120 mg , $\sim 1.23 \mathrm{mmol}$) sequentially. Then, the resulting mixture was stirred at rt for 30 hrs . Several drops of $\mathrm{Et}_{3} \mathrm{~N}$ were added and the mixture was concentrated. To the residue was added sat. NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organics were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated. The residue was further dried under high vacuum and then triturated with $\mathrm{Et}_{2} \mathrm{O}$ to provide the pure orthoester ($1.15 \mathrm{~g}, 95 \%$) as a colorless solid. mp: 151-152 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82$ (ddd, $J=10.0,3.6,3.6,1.3 \mathrm{~Hz}$, 1 H), 5.73 (ddd, $J=10.0,4.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.16 (ddd, $J=13.2$, $7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14-3.98 (m, 6H), 3.01 (dddd, $J=13.6,11.2,5.2$, 1.2 Hz, 1H), 2.69-2.59 (m, 2H), 2.50 (br d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (dddd, $J=16.4,4.8,2.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.21-2.01 (m, 5 H), 1.78-1.69 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.7,129.4,128.5,127.3$, 124.9, 118.3, 66.6, 64.3, 64.2, 61.1, 38.1, 35.5, 33.3, 30.8, 29.8, 23.7, 22.2; IR (neat) 2907, $1687 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na}^{+}$320.1363, found 326.1361.

Conjugated diene (17). n-BuLi (2.5 M in hexane, $3.29 \mathrm{~mL}, 8.22$ mmol) was added dropwise to a solution of diisopropylamine (1.16 $\mathrm{mL}, 8.22 \mathrm{mmol}$) in anhydrous THF (24 mL) at $-78^{\circ} \mathrm{C}$. After stirring for 30 min at $-78{ }^{\circ} \mathrm{C}$, a solution of orthoester $(1.04 \mathrm{~g}, 3.42 \mathrm{mmol})$ in anhydrous THF (44 mL) was added dropwise via cannula. The mixture was stirred for additional 40 min at $-78{ }^{\circ} \mathrm{C}$, then PhSeSePh $(2.35 \mathrm{~g}, 7.53 \mathrm{mmol})$ was added in one portion. Then the reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ within 2 hrs and then quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(88 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL})$. The mixture was extracted with EtOAc (2x) and the combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification by silica-gel chromatography (hexane/EtOAc, 4/1 with $1 \% \mathrm{NEt}_{3}$, then hexane/EtOAc, $1 / 4$ with $1 \% \mathrm{NEt}_{3}$) afforded the selenide (1.56 g , 95%) as a light-brown foamy solid. ${ }^{1} \mathrm{H}$ NMR of the crude product showed the formation of a single diastereomer. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.68-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 3 \mathrm{H}), 5.85-5.81(\mathrm{~m}, 1 \mathrm{H})$, 5.74-5.70 (m, 1H), 4.17-4.09 (m, 3H), 4.06-3.95 (m, 4H), 3.62 (d, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 (ddd, $J=12.4,12.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69 (m, 1H), 2.42 (br d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.28 (dddd, $J=16.4,4.8,2.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.72-1.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.0,135.0,129.0,128.7,128.5,128.2,128.0,127.0,124.9$, 118.2, 66.5, 64.22, 64.21, 60.4, 48.5, 43.4, 33.9, 30.7, 30.5, 23.6, 22.2. The selenide ($1.56 \mathrm{~g}, 3.40 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (34 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$ and pyridine ($0.64 \mathrm{~mL}, 7.3 \mathrm{mmol}$) was added followed
by addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ ($50 \mathrm{wt} \%, 0.56 \mathrm{~mL}, 9.72 \mathrm{mmol}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 12 hrs , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. NaHCO_{3}, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$) and concentrated. Purification by silica-gel chromatography (ethyl acetate/hexane, 1/19) afforded the conjugated diene 17 ($889 \mathrm{mg}, 86 \%$) as a colorless solid. mp : 170$172{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.64(\mathrm{dt}, J=10.0,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.13 (ddd, $J=10.0,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.81 (s, 1H), 4.21 (ddd, $J=$ $13.4,7.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.15-3.97 (m, 6H), 3.18 (ddd, $J=13.5,10.1$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dddd, $J=16.9,5.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.54 (br d, J $=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.75(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,157.5,135.5,127.8,126.4,123.3$, $118.8,118.0,66.3,64.2,64.1,63.5,34.2,34.0,33.2,24.9,24.2$; IR (neat) 2904, $1682 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+}$ 324.1206, found 324.1180 .

17
\qquad

Deconjugated diene (4). KHMDS (0.5 M in toluene, $8.39 \mathrm{~mL}, 4.20$ mmol) was added to anhydrous DME (21 mL) at $-78{ }^{\circ} \mathrm{C}$ followed by addition of distilled HMPA ($4.38 \mathrm{~mL}, 25.2 \mathrm{mmol}$) and then stirred for 15 min . Conjugated diene 17 ($632 \mathrm{mg}, 2.10 \mathrm{mmol}$) was added in one portion at $-78^{\circ} \mathrm{C}$. The reaction was allowed to slowly warm up to $-30 \sim-25{ }^{\circ} \mathrm{C}$ in 3 hrs . Them the mixture was recooled to $-78{ }^{\circ} \mathrm{C}$, HOAc (0.68 mL) was added followed by addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}(46$ mL). The mixture was allowed to warm to rt and extracted with

EtOAc (3x). The combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification by silica-gel chromatography (ethyl acetate/benzene, 4/1) afforded the deconjugated diene 4 (532 mg , 84%) as a colorless solid. mp: 172-174 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.99(\mathrm{~m}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 4.18$ (ddd, $J=13.6,7.2$, $0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.96(\mathrm{~m}, 6 \mathrm{H}), 3.12(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~m}$, 1 H), 3.00 (d, $J=19.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (dddd, $J=17.2,5.2,2.4,2.4 \mathrm{~Hz}$, 1 H), 2.69-2.64 (m, 2H), 2.57 (br d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (m, 1H), 1.65 (dd, $J=16.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.2$, $130.8,129.8,124.7,124.6,124.2,120.4,118.4,66.3,64.2,64.1$, $61.6,35.8,35.5,34.8,31.2,23.1$; IR (neat) 2902, $1702 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}^{+} 324.1206$, found 324.1206.

18

Diol (18). A solution of deconjugated diene 4 ($140 \mathrm{mg}, 0.46$ mmol) and rose bengal ($14 \mathrm{mg}, 0.014 \mathrm{mmol}$) in $\mathrm{MeOH}(56 \mathrm{~mL})$ was bubbled through O_{2} at $0^{\circ} \mathrm{C}$ under a GE 275 watt sun lamp irradiation for $1.5 \sim 2$ hrs. Then the solution was concentrated to provide the crude endoperoxide which was directly used in the next step. mp: $165-166{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.72$ (dd, $J=8.4$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.64$ (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (m, 1H), 4.18 (dd, J $=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~m}, 1 \mathrm{H}), 4.06-3.98(\mathrm{~m}, 5 \mathrm{H}), 3.05(\mathrm{ddd}, J=$ 13.6, 12.0, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.48-2.39 (m, 2H),
$2.41(\mathrm{~d}, ~ J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{br} \mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\mathrm{br} \mathrm{d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.80 (dd, $J=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.61 ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.5,133.4,130.0,129.9,127.1,117.6,81.1$, $70.3,66.2,64.6,63.9,63.8,36.4,35.9,35.5,32.4,22.6$; IR (neat) 2904, $1703 \mathrm{~cm}^{-1}$. HRMS (MNa^{+}) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{6} \mathrm{Na}^{+}$356.1105, found 356.1103. The residue was dissolved in MeOH (5 mL) and thiourea ($52 \mathrm{mg}, 0.68 \mathrm{mmol}$) was added and stirred overnight at rt. The reaction mixture was concentrated and purification by silica-gel chromatography (ethyl acetate only, to EtOAc/MeOH, 10/1) afforded the diol 18 ($112 \mathrm{mg}, 73 \%$ for two steps) as a colorless solid. mp: 145-147 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.32$ (d, $J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~m}, 1 \mathrm{H}), 4.11-3.93(\mathrm{~m}$, 7 H), 3.69 (br s, 1H), 3.63 (br s, 1H), 3.15 (m, 1H), 2.50-2.41 (m, 4H), 2.32-2.27 (m, 3H), $1.86(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.1$, 136.1, 130.1, 129.3, 129.2, 117.7, 72.3, 68.4, 66.4, 65.2, 64.3, 64.0, 41.5, 37.5, 37.0, 34.2, 22.4; IR (neat) 3417, 2904, $1682 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{Na}^{+} 358.1261$, found 358.1256.

Lactam (19). To a solution of diol 18 ($110 \mathrm{mg}, 0.33 \mathrm{mmol}$) in anhydrous THF (10 mL) were added anhydrous DMSO (1 mL), KOH (ground powder, $220 \mathrm{mg}, 3.92 \mathrm{mmol}$), $\mathrm{Et}_{4} \mathrm{NBr}$ ($208 \mathrm{mg}, 0.99 \mathrm{mmol}$) and MeI ($0.69 \mathrm{~mL}, 11 \mathrm{mmol}$). The resulting mixture was stirred
vigorously at rt overnight. Then, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered. The filtrate was concentrated and the residue was purified by silica-gel chromatography (ethyl acetate) to afford the methyl ether 19 ($96 \mathrm{mg}, 88 \%$) as a colorless solid. mp: 152-154 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 6.71 (dd, $J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.18 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.94 (s, 1H), 4.24 (ddd, $J=12.8,7.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H})$, 4.19-3.97 (m, 7H), 3.41 (s, 3H), 3.23 (ddd, $J=13.6,10.0,6.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.87 (dd, $J=11.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.46 (dddd, $J=16.8,4.8$, 2.4, 2.4 Hz, 1H), 2.37 (br d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (m, 1H), 1.91 (m, 1 H), 1.68-1.63 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.1,156.5$, 135.4, 127.4, 126.9, 124.1, 120.2, 117.8, 73.8, 66.2, 65.9, 64.2, 64.1, 56.4, 41.8, 33.9, 33.5, 24.2; IR (neat) 2927, $1683 \mathrm{~cm}^{-1}$; HRMS (MNa+) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{Na}^{+} 354.1312$, found 354.1312.

19
8 -Oxo- β-erythroidine. To a solution of 19 ($10.0 \mathrm{mg}, 0.030 \mathrm{mmol}$) in THF (0.25 mL) was added $1 \mathrm{~N} \mathrm{HCl}(30 \mu \mathrm{~L}, 0.030 \mathrm{mmol})$ and stirred at $0^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. NaHCO_{3}, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide pure 8 -oxo- β-erythroidine ($8.3 \mathrm{mg}, 96 \%$). NMR data is consistent to the literature report. ${ }^{3}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{dd}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.97 (s, 1H); 4.74 (br d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59$ (br d, $J=15.6 \mathrm{~Hz}$, 1 H), 4.36 (ddd, $J=13.8,7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.09 (m, 1H), 3.43 ($\mathrm{s}, 3 \mathrm{H}$),
3.22 (ddd, $J=13.8,10.8 .6 .0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13-3.10 (m, 2H), 2.82 (dd, J $=12.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{br} \mathrm{dd}, J=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.72 (dd, $J=12.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.1$, $168.5,155.8,135.9,127.7,127.4,124.3,120.6,73.6,70.0,65.2$, 56.6, 41.7, 33.8, 31.7, 24.8; IR (neat) 2931, 1739, 1682, 1456, 1390, 1380, 1361, 1245, 1188, 1120, 1097, 1053, 918, 886, 857, $730 \mathrm{~cm}^{-1}$; HRMS (MNa^{+}) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}^{+}$310.1050, found 310.1032.

Amine. To a solution of lactam $19(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ in anhydrous THF (4 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{AlH}_{3} \cdot \mathrm{EtNMe}_{2}$ complex $(0.5$ M in toluene, $0.31 \mathrm{~mL}, 0.16 \mathrm{mmol}$). After stirring for 20 min at $0^{\circ} \mathrm{C}$, the reaction was quenched by careful addition of THF/ $\mathrm{H}_{2} \mathrm{O}(1 / 1,5.6$ mL). After stirring for a while, brine and couple of drops of NEt_{3} were added and the resulting solution was extracted with EtOAc $(3 \mathrm{x})$. The combined organics were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Purification by silica-gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}+1 \% \mathrm{NEt}_{3}\right)$ afforded the amine as a colorless semi-solid ($32 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40(\mathrm{dd}, J=10.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (br d, $J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (br s, 1H); 4.20 (m, 1H), 4.14-4.08 (m, 4H), 4.003.98 (m, 2H), 3.70 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.47 (dd, $J=14.1,3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (s, 3H), 3.27 (ddd, $J=14.4,11.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.07 (dd, $J=$ $14.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=12.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.32(\mathrm{~m}, 2 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=12.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=16.8,5.1$
$\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5,130.7,127.4,125.2$, 124.1, 123.6, 118.6, 75.5, 66.7, 65.8, 64.1, 55.9, 54.1, 40.8, 39.9, 32.4, 19.1; IR (neat) $2925 \mathrm{~cm}^{-1}$; HRMS (MH^{+}) calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}{ }^{+}$ 318.1700, found 318.1704.

β-Erythroidine. To a solution of the amine from last step (16.0 $\mathrm{mg}, 0.048 \mathrm{mmol})$ in THF (0.25 mL) was added $1 \mathrm{~N} \mathrm{HCl}(48 \mu \mathrm{~L}, 0.048$ mmol) and stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. NaHCO_{3}, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to provide the pure β-erythroidine (12.3 $\mathrm{mg}, 95 \%)$. NMR data is consistent with the literature report. ${ }^{3,4}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 6.45$ (dd, $J=10.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.91 (d, $J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.72 (s, 1H), 4.73 (br d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.57 (br d, J $=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{br} \mathrm{d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J$ $=14.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=8.0,6.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.10 (br d, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (br d, $J=19.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (dd, $J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=12.0,11.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 1.69 (br d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 170.2, 139.3, 131.0, 128.8, 125.3, 124.4, 124.2, 75.1, 70.4, 65.6, 56.0, 53.9, 40.5, 39.6, 31.8, 19.6; IR (neat) 2926, 1736, 1458, 1396, 1240, 1099, $1052 \mathrm{~cm}^{-1}$; HRMS (MH^{+}) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}$274.1438, found 274.1436 .

References:

1. The amine was prepared in four steps and 56% overall yield from 3-butyn-1-ol. See: (a) Padwa, A.; Waterson, A. G. Tetrahedron 2000, 56, 10159. (b) Cousseau, J. Synthesis 1980, 805.
2. The (E)-3,5-hexadienoyl chloride was prepared in 2 steps from sorbic acid following literature procedures: Martin, S. F.; Tu, C.-Y.; Chou, T.-S. J. Am. Chem. Soc. 1980, 102, 5274.
3. Chawla, A. S.; Jackson, A. H.; Ludgate, P. J. Chem. Soc., Perkin Trans. 1, 1982, 2903.
4. Aguilar, M. I.; Giral, F.; Espejo, O. Phytochemistry 1981, 20, 2061.
