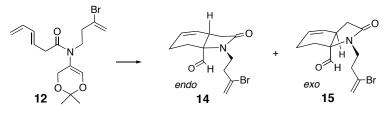

Supporting Information for

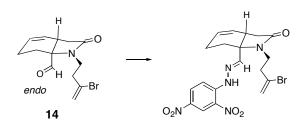
Total Syntheses of (\pm) - β -Erythroidine and (\pm) -8-oxo- β -Erythroidine by an Intramolecular Diels-Alder Cycloaddition of a 2-Amidoacrolein


Yong He and Raymond L. Funk* Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 *rlf@chem.psu.edu*

General Methods. Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere using flame-dried glassware. All moisture sensitive reagents were added via a dry syringe or cannula where possible. Anhydrous acetonitrile (CH₃CN), benzene, tetrahydrofuran (THF), dichloromethane (CH₂Cl₂), diethyl ether (Et₂O), toluene, triethylamine (Et₃N), and dimethylformamide (DMF) were obtained from a solvent dispensing system. All other solvents and reagents were used as obtained from commercial sources without further purification. ¹H and ¹³C NMR spectra were obtained on Bruker 300 or 400 MHz spectrometers. Infrared spectra were obtained using a Perkin-Elmer 1600 FTIR. Chromatographic purification was performed using Sorbent Technologies silica gel 60 (230-400 mesh). Melting points were obtained on a Thomas Hoover melting point apparatus.

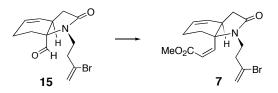
Amidodioxin (12). To a solution of 2,2-dimethyl-1,3-dioxan-5-one (9) (4.23 g, 32.5 mmol) in anhydrous benzene (110 mL) was added anhydrous Na_2SO_4 (25.0 g) followed by dropwise addition of a solution of 3-bromo-3-buten-1-amine¹ (6.57 g, 36.7 mmol) in anhydrous benzene (10 mL) at rt. After stirring at rt for 7 hrs, the reaction mixture was filtered and concentrated to provide the imine (8.50 g, 100%) which was directly used in the next step. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta$: 5.61 (m, 1H), 5.43 (d, J = 1.8 Hz, 1H), 4.37 (s, 2H), 4.18 (s, 2H), 3.40 (t, J = 6.9 Hz, 2H), 2.73 (t, J = 6.9 Hz, 2H), 1.38 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ: 170.0, 131.5, 118.4, 100.1, 64.7, 60.0, 48.0, 42.3, 23.7. To the freshly prepared imine (8.50 g, 32,4 mmol) in anhydrous THF (108 mL) at -25 °C was added (E)-3,5hexadienoyl chloride² (4.28 g, 32.8 mmol) dropwise. The mixture was stirred at the same temperature for $10 \sim 15$ min and then PhNEt₂ (distilled from CaH₂, 6.71 mL, 42.2 mmol) was added dropwise. The reaction mixture was allowed to warm to rt slowly and stirred overnight. The mixture was then diluted with EtOAc and washed with sat. NaHCO₃, H₂O and brine. The organics were dried (Na_2SO_4) Purification and concentrated. by silica-gel chromatography (hexane/EtOAc, 4/1) provided the amidodioxin 12 as a light-brown oil (8.05 g, 70%). ¹H NMR (400 MHz, CDCl₃) δ: 6.51 (t, J = 1.1 Hz, 1 H), 6.32 (ddd, J = 16.9, 10.3, 10.1 Hz, 1 H), 6.11 (dd,J = 15.3, 10.3 Hz, 1H), 5.81 (dt, J = 15.3, 7.0 Hz, 1H), 5.64 (br s, 1H),

5.46 (d, J = 1.7 Hz, 1H), 5.14 (d, J = 16.9 Hz, 1H), 5.04 (d, J = 10.1 Hz, 1H), 4.15 (d, J = 1.1 Hz, 2H), 3.59 (br s, 2H), 3.18 (d, J = 7.0 Hz, 2H), 2.70 (t, J = 7.0 Hz, 2H), 1.52 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 171.7, 142.4, 136.3, 133.7, 130.7, 127.2, 118.7, 116.5, 115.0, 99.4, 59.6, 46.3, 39.9, 37.2, 24.2; IR (neat) 2992, 2940, 1662 cm⁻¹; HRMS (MNa⁺) calcd for C₁₆H₂₂⁷⁹BrNO₃Na⁺ 378.0675, found 378.0669; calcd for C₁₆H₂₂⁸¹BrNO₃Na⁺ 378.0655, found 378.0650.

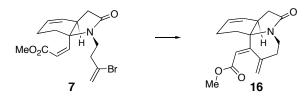


Endo cycloadduct 14 and exo cycloadduct 15 The amidodioxin 12 (7.00 g, 19.6 mmol) was dissolved in toluene (660 mL) and then a catalytic amount of BHT (~ 50 mg) and PhNEt₂ (distilled, 31 mL) were added. The solution was heated at reflux for 5 hrs and then concentrated. Purification by silica-gel chromatography (hexane/EtOAc, 3/1 to 1/1) provided the endo cycloadduct 14 as a yellow oil (700 mg, 12%) and exo cycloadduct-15 as a yellow oil (3.85 g, 66%) in the order of elution from chromatography.

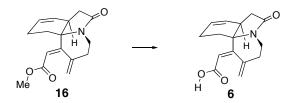
Data for *endo* cycloadduct 14: ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 5.89 (dddd, J = 9.6, 2.0, 2.0, 2.0 Hz, 1H), 5.71 (ddd, J = 9.6, 6.8, 3.2 Hz, 1H), 5.60 (dt, J = 1.6, 0.8 Hz, 1H), 5.43 (d, J = 1.6 Hz, 1 H), 3.54 (ddd, J = 14.0, 7.6, 5.2 Hz, 1H), 3.09 (ddd, J = 14.0, 7.6, 7.6 Hz,


1H), 3.01 (m, 1H), 2.67 (ddd, J = 14.0, 6.8, 6.8 Hz, 1H), 2.60-2.42 (m, 5H), 2.30 (m, 1H), 1.76 (ddd, J = 14.0, 8.0, 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 175.6, 130.6, 130.2, 123.3, 118.8, 70.1, 41.0, 40.5, 39.3, 33.1, 26.3, 23.4; IR (neat) 2934, 1724, 1698 cm⁻¹; HRMS (MNa⁺) calcd for C₁₃H₁₆⁷⁹BrNO₂Na⁺ 320.0257, found 320.0247; calcd for C₁₃H₁₆⁸¹BrNO₂Na⁺ 322.0237, found 322.0219.

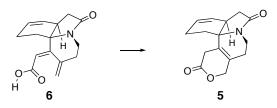
Data for *exo* cycloadduct **15**: ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 5.85 (m, 1H), 5.67 (dt, J = 2.0, 0.8 Hz, 1H), 5.54 (dddd, J = 10.0, 3.6, 2.0, 2.0 Hz, 1H), 5.46 (d, J = 2.0 Hz, 1H), 3.51 (ddd, J = 15.2, 9.6, 6.0 Hz, 1H), 3.27 (ddd, J = 15.2, 9.6, 6.4 Hz, 1H), 2.87 (m, 1H), 2.80-2.61 (m, 3H), 2.20-2.08 (m, 3H), 2.02 (m, 1H), 1.90 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 175.3, 130.2, 127.2, 126.1, 119.0, 70.5, 40.3, 39.8, 36.3, 32.7, 22.5, 19.6; IR (neat) 2926, 1732, 1684 cm⁻¹; HRMS (MNa⁺) calcd for C₁₃H₁₆⁷⁹BrNO₂Na⁺ 320.0257, found 320.0248; calcd for C₁₃H₁₆⁸¹BrNO₂Na⁺ 322.0237, found 322.0231.


2,4-Dinitrophenylhydrazone derivative of *endo* cycloadduct 14 for X-ray analysis: 2,4-Dinitrophenylhydrazine (contains ~30% water, 2.14 g, 7.56 mmol) in conc. H_2SO_4 (7.5 mL) was added carefully to a mixture of water (10 mL) and EtOH (35 mL), providing a DNP solution (~0.13 M). To a solution of *endo*

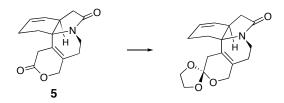
cycloadduct 14 (58 mg, 0.19 mmol) in EtOH (1.2 mL) at rt was added the above prepared DNP solution (~0.13 M, 1.80 mL, 0.23 mmol) dropwise and stirred at rt for 15 - 20 min. Then it was diluted with H₂O and extracted with CH₂Cl₂. Combined organics were washed with H_2O , brine, dried (Na_2SO_4) and concentrated to provide the pure hydrazone derivative (70 mg, 93%) as a yellow solid. mp: 140 - 142 °C. ¹H NMR (400 MHz, CDCl₃) δ 11.1 (s, 1H), 9.11 (d, J = 4.0 Hz, 1H), 8.35 (dd, J = 10.0, 4.0 Hz, 1H), 7.85 (d, J = 10.0 Hz, 1H), 7.44 (s, 1H), 5.84 (m, 1H), 5.74 (m, 1H), 5.64 (br s, 1H), 5.46 (d, J =1.6 Hz, 1H), 3.66 (dddd, J = 6.8, 5.6, 5.6, 5.6 Hz, 1H), 3.16 (ddd, J =14.4, 7.2, 7.2 Hz, 1H), 3.03 (m, 1H), 2.78-2.68 (m, 2H), 2.60 (dd, J = 12.4 8.0 Hz, 1H), 2.57 (m, 1H), 2.53 (dd, J = 16.0, 7.6 Hz, 1H), 2.38 (m, 1H), 2.35 (dd, J = 16.0, 14.0 Hz, 1H), 2.01 (m, 1H); ¹³C NMR (75) MHz, CDCl₃) & 176.0, 146.9, 144.7, 138.4, 130.8, 130.3, 129.7, 129.4, 123.9, 123.3, 119.0, 116.3, 66.0, 42.8, 41.0, 39.7, 33.1, 29.7, 24.0. IR (neat) 3298, 2937, 1693, 1615, 1588, 1519, 1333 cm⁻¹.


Z-Enolate (7). To a solution of $(CF_3CH_2O)_2P(O)CH_2CO_2Me$ (4.09 mL, 19.3 mmol) and 18-crown-6 (17.0 g, 64.3 mmol) in anhydrous THF (100 mL) at -78 °C was added KHMDS (0.5 M in toluene, 38.5 mL, 19.3 mmol) dropwise. After stirring for 20 min at the same temperature, a solution of aldehyde **15** (3.83 g, 12.8 mmol) in anhydrous THF (140 mL) was added dropwise via cannula. The

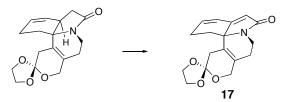
reaction was allowed to warm to 0 °C over 3 hrs and quenched with sat. NH₄Cl (250 mL). The resulting solution was extracted with EtOAc (350 mL) and the organic layer was washed with H₂O, brine, dried (Na_2SO_4) and concentrated. Purification by silica-gel chromatography (hexane/EtOAc, 1/1) provided Z-enolate 7 (4.32 g, 95%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.15 (d, J = 12.8Hz, 1 H), 5.94 (d, J = 12.8 Hz, 1 H), 5.80 (dddd, J = 10.0, 3.9, 3.9,1.9 Hz, 1H), 5.66 (dt, J = 1.8, 1.1 Hz, 1H), 5.58 (dddd, J = 10.0, 3.9, 2.0, 2.0 Hz, 1H), 5.44 (d, J = 1.8 Hz, 1H), 3.71 (s, 3H), 3.36 (ddd, J =15.4, 9.9, 5.6 Hz, 1H), 3.26 (ddd, J = 15.4, 9.8, 5.5 z, 1H), 3.20 (m, 1H), 2.88 (dddd, J = 14.2, 9.8, 5.6, 0.9 Hz, 1H), 2.66 (dddd, J = 14.2, 9.8, 5.6, 0.9 Hz, 1H), 2.65 (dd, J = 16.7, 9.3 Hz, 1H), 2.30 (dt, J =13.9, 6.1 Hz, 1H), 2.10 (dd, J = 16.5, 6.3 Hz, 1H), 2.07-2.02 (m, 2H), 1.73 (dt, J = 13.9, 6.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 175.2, 165.5, 148.9, 130.8, 127.9, 125.9, 122.7, 118.7, 65.3, 51.9, 40.1, 40.0, 39.2, 37.1, 28.5, 21.0; IR (neat) 2927, 1726, 1690 cm⁻¹; HRMS (MNa⁺) calcd for C₁₆H₂₀⁷⁹BrNO₃Na⁺ 376.0519, found 376.0491; calcd for C₁₆H₂₀⁸¹BrNO₃Na⁺ 378.0498, found 378.0464.


E-Dienolate (16). To a solution of *Z*-enolate 7 (3.78 g, 10.7 mmol) in anhydrous CH_3CN (890 mL) were added $Pd(OAc)_2$ (241 mg, 1.07 mmol), PPh₃ (562 mg, 2.14 mmol) and anhydrous K_2CO_3 (2.96 g, 21.4 mmol). The solution was bubbled through N_2 for 15 min and

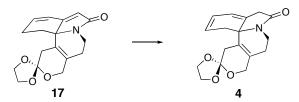
heated under reflux for 16 hrs. The reaction mixture was filtered and concentrated. Purification of the residue by silica-gel chromatography (hexane/EtOAc, 1/1) provided **16** (2.66 g, 90%) as a colorless solid. mp: 112-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.87-5.79 (m, 2H), 5.65 (s, 1H), 5.22 (s, 1H), 5.03 (s, 1H), 4.21 (ddd, *J* = 13.2, 6.2, 2.0 Hz, 1H), 3.67 (s, 3H), 2.93 (dddd, *J* = 12.6, 12.6, 4.8, 1.2 Hz, 1H), 2.77 (m, 1H), 2.66 (m, 1H), 2.45-2.35 (m, 2H), 2.20 (ddd, *J* = 16.0, 10.4, 1.2 Hz, 1H), 2.11-2.04 (m, 2H), 1.84 (m, 1H), 1.39 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 166.9, 154.1, 140.3, 127.9, 126.8, 116.6, 114.9, 64.6, 51.4, 37.6, 37.5, 37.2, 34.0, 26.3, 21.3; IR (neat) 2940, 1732, 1694, 1416, 1347, 1273, 1176 cm⁻¹; HRMS (MNa⁺) calcd for C₁₆H₁₉NO₃Na⁺ 296.1257, found 296.1256.



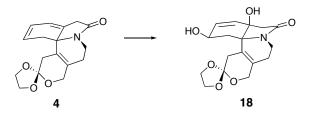
E-Dienoic acid (6). To a solution of ester 16 (1.56 g, 5.71 mmol) in THF (14 mL) at rt was added LiOH (1M in H₂O, 14.3 mL, 14.3 mmol) and stirred at rt for 3 hrs. The reaction mixture was concentrated to remove most of the THF and diluted with water. The resulting colorless solid was collected via filtration and rinsed with a small amount of water and Et₂O to provide the pure acid 6 (1.10 g) as a colorless solid. The filtrate was further extracted with CH₂Cl₂ (3x) to provide additional batch of acid (300 mg). Total yield: 95%. mp: 162-163 °C. ¹H NMR (400 MHz, d₆-DMSO) δ 12.37 (br s, 1H), 5.82-5.78 (m, 2H), 5.55 (s, 1H), 5.17 (t, *J* = 1.8 Hz, 1H), 4.96 (s, 1H),


3.96 (ddd, J = 13.2, 6.4, 1.6 Hz, 1H), 2.83 (ddd, J = 12.4, 12.4, 3.2 Hz, 1H), 2.76 (dd, J = 9.4, 9.4 Hz, 1H), 2.53 (dd, J = 8.8, 7.7 Hz, 1H), 2.41 (ddd, J = 13.2, 3.8, 1.0 Hz, 1H), 2.16 (m, 1H), 2.09-2.00 (m, 2H), 1.91 (dd, J = 12.8, 3.6, 3.6 Hz, 1H), 1.72 (m, 1H), 1.39 (ddd, J = 12.8, 11.2, 4.8 Hz, 1H); ¹³C NMR (75 MHz, d₆-DMSO): δ 170.7, 167.7, 151.2, 140.6, 127.7, 127.1, 116.1, 63.8, 36.9, 36.7, 36.6, 33.8, 26.1, 21.0; IR (neat) 2918, 1727, 1646 cm⁻¹; HRMS (MNa⁺) calcd for C₁₅H₁₇NO₃Na⁺ 282.1101, found 282.1098.

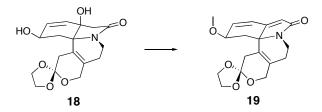
Tetracyclic lactone (5). A solution of acid 6 (1.26 g, 4.86 mmol) and BHT (~ 15 mg) in toluene (440 mL) was heated under reflux for 6 hrs. The reaction was then cooled to rt and concentrated. Purification by silica-gel chromatography (hexane/EtOAc, 1/4, then EtOAc only) afforded the lactone 5 (1.12 g, 89%) as a colorless solid. mp: 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 5.88 (br d, *J* = 9.2 Hz, 1 H), 5.81 (br d, *J* = 9.2 Hz, 1 H), 4.74 (d, *J* = 16.0 Hz, 1H), 4.58 (d, *J* = 16.0 Hz, 1H), 4.23 (dd, 13.6, 7.2 Hz, 1H), 3.16 (d, *J* = 19.2 Hz, 1H), 3.04 (d, *J* = 19.2 Hz, 1H), 3.00 (m, 1H), 2.68-2.61 (m, 2H), 2.30-2.17 (m, 3H), 2.05 (br d, *J* = 7.6 Hz, 1H), 2.00 (br d, *J* = 7.6 Hz, 1H), 1.92 (br d, *J* = 15.6 Hz, 1H), 1.72 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 171.9, 169.2, 130.4, 128.3, 127.3, 124.8, 70.0, 60.4, 38.1, 35.8, 32.9, 30.2, 29.8, 24.4, 22.1; IR (neat) 2923, 1738, 1685 cm⁻¹; HRMS (MNa⁺) calcd for C₁₅H₁₇NO₃Na⁺ 282.1101, found 282.1095.



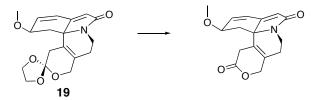
Orthoester. To a solution of lactone 5 (1.01 g, 4.08 mmol) in anhydrous THF (32 mL) at rt was added distilled ethylene glycol (2.29 mL, 40.9 mmol), CH(OMe)₃ (1.41 mL, 12.3 mmol) and conc. H_2SO_4 (120 mg, ~ 1.23 mmol) sequentially. Then, the resulting mixture was stirred at rt for 30 hrs. Several drops of Et₃N were added and the mixture was concentrated. To the residue was added sat. NaHCO₃ and extracted with CH_2Cl_2 (3x). The combined organics were dried (K_2CO_3) and concentrated. The residue was further dried under high vacuum and then triturated with Et₂O to provide the pure orthoester (1.15 g, 95%) as a colorless solid. mp: 151-152 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.82 (ddd, J = 10.0, 3.6, 3.6, 1.3 Hz, 1H), 5.73 (ddd, J = 10.0, 4.0, 2.0, 2.0 Hz, 1H), 4.16 (ddd, J = 13.2, 7.6, 0.8 Hz, 1H), 4.14-3.98 (m, 6H), 3.01 (dddd, J = 13.6, 11.2, 5.2,1.2 Hz, 1H), 2.69-2.59 (m, 2H), 2.50 (br d, J = 16.4 Hz, 1H), 2.40 (dddd, J = 16.4, 4.8, 2.8, 2.4 Hz, 1H), 2.21-2.01 (m, 5H), 1.78-1.69 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 172.7, 129.4, 128.5, 127.3, 124.9, 118.3, 66.6, 64.3, 64.2, 61.1, 38.1, 35.5, 33.3, 30.8, 29.8, 23.7, 22.2; IR (neat) 2907, 1687 cm⁻¹; HRMS (MNa⁺) calcd for C₁₇H₂₁NO₄Na⁺ 320.1363, found 326.1361.


Conjugated diene (17). n-BuLi (2.5 M in hexane, 3.29 mL, 8.22 mmol) was added dropwise to a solution of diisopropylamine (1.16) mL, 8.22 mmol) in anhydrous THF (24 mL) at -78 °C. After stirring for 30 min at -78 °C, a solution of orthoester (1.04 g, 3.42 mmol) in anhydrous THF (44 mL) was added dropwise via cannula. The mixture was stirred for additional 40 min at -78 °C, then PhSeSePh (2.35 g, 7.53 mmol) was added in one portion. Then the reaction mixture was allowed to warm to -20 °C within 2 hrs and then quenched with sat. NH_4Cl (88 mL) and H_2O (18 mL). The mixture was extracted with EtOAc (2x) and the combined organics were dried (Na_2SO_4) and concentrated. Purification by silica-gel chromatography (hexane/EtOAc, 4/1with 1% NEt₃, then hexane/EtOAc, 1/4 with 1% NEt₃) afforded the selenide (1.56 g, 95%) as a light-brown foamy solid. ¹H NMR of the crude product showed the formation of a single diastereomer. ¹H NMR (400 MHz, $CDCl_3$): δ 7.68-7.65 (m, 2H), 7.28-7.22 (m, 3H), 5.85-5.81 (m, 1H), 5.74-5.70 (m, 1H), 4.17-4.09 (m, 3H), 4.06-3.95 (m, 4H), 3.62 (d, J =7.2 Hz, 1H), 3.00 (ddd, J = 12.4, 12.4, 5.2 Hz, 1H), 2.69 (m, 1H), 2.42 (br d, J = 16.4 Hz, 1H), 2.28 (dddd, J = 16.4, 4.8, 2.8, 2.4 Hz, 1H), 2.15-1.96 (m, 4H), 1.72-1.63 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 171.0, 135.0, 129.0, 128.7, 128.5, 128.2, 128.0, 127.0, 124.9, 118.2, 66.5, 64.22, 64.21, 60.4, 48.5, 43.4, 33.9, 30.7, 30.5, 23.6, 22.2. The selenide (1.56 g, 3.40 mmol) was dissolved in CH_2Cl_2 (34 mL) at 0 °C and pyridine (0.64 mL, 7.3 mmol) was added followed

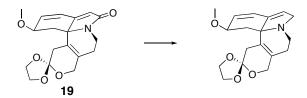
by addition of H_2O_2 (50 wt%, 0.56 mL, 9.72 mmol). The mixture was stirred at 0 °C for 12 hrs, diluted with CH₂Cl₂, washed with sat. NaHCO₃, dried (K₂CO₃) and concentrated. Purification by silica-gel acetate/hexane, chromatography (ethyl 1/19afforded the conjugated diene 17 (889 mg, 86%) as a colorless solid. mp: 170-172 °C. ¹H NMR (400 MHz, CDCl₃): δ 6.64 (dt, J = 10.0, 0.8 Hz, 1H), 6.13 (ddd, J = 10.0, 4.0, 4.0 Hz, 1H), 5.81 (s, 1H), 4.21 (ddd, J =13.4, 7.8, 2.0 Hz, 1H), 4.15-3.97 (m, 6H), 3.18 (ddd, J = 13.5, 10.1,6.0 Hz, 1H), 2.63 (dddd, J = 16.9, 5.0, 2.5, 2.5 Hz, 1H), 2.54 (br d, J = 16.9 Hz, 1H), 2.48-2.42 (m, 3H), 2.23 (m, 1H), 1.88-1.75 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 170.6, 157.5, 135.5, 127.8, 126.4, 123.3, 118.8, 118.0, 66.3, 64.2, 64.1, 63.5, 34.2, 34.0, 33.2, 24.9, 24.2; IR (neat) 2904, 1682 cm⁻¹; HRMS (MNa⁺) calcd for $C_{17}H_{19}NO_4Na^+$ 324.1206, found 324.1180.


Deconjugated diene (4). KHMDS (0.5 M in toluene, 8.39 mL, 4.20 mmol) was added to anhydrous DME (21 mL) at -78 °C followed by addition of distilled HMPA (4.38 mL, 25.2 mmol) and then stirred for 15 min. Conjugated diene **17** (632 mg, 2.10 mmol) was added in one portion at -78 °C. The reaction was allowed to slowly warm up to -30 ~ -25 °C in 3 hrs. Them the mixture was recooled to -78 °C, HOAc (0.68 mL) was added followed by addition of sat. NH₄Cl (46 mL). The mixture was allowed to warm to rt and extracted with

EtOAc (3x). The combined organics were dried (Na₂SO₄) and concentrated. Purification by silica-gel chromatography (ethyl acetate/benzene, 4/1) afforded the deconjugated diene **4** (532 mg, 84%) as a colorless solid. mp: 172-174 °C. ¹H NMR (400 MHz, CDCl₃): δ 5.99 (m, 1H), 5.93 (m, 1H), 5.80 (m, 1H), 4.18 (ddd, *J* = 13.6, 7.2, 0.5 Hz, 1H), 4.12-3.96 (m, 6H), 3.12 (d, *J* = 19.6 Hz, 1H), 3.04 (m, 1H), 3.00 (d, *J* = 19.6 Hz, 1H), 2.71 (dddd, *J* = 17.2, 5.2, 2.4, 2.4 Hz, 1H), 2.69-2.64 (m, 2H), 2.57 (br d, *J* = 17.2 Hz, 1H), 2.29 (m, 1H), 1.65 (dd, *J* = 16.8, 3.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 174.2, 130.8, 129.8, 124.7, 124.6, 124.2, 120.4, 118.4, 66.3, 64.2, 64.1, 61.6, 35.8, 35.5, 34.8, 31.2, 23.1; IR (neat) 2902, 1702 cm⁻¹; HRMS (MNa⁺) calcd for C₁₇H₁₉NO₄Na⁺ 324.1206, found 324.1206.


Diol (18). A solution of deconjugated diene 4 (140 mg, 0.46 mmol) and rose bengal (14 mg, 0.014 mmol) in MeOH (56 mL) was bubbled through O_2 at 0 °C under a GE 275 watt sun lamp irradiation for 1.5 ~ 2 hrs. Then the solution was concentrated to provide the crude endoperoxide which was directly used in the next step. mp: 165-166 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.72 (dd, *J* = 8.4, 5.6 Hz, 1H), 6.64 (dd, *J* = 8.4, 1.2 Hz, 1H), 4.82 (m, 1H), 4.18 (dd, *J* = 13.6, 7.2 Hz, 1H), 4.14 (m, 1H), 4.06-3.98 (m, 5H), 3.05 (ddd, *J* = 13.6, 12.0, 5.2 Hz, 1H), 2.63 (d, *J* = 17.0 Hz, 1H), 2.48-2.39 (m, 2H),

2.41 (d, J = 17.0 Hz, 1H), 2.31 (br d, J = 17.2 Hz, 1H), 2.01 (br d, J =17.2 Hz, 1H), 1.80 (dd, J = 14.4, 2.8 Hz, 1H), 1.61 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 175.5, 133.4, 130.0, 129.9, 127.1, 117.6, 81.1, 70.3, 66.2, 64.6, 63.9, 63.8, 36.4, 35.9, 35.5, 32.4, 22.6; IR (neat) 2904, 1703 cm⁻¹. HRMS (MNa⁺) calcd for C₁₇H₁₉NO₆Na⁺ 356.1105, found 356.1103. The residue was dissolved in MeOH (5 mL) and thiourea (52 mg, 0.68 mmol) was added and stirred overnight at rt. The reaction mixture was concentrated and purification by silica-gel chromatography (ethyl acetate only, to EtOAc/MeOH, 10/1) afforded the diol 18 (112 mg, 73% for two steps) as a colorless solid. mp: 145-147 °C. ¹H NMR (400 MHz, CDCl₃): δ 6.32 (d, J = 9.6 Hz, 1 H), 6.00 (dd, J = 9.6, 2.8 Hz, 1H), 4.35 (m, 1H), 4.11-3.93 (m, 7H), 3.69 (br s, 1H), 3.63 (br s, 1H), 3.15 (m, 1H), 2.50-2.41 (m, 4H), 2.32-2.27 (m, 3H), 1.86 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 177.1, 136.1, 130.1, 129.3, 129.2, 117.7, 72.3, 68.4, 66.4, 65.2, 64.3, 64.0, 41.5, 37.5, 37.0, 34.2, 22.4; IR (neat) 3417, 2904, 1682 cm⁻¹; HRMS (MNa⁺) calcd for $C_{17}H_{21}NO_6Na^+$ 358.1261, found 358.1256.



Lactam (19). To a solution of diol **18** (110 mg, 0.33 mmol) in anhydrous THF (10 mL) were added anhydrous DMSO (1 mL), KOH (ground powder, 220 mg, 3.92 mmol), Et_4NBr (208 mg, 0.99 mmol) and MeI (0.69 mL, 11 mmol). The resulting mixture was stirred

vigorously at rt overnight. Then, the mixture was diluted with CH_2Cl_2 and filtered. The filtrate was concentrated and the residue was purified by silica-gel chromatography (ethyl acetate) to afford the methyl ether **19** (96 mg, 88%) as a colorless solid. mp: 152-154 °C. ¹H NMR (400 MHz, CDCl₃): 6.71 (dd, *J* = 10.4, 2.0 Hz, 1H), 6.18 (d, *J* = 10.4 Hz, 1H), 5.94 (s, 1H), 4.24 (ddd, *J* = 12.8, 7.6, 2.0 Hz, 1H), 4.19-3.97 (m, 7H), 3.41 (s, 3H), 3.23 (ddd, *J* = 13.6, 10.0, 6.0 Hz, 1H), 2.87 (dd, *J* = 11.6, 5.6 Hz, 1H), 2.46 (dddd, *J* = 16.8, 4.8, 2.4, 2.4 Hz, 1H), 2.37 (br d, *J* = 16.8 Hz, 1H), 2.27 (m, 1H), 1.91 (m, 1H), 1.68-1.63 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 170.1, 156.5, 135.4, 127.4, 126.9, 124.1, 120.2, 117.8, 73.8, 66.2, 65.9, 64.2, 64.1, 56.4, 41.8, 33.9, 33.5, 24.2; IR (neat) 2927, 1683 cm⁻¹; HRMS (MNa⁺) calcd for $C_{18}H_{21}NO_5Na^+$ 354.1312, found 354.1312.

8-Oxo-β-erythroidine. To a solution of 19 (10.0 mg, 0.030 mmol) in THF (0.25 mL) was added 1 N HCl (30 µL, 0.030 mmol) and stirred at 0 °C for 20 min. The reaction mixture was diluted with CH₂Cl₂ and washed with sat. NaHCO₃, brine, dried (Na₂SO₄) and concentrated to provide pure 8-oxo-β-erythroidine (8.3 mg, 96%). NMR data is consistent to the literature report.³ ¹H NMR (400 MHz, CDCl₃) δ 6.78 (dd, J = 10.0, 2.4 Hz, 1H), 6.27 (d, J = 10.0 Hz, 1 H), 5.97 (s, 1H); 4.74 (br d, J = 15.6 Hz, 1H), 4.59 (br d, J = 15.6 Hz, 1H), 4.36 (ddd, J = 13.8, 7.5, 1.0 Hz, 1H), 4.09 (m, 1H), 3.43 (s, 3H), 3.22 (ddd, J = 13.8, 10.8. 6.0 Hz, 1H), 3.13-3.10 (m, 2H), 2.82 (dd, J = 12.0, 5.6 Hz, 1H), 2.40 (m, 1H), 2.00 (br dd, J = 16.0, 5.6 Hz, 1H), 1.72 (dd, J = 12.0, 10.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 170.1, 168.5, 155.8, 135.9, 127.7, 127.4, 124.3, 120.6, 73.6, 70.0, 65.2, 56.6, 41.7, 33.8, 31.7, 24.8; IR (neat) 2931, 1739, 1682, 1456, 1390, 1380, 1361, 1245, 1188, 1120, 1097, 1053, 918, 886, 857, 730 cm⁻¹; HRMS (MNa⁺) calcd for C₁₆H₁₇NO₄Na⁺ 310.1050, found 310.1032.

Amine. To a solution of lactam **19** (40 mg, 0.12 mmol) in anhydrous THF (4 mL) at 0 °C was added AlH₃·EtNMe₂ complex (0.5 M in toluene, 0.31 mL, 0.16 mmol). After stirring for 20 min at 0 °C, the reaction was quenched by careful addition of THF/H₂O (1/1, 5.6 mL). After stirring for a while, brine and couple of drops of NEt₃ were added and the resulting solution was extracted with EtOAc (3x). The combined organics were dried (Na₂SO₄) and concentrated. Purification by silica-gel chromatography (CH₂Cl₂ + 1% NEt₃) afforded the amine as a colorless semi-solid (32 mg, 80%). ¹H NMR (300 MHz, CDCl₃) δ 6.40 (dd, *J* = 10.2, 2.1 Hz, 1H), 5.82 (br d, *J* = 10.2 Hz, 1 H), 5.72 (br s, 1H); 4.20 (m, 1H), 4.14-4.08 (m, 4H), 4.00-3.98 (m, 2H), 3.70 (d, *J* = 14.1 Hz, 1H), 3.47 (dd, *J* = 14.1, 3 Hz, 1H), 3.37 (s, 3H), 3.27 (ddd, *J* = 12.0, 6.3 Hz, 1H), 2.35-2.32 (m, 2H), 2.20 (m, 1H), 1.76 (dd, *J* = 12.0, 10.5 Hz, 1H), 1.54 (dd, *J* = 16.8, 5.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 140.5, 130.7, 127.4, 125.2, 124.1, 123.6, 118.6, 75.5, 66.7, 65.8, 64.1, 55.9, 54.1, 40.8, 39.9, 32.4, 19.1; IR (neat) 2925 cm⁻¹; HRMS (MH⁺) calcd for C₁₈H₂₄NO₄⁺ 318.1700, found 318.1704.

 β -Erythroidine. To a solution of the amine from last step (16.0 mg, 0.048 mmol) in THF (0.25 mL) was added 1 N HCl (48 µL, 0.048 mmol) and stirred at 0 °C for 20 min. The reaction mixture was diluted with CH₂Cl₂ and washed with sat. NaHCO₃, brine, dried (Na_2SO_4) and concentrated to provide the pure β -erythroidine (12.3) mg, 95%). NMR data is consistent with the literature report.^{3,4} ¹H NMR (400 MHz, CDCl₃): δ 6.45 (dd, J = 10.0, 2.0 Hz, 1 H), 5.91 (d, J =10.0 Hz, 1 H), 5.72 (s, 1H), 4.73 (br d, J = 15.2 Hz, 1H), 4.57 (br d, J= 15.2 Hz, 1H), 4.11 (m, 1H), 3.65 (br d, J = 14.4 Hz, 1H), 3.52 (dd, J= 14.4, 2.8 Hz, 1H), 3.38 (s, 3H), 3.25 (m, 1H), 3.15 (dd, J = 8.0, 6.8Hz, 1H), 3.10 (br d, J = 19.2 Hz, 1H), 2.97 (br d, J = 19.2 Hz, 1H), 2.56 (dd, J = 12.0, 6.4 Hz, 1H), 2.35 (m, 1H), 1.81 (dd, J = 12.0, 11.2 Hz, 1H), 1.69 (br d, J = 14.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 170.2, 139.3, 131.0, 128.8, 125.3, 124.4, 124.2, 75.1, 70.4, 65.6, 56.0, 53.9, 40.5, 39.6, 31.8, 19.6; IR (neat) 2926, 1736, 1458, 1396, 1240, 1099, 1052 cm⁻¹; HRMS (MH⁺) calcd for C₁₆H₂₀NO₃⁺ 274.1438, found 274.1436.

References:

The amine was prepared in four steps and 56% overall yield from 3-butyn-1-ol. See: (a) Padwa, A.; Waterson, A. G. *Tetrahedron* 2000, *56*, 10159. (b) Cousseau, J. *Synthesis* 1980, 805.

2. The (*E*)-3,5-hexadienoyl chloride was prepared in 2 steps from sorbic acid following literature procedures: Martin, S. F.; Tu, C.-Y.; Chou, T.-S. *J. Am. Chem. Soc.* **1980**, *102*, 5274.

3. Chawla, A. S.; Jackson, A. H.; Ludgate, P. J. Chem. Soc., Perkin Trans. 1, 1982, 2903.

4. Aguilar, M. I.; Giral, F.; Espejo, O. Phytochemistry 1981, 20, 2061.