Supporting Information

Templating Photodimerization of Coumarins Within a Water Soluble Nano Reaction-Vessel

S. Karthikeyan and V. Ramamurthy*

Department of Chemistry, University of Miami, Coral Gables, FL 33124, USA

murthy1@miami.edu

Contents

1.	¹ H NMR characterization of the dimers.	S2
2.	¹ H NMR spectra of 1c in D_2O and in the presence of Pd- nanocage	
	(Figure S1).	S3
3.	¹ H NMR spectra of $1d$ in D ₂ O and in the presence of Pd-nanocage	
	(Figure S2).	S4
4.	¹ H NMR spectra showing the cyclobutane region of the dimer	
	obtained upon irradiation of 1a in water and as a host-guest complex	
	(Figure S3).	S5
5.	¹ H NMR spectra showing the cyclobutane region of the dimer	
	obtained upon irradiation of 1b in water and as a host-guest complex	
	(Figure S4).	S 6

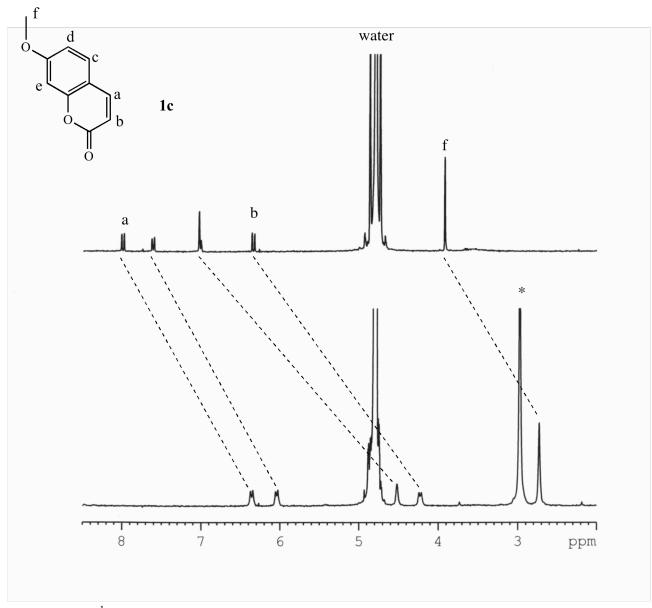
¹H NMR characterization of the dimers

The regiochemistry of the dimers was assigned based on the chemical shift of the cyclobutane protons reported in the literature.

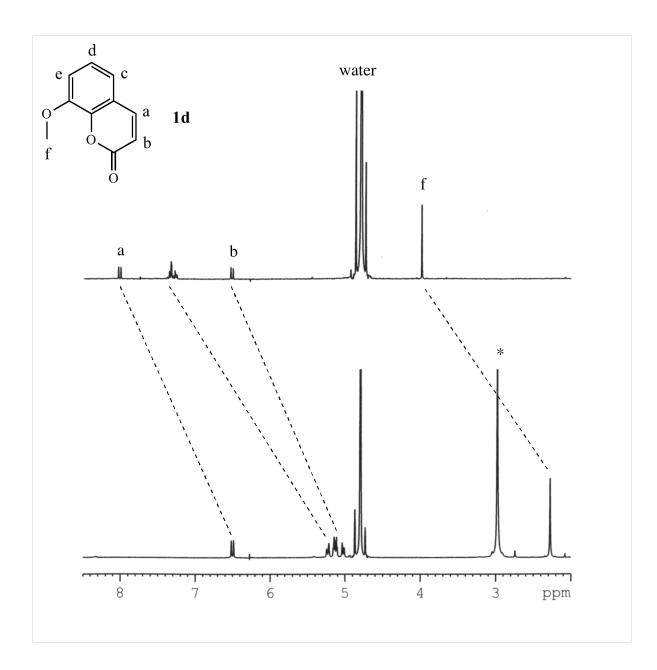
Syn head-head (2a) dimer of 1a: ¹H NMR (CDCl₃) δ: 4.05-4.1(m, 2H), 4.2-4.25(m, 2H), 6.76-6.8(d, 2H), 6.85-6.95(m, 4H), 7.2-7.24(m, 2H).

Syn head-tail (3a) dimer of 1a: ¹H NMR (CDCl₃) δ: 4.25(m, 4H), 6.6-6.65(m, 2H), 6.9-7.0(m, 2H), 7.2-7.4(m, 4H).

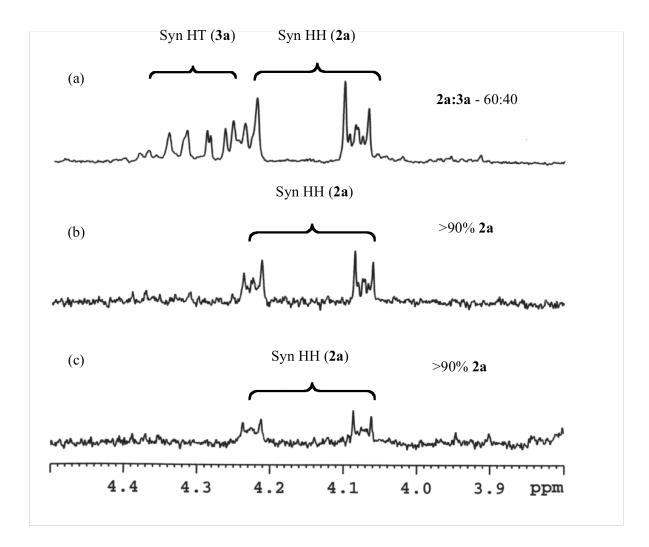
Syn head-head (2b) dimer of 1b: ¹H NMR (CDCl₃) δ: 2.15(s, 6H, -CH₃), 4.0-4.05(m, 2H), 4.1-4.15(m, 2H), 6.55(d, 2H), 6.75(d, 2H, J=8.0 Hz), 7.0(m, 2H).


Anti head-head (4b) dimer of 1b: ¹H NMR (CDCl₃) δ: 2.35(s, 6H, -CH₃), 3.78-3.80(m, 2H), 3.9-3.92(m, 2H), 6.95(d, 2H), 7.0(d, 2H, J=8.0 Hz), 7.15(m, 2H).

Syn head-head (2c) dimer of 1c: ¹H NMR (CDCl₃) δ: 3.75(s, 6H, -OCH₃), 3.99-


4.02(m, 2H), 4.06-4.09(m, 2H), 6.43(d, 2H), 6.51-6.54(m, 2H), 6.7(d, 2H, J=8.0 Hz).

Syn head-tail (3c) dimer of 1c: ¹H NMR (CDCl₃) δ: 3.7(s, 6H, -OCH₃), 4.15-4.2(m, 2H), 4.22-4.28(m, 2H), 6.2(d, 2H), 6.65-6.72(m, 2H,), 7.05(d, 2H, J=8.3 Hz).


Syn head-head (2d) dimer of 1d: ¹H NMR (CDCl₃) δ: 3.8(s, 6H, -OCH₃), 4.01-4.05(m, 2H), 4.19-4.21(m, 2H), 6.38-6.40(d, 2H, J=7 Hz), 6.78-6.80(d, 2H, J=8 Hz), 6.85-6.95(m, 2H).

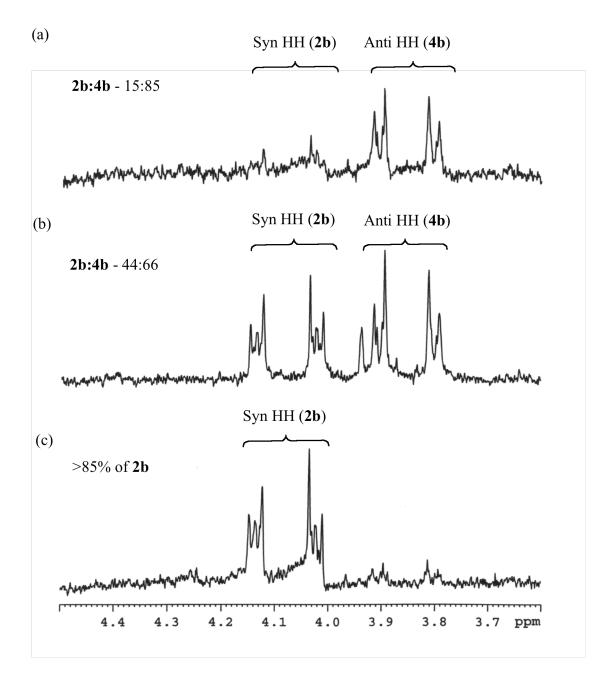

Figure S1 ¹H NMR (D₂O) spectra of **1c** in the absence (top) and in the presence of 0.5 equivalents of Pd-nanocage (bottom). The Pd-nanocage signal is indicated by *.

Figure S2 ¹H NMR (D₂O) spectra of **1d** in the absence (top) and in the presence of 0.5 equivalents of Pd-nanocage (bottom). The Pd-nanocage signal is indicated by *.

Figure S3 ¹H NMR (CDCl₃) spectra showing the cyclobutane region of the dimer obtained upon irradiation of **1a** in (a) water and as a host-guest complex having H:G ratios of (b) 1:6 and (c) 1:2.

Figure S4 ¹H NMR (CDCl₃) spectra showing the cyclobutane region of the dimer obtained upon irradiation of **1b** in (a) water and as a host-guest complex having H:G ratios of (b) 1:6 and (c) 1:2.