"Supporting Information"

Replacement of the N-terminal Tyrosine Residue in Opioid Peptides with 3-(2,6-Dimethyl-4-carbamoylphenyl)propanoic Acid (Dcp) Results in Novel Opioid Antagonists

Yixin Lu,*[†] Tze Keong Lum,[†] Yoon Wui Leow Augustine,[†] Grazyna Weltrowska[‡], Thi M.-D. Nguyen,[‡] Carole Lemieux,[‡] Nga N. Chung,[‡] and Peter W. Schiller*[‡]

[†]Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, and [‡]Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7

Experimental Section

General Methods. Molecular masses of the compounds were determined by electrospray mass spectrometry on a Hybrid O-Tof mass spectrometer interfaced to a MassLynx 4.0 data system or on a Finnigan/MAT 95XL-T spectrometer. ¹H and ¹³C NMR spectra were recorded on a Varian Unity 400 spectrometer or a Bruker Model Avance 300 MHz or DPX-300 NMR spectrometer, and referenced with respect to the residual signals of the solvent. The following abbreviations were used in reporting spectra: s = singlet, d = singletdoublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets. Compounds 5, 8, **9** and **10** were purified by flash chromatography on silica gel (40 µm; Baker). Peptides were purified on a Vydac 218-TP1022 column (22 x 250 mm) with a linear gradient of 20-80% MeOH in 0.1% TFA over 30 min at a flow rate of 12 mL/min (peptides 1 and 2) or with a linear gradient of 20-65% MeOH in 0.1% TFA over 50 in at a flow rate of 12 mL/min (peptide 3). Analytical reversed-phase HPLC was performed on a Vydac 218-TP54 column (5 x 250 mm) under isocratic conditions (35% MeOH in 0.1% TFA) at a flow rate of 1 mL/min. The same column was also used for the determination of the capacity factors K' under the same conditions. Precoated plates (silica gel 60 F₂₅₄, 250 μm; Merck, Darmstadt, Germany) were used for ascending TLC in the following solvent systems (all v/v): (I) n-BuOH/AcOH/H₂O (4:1:1), (II) n-BuOH/pyridine/AcOH/H₂O (15:10:3:12).

In Vitro Bioassays and Receptor Binding Assays. The GPI¹⁶ and MVD¹⁷ bioassays were carried out as reported in detail elsewhere.^{18,19} K_e values for antagonists were determined from the ratio of IC₅₀ values obtained with an agonist in the presence and absence of a fixed antagonist concentration.²⁰ μ antagonist K_e values of compounds were determined in the GPI assay against the μ agonist TAPP²¹ using antagonist concentrations ranging from 10 to 500 nM. κ antagonist K_e values of compounds were

also measured in the GPI assay against the κ agonist U50,488, using antagonist concentrations ranging from 50 to 200 nM. δ antagonist K_e values of compounds were determined in the MVD assay against the δ agonist DPDPE using antagonist concentrations ranging from 200 to 600 nM.

Opioid receptor binding studies were performed as described in detail elsewhere.¹⁸ Binding affinities for μ and δ receptors were determined by displacing, respectively, [³H]DAMGO (Multiple Peptide Systems, San Diego, CA) and [³H]DSLET (Multiple Peptide Systems) from rat brain membrane binding sites, and κ opioid receptor affinities were measured by displacement of [³H]U69,593 (Amersham) from guinea pig brain membrane binding sites. Incubations were performed for 2 h at 0 °C with [³H]DAMGO, [³H]DSLET, and [³H]U69,593 at respective concentrations of 0.72, 0.78, and 0.80 nM. IC₅₀ values were determined from log-dose displacement curves, and K_i values were calculated from the obtained IC₅₀ values by means of the equation of Cheng and Prusoff,²² using values of 1.3, 2.6, and 2.9 nM for the dissociation constants of [³H]DAMGO, [³H]DSLET, and [³H]U69,593, respectively.

References

- (16) Paton, W.D.M. The Action of Morphine and Related Substances on Contraction and on Acetylcholine Output of Coaxially Stimulated Guinea Pig Ileum. *Br. J. Pharmacol.* **1957**, *12*, 119-127.
- (17) Henderson, G.; Hughes, J.; Kosterlitz, H.W. A New Example of a Morphine Sensitive Neuroeffector Junction. *Br. J. Pharmacol.* **1972**, *46*, 764-766.
- (18) Schiller, P.W.; Lipton, A.; Horrobin, D.F.; Bodanszky, M. Unsulfated C-terminal 7-Peptide of Cholecystokinin: a New Ligand of the Opiate Receptor. *Biochem. Biophys. Res. Commun.* **1978**, *85*, 1332-1338.
- (19) DiMaio, J.; Nguyen, T.M.-D.; Lemieux, C.; Schiller, P.W. Synthesis and Pharmacological Characterization In Vitro of Cyclic Enkephalin Analogues: Effects of Conformational Constraints on Opiate Receptor Selectivity. J. Med. Chem. 1982, 25, 1432-1438.
- (20) Kosterlitz, H.W.; Watt, A.J. Kinetic Parameters of Narcotic Agonists and Antagonists with Particular Reference to N-Allylnoroxymorphone (Naloxone). *Br. J. Pharmacol.* **1968**, *33*, 266-276.
- (21) Schiller, P.W.; Nguyen, T.M.-D.; Chung, N.N.; Lemieux, C. Dermorphin Analogues Carrying an Increased Positive Net Charge in Their "Message Domain" Display Extremely High μ Opioid Receptor Selectivity. J. Med. Chem. 1989, 32, 698-703.
- (22) Cheng, Y.C.; Prusoff, W.H. Relationship Between the Inhibition Constant (K_I) and the Concentration of Inhibitor which Causes 50 Percent Inhibition (I₅₀) of an Enzymatic Reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099-3102.