Supplementary Material

B-Allenyl- and B-(γ-Trimethylsilylpropargyl)-10-Ph-9-borabicyclo[3.3.2]decanes: Asymmetric Synthesis of Propargyl and α-Allenyl 3E-Carbinols from Ketones

Eliud Hernandez, Carlos H. Burgos, Eyleen Alicea and John A. Soderquist*
University of Puerto Rico, Department of Chemistry, Rio Piedras, PR 00931-3346

Table of Contents

General Methods 2
Organoborane 1 2-3
Allenylation of ketones to give 6 3-13
Organoborane 2 13-14
Propargylation of ketones to give 9 14-23
${ }^{31} P$ NMR of Alexakis esters of 9 24-28
Atrolactic acid 29-30
NBS bromination of 9 31-35
References 36

B-Allenyl- and B-(γ-Trimethylsilylpropargyl)-10-Ph-9-borabicyclo[3.3.2]decanes: Asymmetric Synthesis of Propargyl and α-Allenyl 3E-Carbinols from Ketones

Eliud Hernandez, Carlos H. Burgos, Eyleen Alicea and John A. Soderquist*
University of Puerto Rico, Department of Chemistry, Rio Piedras, PR 00931-3346

General Information. All experiments were carried out in pre-dried glassware ($1 \mathrm{~h}, 150^{\circ} \mathrm{C}$) under a nitrogen atmosphere. Standard handling techniques for air-sensitive compounds were also employed for all the operations. Nuclear magnetic resonance (NMR) spectra were obtained using General Electric DPX-300 and DRX-500 spectrometers. ${ }^{1} \mathrm{H}(300 \mathrm{MHz}),{ }^{13} \mathrm{C}(75 \mathrm{MHz}),{ }^{31} \mathrm{P}(121.5 \mathrm{MHz})$, and ${ }^{11} \mathrm{~B}(96.5 \mathrm{MHz}) \mathrm{NMR}$ were recorded in CDCl_{3} or $\mathrm{C}_{6} \mathrm{D}_{6}$, unless otherwise used, and the chemical shift as were expressed in ppm relative to CDCl_{3} ($\delta 7.26$ and 77.0 for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively) and of $\mathrm{C}_{6} \mathrm{D}_{6}$ ($\delta 7.15$ and 128.0 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively) as the internal standard. Standard COSY, HETCOR and DEPT experiments were performed to establish NMR assignments for the compounds discussed in this work. We use the term ad (apparent doublet) for ab patterns where δ and J values can not be directly determined from the spectra. Infrared spectra were recorded on a Nicolet 740 GC FT-IR, a Perkin-Elmer 282 or a Nicolet Series 6000 FT-IR spectrophotometer. Mass spectral data were obtained with a Hewlett-Packard 5995A GC/MS spectrometer (70 eV), Fisons VG Autospect or a Hewlett-Packard 5971A Mass Selective Ion Detector. High-resolution mass spectral data were obtained with a Micromass VG AutoSpec magnetic sector mass spectrometer (70 eV). Optical rotations were measured employing a Perkin-Elmer 243B polarimeter. Ozonolyses were conducted with a Polymetrics Laboratory Ozonator Model T-408 operating at $70 \mathrm{~V}\left(\mathrm{O}_{2}\right.$ pressure $=8$ psig, flow rate $=0.46$ (nominal)). Literature citations are provided for all known compounds together with a repeat of the spectral data with data obtained in this study to consolidate this information herein.
(\pm)-B-Methoxy-10-phenyl-9-borabicyclo[3.3.2]decane (\pm)-3). ${ }^{1}$ To a solution of B-MeO-9-BBN ($18.0 \mathrm{~g}, 118$ mmol) in hexanes (110 mL), $\mathrm{PhCHN}_{2}{ }^{2}$ in hexanes ($130 \mathrm{mmol}, 2 \mathrm{M}$) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred for 10 h and the solvents were removed under vacuum. The residue was distilled to give 25.7 g of $(\pm)-3$ $\left(90 \%\right.$, bp $\left.120^{\circ} \mathrm{C}, 0.10 \mathrm{~mm} \mathrm{Hg}\right):{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30-2.0(\mathrm{~m}, 14 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 7.1-$ $7.4(\mathrm{~m}, 5 \mathrm{H}) \quad{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ б $21.5,24.3,26.5,28.0,29.1,31.6,38.8,43.1,53.7,125.0,128.1,129.0$, 130.4, 145.0; (Figure 1); IR $\left(\mathrm{cm}^{-1}\right) 3020.2908,2851,1467,1323,1288,1254,749,717,697 ;{ }^{11} \mathrm{~B}$ NMR (96 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) δ 55.5. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$calcd. 242.18 found 242.15
$(+)-(1 S, 2 S)-N$-Methylpseudoephedrinyl)-(10S)-phenyl-9-borabicyclo[3.3.2]decane ((+)-4S). ${ }^{1}$ To a solution of $1 \mathrm{~S}, 2 \mathrm{~S}-\mathrm{N}$-methylpseudoephedrine ($5.0 \mathrm{~g}, 27.9 \mathrm{mmol}$) in hexane (60 mL) was added to (\pm)-3 $13.5 \mathrm{~g}, 55.8 \mathrm{mmol}$) dropwise. The reaction mixture was refluxed for 6 h and slowly cooled to room temperature resulting in small square, clear crystals. The supernatant was decanted via cannula and the crystals were washed with hexane (3 $\times 20 \mathrm{~mL}$) and dried in vacuo to give $4.2 \mathrm{~g}(10.8 \mathrm{mmol})$ of (+)-4S (38% yield). The supernatant was concentrated, fresh hexane (60 mL) was added and the mixture was refluxed for an additional 6 h . Upon cooling, a second batch of crystals are obtained following the before mentioned work-up. The second collection gives $4.4 \mathrm{~g}(11.2$ $\mathrm{mmol})$ of $(+)-\mathbf{4 S}$. The overall yield of $(+)-\mathbf{4 S}$ is $79 \%(39.5 \%$ based upon $(\pm)-3)$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ б 0.72 $(\mathrm{s}, 3 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 1.75-2.0(\mathrm{~m}, 11 \mathrm{H}) 2.45(\mathrm{~m}, 7 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 6.95-7.66(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{11} \mathrm{~B} \mathrm{NMR}$ $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.5,10.0 ; \mathrm{mp}=130-140^{\circ} \mathrm{C}$; Anal. calcd for $\mathrm{C} 80.20, \mathrm{H} 9.32$, found $\mathrm{C} 79.99, \mathrm{H} \mathrm{9.44.[} \mathrm{\alpha]]}^{22}=$ $+66.3\left(c=4.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. In the recovery processes described below, $(-)-8 \mathrm{~S}\left([\alpha]_{0}^{20}=-22.6 \quad\left(c=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right)$ was obtained as an air-stable crystalline compound which can be used for the generation of either $(+)-1 \mathbf{S}$ or $(+)-2 \mathbf{S}$.
$(-)-(1 R, 2 R)-N$-Methylpseudoephedrinyl)-(10R)-phenyl-9-borabicyclo[3.3.2]decane ((-)-4R). ${ }^{1}$ The above supernatant was concentrated and the resulting residue was dissolved in hexane (60 mL) and mixed with $1 R, 2 R-$ N -methylpseudoephedrine ($5.0 \mathrm{~g}, 27.9 \mathrm{mmol})^{3}$. The reaction mixture was refluxed for 6 h , whereupon it was slowly cooled to room temperature forming small square, clear crystals. The supernatant was decanted via cannula and the crystals were washed ($3 \times 20 \mathrm{~mL}$) with hexane and dried in vacuo to give $4.1 \mathrm{~g}(10.5 \mathrm{mmol})$ of (-$)-4 \boldsymbol{R}$. The supernatant was concentrated, fresh hexane $(60 \mathrm{~mL})$ was added and the mixture was refluxed for an additional 6 h . Upon cooling, a second batch of crystals $(2.0 \mathrm{~g})$ were obtained following the above work-up. The overall yield of $(-)-4 R$ is $56 \% \quad(28 \%$ based upon $(\pm)-3)$. $\mathrm{mp}=135-140^{\circ} \mathrm{C}$; $[\alpha]_{0}^{25}=-66.6\left(c=4.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The $1 S, 2 S$-pseudoephedrine can also be used to convert the residual $3 R$ into crystalline $(+)-8 R .{ }^{1}$

B-Allenyl-(10S)-phenyl-9-borabicyclo[3.3.2]decane ((+)-1S) To a solution of (+)-4S (3.7 g, 9.4 mmol$)$ in ether $(47 \mathrm{~mL})$, a solution of freshly prepared allenylmagnesium bromide $(11.0 \mathrm{~mL})$ was added (dropwise) at $25^{\circ} \mathrm{C}$. The solution was allowed to stir for 1 h . Using standard techniques to prevent exposure of the borane to the open atmosphere, the solution was concentrated under vacuum, the residue was washed with hexane ($5 \times 10 \mathrm{~mL}$) and
these washings were filtered through a celite pad. Solvents were removed to obtain $1.9 \mathrm{~g}(84 \%)$ of $(+)-1 \mathbf{S} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 75 \mathrm{MHz}\right) \delta 23.5,27.4,28.1$ (broad singlet), 28.2, 29.0, 34.4, 40.5, 52.3 (broad singlet), 68.6, 90.6 (broad singlet), 124.7, 128.1, 130.0, 146.6, 220.7 (Fig. 1); ${ }^{11} \mathrm{~B} \mathrm{NMR} \mathrm{(} \mathrm{C}_{6} \mathrm{D}_{6}, 96 \mathrm{MHz}$) $\delta 80.1$; HRMS (${ }^{+}+2 \mathrm{H}$) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~B} 252.20$, found 252.19; $[\alpha]_{\mathrm{D}}^{20}=+29.8$ (c 1.92, $\mathrm{C}_{6} \mathrm{D}_{6}$). Alternatively, $(+)-1 \mathrm{~S}$ can be prepared from (-)-8S.

B-Allenyl-(10R)-phenyl-9-borabicyclo[3.3.2]decane ((-)-1R) is prepared by the same procedure starting with (-$)-4 R ;[a]_{0}^{20}=-29.2\left(c 1.92, \mathrm{C}_{6} \mathrm{D}_{6}\right)$. Alternatively, (-)-1R can be prepared from (+)-8R. Other data are essentially identical to $(+)-1 S$.

Figure 1. ${ }^{13} \mathrm{C}$ NMR of B-Allenyl-10-phenyl-9-borabicyclo[3.3.2]decane (1).
General procedure for the recovery of \mathbf{N}-methylpseudoephedrine from the generation of $\mathbf{1}$. The white solid obtained from the Celite filtration is transferred to a flask containing 100 mL of water and stirred for 5 h . The aqueous solution is washed with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$ and concentrated to obtain $0.46 \mathrm{~g}(86 \%)$ of recovered N methylpseudoephedrine.

Determination of enantiomeric purity: The enantiomeric purity was determined by the ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) CDA reagent developed by Alexakis using the reported procedures. ${ }^{4}$ All samples were calibrated with the phosphoramide A (δ 184.0).

General procedure for the preparation of racemic homopropargylic alcohols (")-6a-i. A
 1 M solution of allenylmagnesium bromide in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{mmol})$ was cooled to $0^{\circ} \mathrm{C}$ and the ketone (3.0 mmol) was added via syringe dropwise. After stirring for 4 h at $25^{\circ} \mathrm{C}$, the reaction mixture was poured over ammonium chloride solution ($1 \mathrm{M}, 20 \mathrm{~mL}$) and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{X} 10 \mathrm{~mL})$. The combined organic phase was washed with brine solution ($3 \times 20 \mathrm{~mL}$) and was dried over MgSO_{4}. Upon the removal of solvents under vacuum, (")-6 was obtained in $\sim 95 \%$ yield.

Procedures for the allenylation of ketones with (+)-1S or (-)-1R:

(+)-(S)-2-Phenyl-4-pentyn-2-ol (6aS). ${ }^{5}$ A solution of (+)-1S ($0.75 \mathrm{~g}, 3 \mathrm{mmol}$) in ethyl ether (30 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and acetophenone ($0.36 \mathrm{~g}, 3.0 \mathrm{mmol}$) was added. After 3 h the solution was warmed to room temperature
and treated with $\mathrm{NaOH}(3 \mathrm{M}, 9 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 6.0 \mathrm{mmol})$. This mixture was heated at reflux for 1 h . The residue was extracted with ethyl ether (3 x 10 mL) and distilled ($100{ }^{\circ} \mathrm{C}$ at 15 mm Hg (kugelrohr)) to obtain 0.36 g (74%) of $6 \mathbf{a S}(91 \% \mathrm{ee}) .[\mathrm{a}]_{\mathrm{D}}^{27}=+25.0\left(\mathrm{c}=2.2, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{t}, \mathrm{J}=$ $2.6 \mathrm{~Hz}), 1 \mathrm{H}), 2.41(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.81(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.51(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 29.2,34.6,71.7,73.2,80.4,124.7,127.1,128.2,146.3$ (Fig. 2). All experimental data for these compounds were in complete agreement with those reported. ${ }^{5}$ The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphopholidine derivative CDA-6a. Analysis of the peaks areas for δ 138.4 and 139.5 ppm revealed a $50: 50$ ratio for the racemic diazaphopholidine and a 95.5:4.5 ratio (91% ee) for the non-racemic material.

Figure 2. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of homopropargylic alcohol $\mathbf{6 a}$.
(R)-2-Phenyl-4-pentyn-2-ol ($\mathbf{6 a R}$): A solution of (-)-1R($1.25 \mathrm{~g}, 5.0 \mathrm{mmol}$) in ethyl ether (50 mL) was cooled to $78{ }^{\circ} \mathrm{C}$ and acetophenone ($0.18 \mathrm{~g}, 2.5 \mathrm{mmol}$) was added dropwise. After 3 h , the reaction solution was warmed to room temperature and the solvents were removed to yield the borinate intermediate 5 . The $(1 S, 2 S)$ -
pseudoephedrine ($0.83 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added followed by hexane $(8 \mathrm{~mL})$ and the mixture was heated to reflux for 3 h . The solution was allowed to cool while complex (-)-8R precipitated out of solution. These crystals were separated and washed with hexane $(3 \times 10 \mathrm{~mL})$ to yield $1.51 \mathrm{~g}(80 \%)$ of $(+)-8 R$. The residue was distilled to obtain $0.61 \mathrm{~g}(85 \%)$ of $\mathbf{6 a R}$. The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphospholidine derivative CDA-6a. Analysis of the peaks areas for $\delta 138.4$ and 139.5 ppm revealed a $50: 50$ ratio for the racemic diazaphospholidine and 3.5:96.5 ratio (93% ee) for the non-racemic material (Fig. 3).

Figure 3. ${ }^{31} \mathrm{P}$ NMR of CDA-6aR (top), CDA-6aS (middle), and CDA-6a-rac (bottom).
$(+)-(R)-3-P h e n y l-5-h e x y n e-3-\mathrm{ol}(6 \mathrm{~b} R) .{ }^{6}$ A solution of $(-)-1 R(0.71 \mathrm{~g}, 2.8 \mathrm{mmol})$ in ethyl ether (30 mL) and propiophenone ($0.32 \mathrm{~g}, 2.4 \mathrm{mmol}$) was added dropwise at room temperature. After $2 \mathrm{da}, \mathrm{NaOH}(3 \mathrm{~mL}$ of 3 M) and $\mathrm{H}_{2} \mathrm{O}_{2}(6 \mathrm{mmol}, 30 \%)$ was added to the borinate 5 b and the mixture was refluxed for 1 h . The organic layer was washed with water ($3 \times 10 \mathrm{~mL}$) and dried over magnesium sulfate. The residue was distilled ($82-85^{\circ} \mathrm{C}$ at 1.2 mm Hg) to obtain $0.27 \mathrm{~g}(65 \%)$ of $\mathbf{6 b}(76 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}^{28}=+19.4$ (c 1.2, $\left.\mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.79$ ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.85-2.04 (m, 3H), $2.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.69-2.83(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H})$, 7.40-7.46 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.8,33.0,34.2,71.8,75.6,80.3,125.2,126.9,128.1,144.5$ (Fig. 4). All experimental data for these compounds were in complete agreement with those reported. ${ }^{6}$ The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphospholidine derivative CDA-6b. Analysis of the peaks areas for $\delta 137.7$ and 138.9 ppm revealed a $50: 50$ ratio for the racemic diazaphospholidine and 88:12 ratio ($76 \% \mathrm{ee}$) for the non-racemic material.

Figure 4. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of homopropargylic alcohol $\mathbf{6 b}$.
$\mathbf{(+)}^{(+(S)-3-M e t h y l-5-h e x y n-3-o l ~(6 c S) . ~}{ }^{7}$ A solution of (-)-1 $\boldsymbol{R}(1.25 \mathrm{~g}, 5.0 \mathrm{mmol})$ in ethyl ether (50 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and 2-butanone ($0.18 \mathrm{~g}, 2.5 \mathrm{mmol}$) was added dropwise. After 3 h , the reaction solution was warmed to room temperature and the solvents were removed to yield the borinate intermediate $5 \mathbf{c}$. The $(1 S, 2 S)$ pseudoephedrine ($0.83 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added followed by hexane $(8 \mathrm{~mL})$ and the mixture was heated at reflux for 2 h . The solution was allowed to cool and complex (-)-8R precipitates from solution. These crystals were separated and washed with hexane ($3 \times 10 \mathrm{~mL}$) to yield $1.53 \mathrm{~g}(81 \%)$ of (+)-8R. The residue was distilled ($86-88$ ${ }^{\circ} \mathrm{C}$ at 74 mmHg$)$ to obtain $0.20 \mathrm{~g}(71 \%)$ of $\mathbf{6 c S}(74 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}^{28}=+6.2\left(\mathrm{c}=0.8, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}) $\delta 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.36$ ($\mathrm{m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.3,25.6,31.7,33.5,71.0,71.7,80.9$ (Fig. 5). All experimental data for these compounds were in complete agreement with those reported. ${ }^{7}$ The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphospholidine derivative after addition of S_{8} CDA-6c. Analysis of the peaks areas for $\delta 79.9$ and 80.1 ppm revealed a 50:50 ratio for the racemic diazaphospholidine and 13:87 ratio (74% ee) for the non-racemic material.

Figure 5. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of homopropargylic alcohol $\mathbf{6 c}$.
$(-)-(R)-4-$ Methyl-1-octyn-4-ol ($\mathbf{6 d R}$)..8 A solution of (+)-1S(1.25 g, 5.0 mmol$)$ in ethyl ether (50 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and 2-hexanone ($0.45 \mathrm{~g}, 4.5 \mathrm{mmol}$) was added dropwise. After 3 h , the reaction solution was warmed to room temperature and the solvents were removed to yield the borinate intermediate 5. The $(1 R, 2 R)$ pseudoephedrine ($0.83 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added followed by hexane $(8 \mathrm{~mL})$ and the mixture was heated to reflux for 2 h . The solution was allowed to cool while complex (+)-8S precipitated out of solution. The crystals were separated and washed with pentane ($3 \times 10 \mathrm{~mL}$) to yield $1.32 \mathrm{~g}(69 \%)$ of $(+)-8 \mathrm{~S}$. The residue was distilled $\left(72{ }^{\circ} \mathrm{C}\right.$ at 6 mm Hg) to obtain $0.50 \mathrm{~g}(80 \%)$ of $6 \mathrm{~d} R(81 \% \mathrm{ee}) .[\alpha]_{\mathrm{D}}^{26}=-2.0\left(\mathrm{c}=3.0, \mathrm{CDCl}_{3}\right) ; \mathrm{lit}^{8}{ }^{8}[\alpha]_{\mathrm{D}}^{28}=-1.1(\mathrm{c}=3.0$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.30-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.59(\mathrm{~m}, 2 \mathrm{H})$, $1.81(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.42(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,23.1,26.1,26.2,32.3$, $40.8,71.0,71.5,80.9$ (Fig. 6). The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphospholidine derivative after addition of S_{8} CDA-6d. Analysis of the peaks areas for $\delta 80.8$ and 81.0 ppm revealed $50: 50$ ratio for the racemic diazaphospholidine and 90.5:9.5 ratio (81% ee) for the non-racemic material.

Figure 6. ${ }^{13} \mathrm{C}$ NMR of homopropargylic alcohol $\mathbf{6 d}$.
$(-)-(R)-2,3$-Dimethyl-5-hexyn-3-ol ($6 \mathrm{e} R$). A solution of $(-)-1 R(1.25 \mathrm{~g}, 5.0 \mathrm{mmol})$ in ethyl ether (50 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 3-methyl-2-butanone ($0.39 \mathrm{~g}, 4.5 \mathrm{mmol}$) was added dropwise. After 6 h , the reaction solution was warmed to room temperature and the solvents were removed to yield the borinate intermediate $\mathbf{5 e}$. The ($1 R, 2 R$)- pseudoephedrine ($0.83 \mathrm{~g}, 5.0 \mathrm{mmol}$) was added followed by hexane (10 mL) and the mixture was heated to reflux for 3 h . The solution was allowed to cool while complex (- - $-8 R$ precipitated out of solution. The crystals were separated and washed with hexane ($3 \times 10 \mathrm{~mL}$) to yield $1.46 \mathrm{~g}(77 \%)$ of $(-)-8 R$. The residue was distilled $\left(90-91^{\circ} \mathrm{C}\right.$ at 55 mm Hg$)$ to obtain $0.40 \mathrm{~g}(71 \%)$ of $6 \mathrm{e} \boldsymbol{R}(84 \% \mathrm{ee})$. a $]_{\mathrm{D}}^{27}=-4.6\left(\mathrm{c} 3.2, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ (d, J = $6.9 \mathrm{~Hz}, 3 \mathrm{H}$), $1.18(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.81-1.96(\mathrm{~m}$, $1 \mathrm{H}), 2.07(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.9,17.6,22.4,30.6,36.2,71.3$, 73.7, 80.9 (Fig. 7). All experimental data for these compounds were in complete agreement with those reported. ${ }^{9}$ The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphospholidine derivative after addition of S_{8} CDA-6e. Analysis of the peaks areas for $\delta 79.9$ and 80.1 ppm revealed a $50: 50$ ratio for the racemic diazaphospholidine and $92: 8$ ratio (84% ee) for the non-racemic material.

Figure 7. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of homopropargylic alcohol $6 \mathbf{e}$.
(-)-(S)-2,2,3-Trimethyl-5-hexyn-3-ol (6fS). A solution of (+)-1S ($0.75,3.0 \mathrm{mmol}$) in ethyl ether (30 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and pinacolone ($0.30 \mathrm{~g}, 3.0 \mathrm{mmol}$) was added dropwise. After 12 h , the reaction solution was warmed to room temperature and treated with $\mathrm{NaOH}(3 \mathrm{M}, 9 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 6.0 \mathrm{mmol})$. This mixture was heated to reflux for 1 h . The residue was extracted with ether ($3 \times 10 \mathrm{~mL}$) and distilled ($174-176{ }^{\circ} \mathrm{C}$) to obtain 0.28 $\mathrm{g}(66 \%)$ of $6 \mathrm{fS}(83 \% \mathrm{ee}) . \alpha]_{\mathrm{D}}^{27}=-20.0\left(\mathrm{c}=1.4, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$, $1.79(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 22.3,25.4,28.3,37.4,71.9$, 74.7, 82.1 (Fig. 8). All experimental data for these compounds were in complete agreement with those reported. ${ }^{10}$ The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphopholidine derivative after addition of S_{8} CDA- 6 . Analysis of the peaks areas for $\delta 79.8$ and 80.0 ppm revealed $50: 50$ ratio for the racemic diazaphopholidine and 8.5:91.5 ratio ($83 \% \mathrm{ee}$) for the non-racemic material.

Figure 8. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of homopropargylic alcohol $\mathbf{6 f}$.
$(-)-(R)$-2-Trimethylsilyl-4-pentyn-2-ol (6 gR): A solution of (+) $1 \mathrm{~S}(0.87 \mathrm{~g}, 3.5 \mathrm{mmol})$ in ethyl ether (40 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and acetyltrimethylsilane ($0.35 \mathrm{~g}, 3.0 \mathrm{mmol}$) was added dropwise. After 3 h , the reaction solution was warmed to room temperature and the solvents were removed to yield the borinate intermediate $\mathbf{5 g}$. The ($1 R, 2 R$)-pseudoephedrine ($0.58 \mathrm{~g}, 3.5 \mathrm{mmol}$) was added followed by hexane (8 mL) and the mixture was heated to reflux for 2 h . The solution was allowed to cool while complex (+)-8S precipitated out of solution. The crystals were separated and washed with hexane ($3 \times 10 \mathrm{~mL}$) to yield $0.83 \mathrm{~g}(74 \%)$ of (+)-8S. The residue was distilled ($60{ }^{\circ} \mathrm{C}$ at 35 mm Hg) to obtain $0.29 \mathrm{~g}(62 \%)$ of $6 \mathrm{gR}(90 \%$ ee, $) .[a]_{\mathrm{D}}{ }^{8}=-5.0\left(\mathrm{c}=1.8 . \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.1,23.9,29.8,63.7,71.9,80.2$ (Fig. 9). HRMS calculated for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{OSi}=156.0970$, found 156.0981. The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphopholidine derivative after addition of S_{8} CDA-6g. Analysis of the peaks areas for $\delta 81.7$ and 81.8 ppm revealed $50: 50$ ratio for the racemic diazaphopholidine and $95: 5$ ratio (90% ee) for the non-racemic material.

Figure 9. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of homopropargylic alcohol $\mathbf{6 g}$.
(+)-(S)-3-Methyl-1-hexen-5-yn-3-ol (6hS): A solution of (+)-1S (1.00, 4.0 mmol) in ethyl ether (40 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 3 -buten-2-one ($0.25 \mathrm{~g}, 3.5 \mathrm{mmol}$) was added dropwise. After 3 h , the solution was warmed to room temperature and treated with $\mathrm{NaOH}(3 \mathrm{M}, 15 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(10.0 \mathrm{mmol}, 1.0 \mathrm{~mL}, 30 \%)$. This mixture was heated to reflux for 1 h . The residue was extracted with ether ($3 x 10 \mathrm{~mL}$) and distilled ($88-92{ }^{\circ} \mathrm{C}$ at 75 mm Hg) to obtain $0.25 \mathrm{~g}(64 \%)$ of $6 \mathrm{hS}(61 \% \mathrm{ee}) .[\mathrm{q}]_{\mathrm{D}}^{27}=+18.3\left(\mathrm{c}=1.2, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.38(\mathrm{~s}$, 3 H), 2.01 ($\mathrm{brs}, 1 \mathrm{H}$), $2.09(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.11-5.15(\mathrm{dd}, J=10.7 \mathrm{~Hz}, J=1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.28-5.35(\mathrm{dd}, J=17.3, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-6.04(\mathrm{dd}, J=17.3 \mathrm{~Hz}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 26.7, 32.7, 71.2, 71.8, 80.3, 112.7, 143.1 (Fig. 10). All experimental data for these compounds were in complete agreement with those reported. ${ }^{7}$ The ee value was determined from the ${ }^{31} \mathrm{P}$ NMR analysis of the corresponding diazaphopholidine derivative after addition of S_{8} CDA-6h. Analysis of the peaks areas for $\delta 80.4$ and 80.5 ppm revealed a 50:50 ratio for the racemic diazaphopholidine and 80.5:19.5 ratio ($61 \% \mathrm{ee}$) for the non-racemic material.

Figure 10. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of homopropargylic alcohol $6 \mathbf{h}$.
$(+)-B-[\gamma-($ Trimethylsilyl)propargyl]-10S-phenyl-9-borabicyclo[3.3.2]decane ((+)-2S). A solution of (+)-4S $(1.17 \mathrm{~g}, 3.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of freshly prepared trimethylsilylpropynylmagnesium bromide ${ }^{11}(5.0 \mathrm{~mL}, 0.67 \mathrm{M})$ in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise and stirred for 1 h . The solution was allowed to reach room temperature and was stirred overnight ($8-10 \mathrm{~h}$). The reaction mixture was quenched with TMSCI $(0.054 \mathrm{~g})$. Using standard techniques to prevent the exposure of the borane to the open atmosphere, the solution was concentrated under vacuum, the residue was washed with hexane ($3 \times 20 \mathrm{~mL}$) and these washings were filtered through a celite pad. Concentration gives $0.94 \mathrm{~g}(97 \%)$ of $(+)-2 \mathrm{~S}) .[\alpha]_{\mathrm{D}}^{20}=+31.7$ (c 2.05, $\mathrm{C}_{6} \mathrm{D}_{6}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 300 \mathrm{MHz}\right) \delta 0.18(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.80(\mathrm{~m}, 9 \mathrm{H}), 1.93(\mathrm{ad}, \mathrm{J}=18.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.13(\mathrm{ad}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.15$ $(\mathrm{m}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.5,20.1,23.7,23.8,26.8,27.2,28.4,29.3,30.2,31.2,34.3,40.8,52.7$, 84.5, 105.8, 125.4, 128.1, 130.0, 146.0 (Fig. 11); IR (neat) 3022, 2912, 2853, 2178 (C=C), 1490, 1468, 1449, 1379, 1327, 1298 (C-B-C), 1248 (Si-C), 981, 838 (Si-C), $758,698,637 \mathrm{~cm}^{-1} ;{ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 96 \mathrm{MHz}\right) \delta 86.6$. Alternatively, (+)-2S can be prepared from (-)-8S.
$(-)-B-[\gamma-($ Trimethylsilyl)propargyl]-10-phenyl-9-borabicyclo[3.3.2]decane $((-)-2 R)$ is prepared by the same procedure employing $(-)-4 R .[a]_{0}^{20}=-29.8\left(c 2.0, \mathrm{C}_{6} \mathrm{D}_{6}\right)$. Alternatively, $(-)-2 R$ can be prepared from $(+)-8 R$. Other data is essentially identical to that of $(+)-2 S$.

Figure 11. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of propargylborane 2.
$(\pm)-B-[\gamma-($ Trimethylsilyl $)$ propargyl]-10-phenyl-9-borabicyclo[3.3.2]decane ($(\pm)-2)$. A solution of (\pm)-3 (0.73 g , $3.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was cooled to -78° and a solution of freshly prepared 3-trimethylsilyl-2propynylmagnesium bromide $(5.0 \mathrm{~mL}, 0.67 \mathrm{M})^{11}$ in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise and stirred for 1 h . The solution was allowed to reach room temperature and was stirred overnight ($8-10 \mathrm{~h}$). The reaction mixture was quenched with TMSCI (0.054 g) Using standard techniques to prevent the exposure of the borane to the open atmosphere, the solution was concentrated under vacuum, the residue was washed with hexane ($3 \times 20 \mathrm{~mL}$) and these washings were filtrated through a celite pad. Concentration gives $0.94 \mathrm{~g}(97 \%)$ of $(\mathbf{\pm}) \mathbf{- 2}$. Spectral data were as above.

Representative Procedure for the Propargylboration of Ketones with (土)-2.

($\mathbf{\pm}$)-2-Phenyl-3-(trimethylsilyl)-3,4-pentadien-2-ol (($\mathbf{\pm})-9 \mathrm{a})$. A solution of ($\mathbf{\pm}$)-2 ($0.73 \mathrm{~g}, 3.0 \mathrm{mmol}$) in THF (3 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and acetophenone ($0.3 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added dropwise. After 12 h , the solvents were removed under vacuum to yield the borinate 7 a . To the reaction mixture MeOH was added (15 mL) and refluxed for 3 h . The mixture was cooled to room temperature and the volatiles removed in vacuo. The reaction crude was purified by silica gel chromatography (hexane-ether, $98: 2$) to give $0.59 \mathrm{~g}(87 \%)$ of ($\mathbf{\pm})-9 \mathrm{a}$. The spectral data is identical to that of $(+)-9 a R$.

General procedure for the propargylboration of ketones with (-)-2R or (+)-2S:

(+)-(2R)-2-Phenyl-3-(trimethylsilyl)-3,4-pentadien-2-ol (9aR). A solution of (+)-2S (0.94 g, 3.0 mmol$)$ in THF (3 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and acetophenone ($0.3 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added dropwise. After 12 h , the solvents were removed under vacuum to yield the borinate. ($1 R, 2 R$)-(-)-pseudoephedrine ($0.49 \mathrm{~g}, 3.0 \mathrm{mmol}$) and hexane $(10 \mathrm{~mL})$ were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane ($3 \times 5 \mathrm{~mL}$) to yield $0.75 \mathrm{~g}(80 \%)$ of (-)-8S. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane:ether, 98-2) to afford 0.47 g $(81 \%)(97 \%$ ee $)$ of $9 \mathrm{a} R . \mathrm{R}_{f}=0.29 .[\alpha]_{\mathrm{D}}^{23}=+106.3\left(c 2.19, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.95(\mathrm{~s}, 9 \mathrm{H})$, 1.71 (s, 3H), $2.10(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{bs}, 2 \mathrm{H}), 7.20-7.28(\mathrm{tt}, J=1.3,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.50(\mathrm{dt}, J=$ $1.5,7.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.9,32.5,71.5,75.9,105.2,125.2,126.5,127.7,147.5,208.0$ (Fig. 12); IR (neat) 3454 (O-H), 3059, 3028, 2958, 2896, 1922 (C=C=C), 1446, 1246 (Si-C), 1067, 837 (Si-C), $760,698 \mathrm{~cm}^{-1}$; $\mathrm{CDA}^{31} \mathrm{P} \operatorname{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.5$ (1.3\%), 137.3 (98.6\%) (Fig. 21). Anal. calcd for C 72.36 , H 8.67, found C 72.10, H 8.66.

Figure 12. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of 9 a . .
(+)-(4R)-4-Methyl-3-(Trimethylsilyl)-1,2-octadien-4-ol (9bR). A solution of (+)-2S (0.95 g, 3.0 mmol$)$ in THF (5 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and 2 -hexanone ($0.31 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added dropwise. After 3 h , the solvents were removed under vacuum to yield the borinate 7b. The $(1 R, 2 R)-(-)$-pseudoephedrine $(0.49 \mathrm{~g}, 3.0 \mathrm{mmol})$ and hexane (20 mL) were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane ($3 \times 5 \mathrm{~mL}$) to yield $0.71 \mathrm{~g}(76 \%)$ of (-)-8S. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane-ether, 97:3) to afford $0.33 \mathrm{~g},(62 \%)$ of $9 \mathrm{bR} . \mathrm{R}_{f}=0.24 .[\alpha]_{\mathrm{D}}^{20}=+9.8\left(c 2.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.10(\mathrm{~s}, 9 \mathrm{H})$, $0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{bs}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.3,14.0,22.9,26.2,29.7,42.9,70.9,74.4,104.8,206.9$ (Fig. 13); IR (neat) 3475 (O-H), 2956, 2934, 2862, 1924 (C=C=C), 1457, 1371, 1246 (Si-C), 1118, 1047, 835 (Si-C), 809, 758, 690, 633, $592 \mathrm{~cm}^{-1}$; CDA ${ }^{31} \mathrm{P}$ NMR (121 MHz, CDCl_{3}) $\delta 136.1$ (92\%), 134.2 (8\%) (Fig. 22). Anal. calcd for $\mathrm{C} 67.86, \mathrm{H} 11.39$, found C 67.88, H 11.38.

Figure 13. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of 9 b .
(+)-(2R)-2-Cyclohexenyl-3-(trimethylsilyl)-3,4-pentadien-2-ol (9cR). A solution of (+)-2S ($0.96 \mathrm{~g}, 3.0 \mathrm{mmol}$) in THF (5 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 1 -acetyl- 1 -cyclohexene ($0.15 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added dropwise. After 3 h , the solvents were removed under vacuum to yield the borinate 7 c . The $(1 R, 2 R)-(-)$-pseudoephedrine $(0.33 \mathrm{~g}$, 2.0 mmol) and hexane (7 mL) were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane $(3 \times 5 \mathrm{~mL})$ to yield $0.57 \mathrm{~g}(85 \%)$ of $(-)-8 \mathbf{S}$. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane-ether, $97: 3$) to afford $0.22 \mathrm{~g},(67 \%)$ of $9 \mathrm{c} R . \mathrm{R}_{f}=0.24 .[\alpha]_{\mathrm{D}}^{20}=+45.6\left(c 2.08, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.11(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{~s}, 1 \mathrm{H}), 1.90-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.07(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H})$, 5.75 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.20,22.29,22.88,24.4,25.1,28.7,77.5,76.2,103.9,120.6,141.9$, 207.8 (Fig. 14); IR (neat) 3465 (O-H), 3051, 2927, 2858, 2936, 1922 (C=C=C), 1627, 1447, 1366, 1313, 1245 (Si-C), 1208, 1141, 1072, $835(\mathrm{Si}-\mathrm{C}), 807,757,691,623 \mathrm{~cm}^{-1} ; \mathrm{CDA}^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 77.3$ (95.5%), 74.2 (4.5\%) (Fig. 23). Anal. calcd for C 71.12, H 10.23, found C 70.83, H 10.29.

Figure 14. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of $9 \mathrm{c} \boldsymbol{R}$.
(-)-(2S)-2-(4-Methoxyphenyl)-3-(trimethylsilyl)-3,4-pentadien-2-ol (9dS). A solution of (-)-2R (0.94 g, 3.0 mmol) in THF (3 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 4-methoxyacetophenone ($0.4 \mathrm{~g}, 2.6 \mathrm{mmol}$) in THF (1 mL) was added dropwise. After 6 h , the solvents were removed under vacuum to yield the borinate 7 d . The $(1 S, 2 S)-(+)-$ pseudoephedrine ($0.43 \mathrm{~g}, 2.6 \mathrm{mmol}$) and hexane (10 mL) were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane (3×5 mL) to yield $0.77 \mathrm{~g}(79 \%)$ of (+)-8R. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane-ether, 98:2) to afford $0.65 \mathrm{~g}(95 \%)$ of $9 \mathrm{dS} . \mathrm{R}_{f}=0.10$. $[\alpha]_{D}^{20}=-73.7$ (c 1.92, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.97$ (s, 9H), $1.70(\mathrm{~s}, 3 \mathrm{H}), 2.11$ (s, 1H), 3.75 (s, 3H), 4.61 (bs, 2H), 6.85 (d, J= 8.7 Hz , 2 H), $7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.08,32.4,55.1,71.5,75.5,105.4,113.0,126.4$, 139.8, 158.2, 207.9 (Fig. 15); IR (neat) 3495 (O-H), 2956, 2897, 2835, 1921 (C=C=C), 1699, 1608, 1583, 1509, 1245 (Si-C), 1170, 1092, 1033, 904, 831 (Si-C), 809, $760 \mathrm{~cm}^{-1} ; \mathrm{CDA}^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5$ (96%), 137.0 (4\%) (Fig. 24). Anal. calcd for C 68.65, H 8.45 , found C 68.64, H 8.64 .

Figure 15. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of 9 dS .
(+)-(2R)-2-(4-Bromophenyl)-3-(trimethylsilyl)-3,4-pentadien-2-ol (9eR). A solution of (+)-2S ($0.96 \mathrm{~g}, 3.0 \mathrm{mmol}$) in THF (3 mL) was cooled to $-78^{\circ} \mathrm{C}$ and 4 -bromoacetophenone ($0.44 \mathrm{~g}, 2.2 \mathrm{mmol}$) in THF (1 mL) was added dropwise. After 36 h , the solvents were removed under vacuum to yield the borinate $7 \mathrm{e} . \quad(1 R, 2 R)-(-)$ pseudoephedrine ($0.36 \mathrm{~g}, 2.2 \mathrm{mmol}$) and hexane (10 mL) were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane (3×5 mL) to yield $0.35 \mathrm{~g}(50 \%)$ of $(-)-8 \mathbf{S}$. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane:ether, 98-2) to afford $0.55 \mathrm{~g}(80 \%)$ of (+)-6. $\mathrm{R}_{f}=0.15 .[\alpha]_{0}^{20}=+119.4\left(c 1.72, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.0(\mathrm{~s}, 9 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{bs}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ (d, J = 7.1 Hz, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.02,32.6,71.7,75.6,104.9,120.4,127.1,130.8,146.7,208.1$ (Fig. 16); IR (neat) 3465 (O-H), 2958, 2896, 1921 (C=C=C), 1485, 1394, 1246 (Si-C), 1008, 903,838 (Si-C), 824, 757, 692, 620, $557 \mathrm{~cm}^{-1} ; \mathrm{CDA}^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.2$ (1%), 137.6 (99%) (Fig. 25). Anal. calcd for C 54.02, H 6.15, found C 54.24, H 6.25 .

Figure 16. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of $9 \mathrm{e} R$.
(+)-(2R)-2-(4-Nitrophenyl)-3-(trimethylsilyl)-3,4-pentadien-2-ol (9fR). A solution of (+)-2S (0.95 g, 3.0 mmol$)$ in THF (5 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and 4 -nitroacetophenone ($0.33 \mathrm{~g}, 2.0 \mathrm{mmol}$) in THF (1 mL) was added dropwise. After 36 h , the solvents were removed under vacuum to yield the borinate 7 f . The $(1 R, 2 R)-(-)-$ pseudoephedrine ($0.33 \mathrm{~g}, 2.0 \mathrm{mmol}$) and hexane (10 mL) were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane (3×5 $\mathrm{mL})$ to yield $0.49 \mathrm{~g}(65 \%)$ of $(-)-8 \mathrm{~S}$. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane-ether, 95:5) to afford $0.40 \mathrm{~g}(73 \%)$ of $9 \mathrm{fR} . \mathrm{R}_{f}=0.17$. $[\mathrm{a}]_{\mathrm{D}}^{20}=+188.7$ (c 1.20, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.90(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{add}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, 8.13 (d, J = $7.4 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.16,32.5,71.8,75.8,104.5,122.9,126.2,146.4,155.4$, 208.4 (Fig. 17); IR (neat) 3398 (O-H), 2974, 2897, 1924 (C=C=C), 1597, 1518, 1447, 1344, 1246 (Si-C), 1094, 838 (Si-C), 755, 701, $620 \mathrm{~cm}-1$; $\mathrm{CDA}^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1$ (1\%), 138.2 (99\%) (Fig. 26). Anal. calcd for C 60.62 , H 6.90 , found C 60.75, H 7.03 .

Figure 17. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of $9 \mathrm{f} R$.
(-)-(2S)-2-Thienyl-3-(trimethylsilyl)-3,4-pentadien-2-ol (9gS). A solution of (+)-2S ($0.35 \mathrm{~g}, 1.1 \mathrm{mmol}$) in THF (3 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and 2 -acetylthiophene (0.11 mL , 1.0 mmol) was added dropwise. After 3 h , the solvents were removed under vacuum to yield the borinate 7 g . The ($1 R, 2 R$)-(-)-pseudoephedrine ($0.16 \mathrm{~g}, 1.0$ mmol) and hexane (10 mL) were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane ($3 \times 5 \mathrm{~mL}$) to yield $0.72 \mathrm{~g}(70 \%)$ of $(-)-8 \mathbf{8}$. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane-ether, 97:3) to afford $0.17 \mathrm{~g},(71 \%)$ of $9 \mathrm{gs} . \mathrm{R}_{f}=0.2 .[\alpha]_{\mathrm{D}}^{20}=+26.5\left(c 1.65, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07$ (s, 9H), $1.81(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 6.91(\mathrm{dd}, J=3.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=1.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (dd, $J=1.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.09,32.4,72.6,74.3,105.9,123.0,124.2,126.4,153.5$, 207.6 (Fig. 18); IR (neat) 3445 (O-H), 3071, 2955, 2896, 1922 (C=C=C), 1694, 1528, 1446, 1350, 1246 (Si-C), 1130, 1090, 1047, 1023, 965, 836 (Si-C), 760, 693, 626, $469 \mathrm{~cm}^{-1} ; \mathrm{CDA}^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.4$ (89\%), 136.2 (11\%) (Fig. 27); HRMS [M+H]+ calcd. 239.2244 found 239.2246.

200	180	160	140	120	100	80	60	40	20

Figure $18 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of 9 hs .
(-)-(2R)-2-Furyl-3-(trimethylsilyl)-3,4-pentadien-2-ol (9hR). A solution of (+)-2S ($0.64 \mathrm{~g}, 2.0 \mathrm{mmol}$) in THF (3 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and 2 -acetylfuran ($0.15 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added dropwise. After 3 h , the solvents were removed under vacuum to yield the borinate 7 h . The ($1 R, 2 R$)-(-)-pseudoephedrine ($0.29 \mathrm{~g}, 1.8 \mathrm{mmol}$) and hexane (15 mL) were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane $(3 \times 5 \mathrm{~mL})$ to yield $0.60 \mathrm{~g}(80 \%)$ of $(-)-8 \mathrm{~S}$. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane-ether, 90:10) to afford $0.23 \mathrm{~g},(82 \%)$ of $9 \mathrm{~h} R$. $\mathrm{R}_{f}=0.12 .[\alpha]_{\mathrm{D}}^{20}=-10.5^{\circ}\left(c 2.48, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 9 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{ab}, 2 \mathrm{H}), 6.19(\mathrm{dd}, J=0.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{dd}, J=1.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J$ $=0.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.3,28.4,71.6,72.8,104.2,105.1,110.1,141.4,158.8,207.5$ (Fig. 19); IR (neat) 3453 (O-H), 3118, 3062, 2956, 2897, 1924 (C=C=C), 1448, 1406, 1247 (Si-C), 1155, 1136, 1098, 1070, 836 (Si-C), $812,759,732,691 \mathrm{~cm}^{-1}$; CDA ${ }^{31} \mathrm{P}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.9$ (10%), 136.5 (90%) (Fig. 28). Anal. calcd for C 64.82, H 8.16, found C 65.04, H 8.40.

Figure 19. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of 9 iR .
(+)-(4R)-4-Phenyl-3-(trimethylsilyl)-1,2-hexadien-4-ol (9iR). A solution of (+)-2S (0.64 g, 2.0 mmol) in THF (3 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and propiophenone ($0.21 \mathrm{~mL}, 1.6 \mathrm{mmol}$) was added dropwise. After 52 h , the solvents were removed under vacuum to yield the borinate $7 \mathbf{i}$. The ($1 R, 2 R$)-(-)-pseudoephedrine ($0.36 \mathrm{~g}, 2.2 \mathrm{mmol}$) and hexane (10 mL) were added and the mixture was heated at reflux temperature for 12 h and slowly cooled. The resulting crystals were separated and washed with hexane ($3 \times 5 \mathrm{~mL}$) to yield $0.50 \mathrm{~g}(83 \%)$ of $(-)-8 \mathrm{~S}$. The supernatant was concentrated and the residue was purified by silica gel chromatography (hexane-ether, 95:5) to afford $0.22 \mathrm{~g},(63 \%)$ of 9 iR . $\mathrm{R}_{f}=0.37 .[\alpha]_{\mathrm{D}}^{20}=+41.3^{\circ}\left(c=2.66, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.0(\mathrm{~s}$, $9 \mathrm{H}), 0.82(\mathrm{t}, J=7.3,3 \mathrm{H}), 1.90(\mathrm{~s}, 1 \mathrm{H}), 1.98-2.10(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=11.1,18.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.28-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.45(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.05,8.0,36.4,71.3,78.3,104.4$, 125.7, 126.4, 127.7, 146.2, 208.1 (Fig. 20); IR (neat) 3483 (O-H), 3086, 3059, 3027, 2965, 2897, 1924 (C=C=C), 1601, 1446, 1342, 1246 (Si-C), 1166, 1073, 971, 837 (Si-C), 814, 755, 699, 626, $476 \mathrm{~cm}^{-1}$; CDA ${ }^{31} \mathrm{P}$ NMR (121 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7$ (82\%), 137.6 (18\%) (Fig. 29). Anal. calcd for C 73.11, H 9.00, found C 73.33, H 9.22.

Figure 20. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of $9 \mathrm{j} R$.

Determination of enantiomeric purity.

The enantiomeric purity was determined by the ${ }^{31}$ P NMR CDA method developed by Alexakis using the reported procedure. ${ }^{12}$ All examples were calibrated with the phosphoramide \mathbf{A}. (δ 184.0).

Figure 21. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of 9 a R.

Figure 22. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of $9 \mathrm{~b} R$

Figure 23. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of $9 \mathbf{c} \boldsymbol{R}$

Figure 24. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of 9 dS .

Figure 25. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of $9 \mathrm{e} R$.

Figure 26. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of $9 f R$

Figure 27. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of $9 \mathrm{~h} \boldsymbol{S}$

Figure 28. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of $9 \mathrm{i} R$

Figure 29. ${ }^{31} \mathrm{P}$ NMR of CDA derivative of $\mathbf{9 j} \boldsymbol{R}$

(R)-(-)-2-Hydroxy-2-phenylpropionic acid (Atrolactic acid, 12). The (+)-9aR(0.097 g, 0.42 mmol) was dissolved in dichloromethane (30 mL), and the solution was cooled to $-78^{\circ} \mathrm{C}$. Ozone was bubbled through the solution until a blue color persisted (10 min). The solvents were removed to reveal the formation of the silyl ester intermediate 11 (${ }^{13} \mathrm{C}$ NMR $\delta 179.1$ ($\mathrm{SiOC}=\mathrm{O}$), 1.88 (TMS)) (Fig 30). THF (3 mL) was added followed by water ($0.08 \mathrm{~g}, 0.42 \mathrm{mmol}$). The mixture was stirred for 3 h at room temperature and the solvents were removed in vacuo to give $12(0.069 \mathrm{~g}, 100 \%)$. $[\alpha]_{\mathrm{D}}^{25}=-37\left(c 2.0 \mathrm{H}_{2} \mathrm{O}\right)$, lit. ${ }^{12}(2 \mathrm{~S})[\alpha]_{\mathrm{D}}^{25}=+49\left(c 2 \mathrm{H}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (CDCl $\mathrm{Na}_{3}, 300$ $\mathrm{MHz}) \delta 1.21(\mathrm{~s}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 7.30-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 26.6,75.7$, $125.2,128.12,128.44,141.8,180.3$ (Fig. 33). In a separate experiment, the ozonolysis was interrupted after 3 min, the mixture was concentrated and its ${ }^{13} \mathrm{C}$ NMR spectrum was recorded to clearly reveal the acylsilane intermediate 10 (i.e. $\delta 241.6$ (TMSC=O); -1.82 (TMS)) (Fig. 31 and 32).

Figure $30 .{ }^{13} \mathrm{C}$ NMR of crude trimethylsilyl ester intermediate 11.

Figure 31. ${ }^{13} \mathrm{C}$ NMR of $\mathrm{TMSC}=\mathrm{O}$ for intermediate 10.

Figure 32. ${ }^{13} \mathrm{C}$ NMR of TMS for intermediate 10.

Figure 33. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of 2-hydroxy-2-phenylpropionic acid 12.

1-Acetoxy-1-phenyl-2-(trimethylsilyl)-2,3-butadiene (9kS). ${ }^{11}$ The (+)-(1S)-1-phenyl-2-(trimethylsilyl)-2,3-butadien-1-ol ($0.096 \mathrm{~g}, 0.44 \mathrm{mmol})^{13}$ was dissolved in 5 mL of dry THF. DMAP ($0.12 \mathrm{~g}, 1 \mathrm{mmol}$) was added followed by $\mathrm{AcCl}(0.1 \mathrm{~mL}, 1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The solution was allowed to reach room temperature and was stirred overnight. The organic layer was extracted with water ($4 \times 3 \mathrm{~mL}$) to remove the excess of precipitated salts. The organic layer was dried with MgSO_{4}, filtrated and concentrated to give 0.10 g (89%) of $9 \mathrm{kS} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CHCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.02(\mathrm{~s}, 9 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 4.53(\mathrm{~d}, 2 \mathrm{H}), 6.29(\mathrm{t}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CHCl}_{3}, 75 \mathrm{MHz}\right) \delta-1.14,21.2,71.64,71.68,97.6,127.5,128.1,128.2139 .5,169.9,209.0$.

(-)-(1S)-4-Bromo-1-(acetoxy)-1-phenyl-2-butyne (13kS). The 9 kS ($0.0813 \mathrm{~g}, 0.31 \mathrm{mmol}$) was added to a solution of NBS $(0.056 \mathrm{~g}, 0.31 \mathrm{mmol})$ in THF at $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction was allowed to reach room temperature and stirred for 3 h . The organic layer was extracted with water ($3 \times 5 \mathrm{~mL}$), dried with MgSO_{4}, filtrated and concentrated. The crude oil was purified by silica gel column chromatography (hexane-ethyl ether, $80: 20)$ to afford $0.0190 \mathrm{~g}(38 \%)$ of $13 \mathrm{kS} . \mathrm{R}_{f}=0.47 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CHCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.11(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.49(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz} .1 \mathrm{H}), 7.31-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=4.0,7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CHCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 13.8, 21.0, 65.5, 82.22, 83.11, 127.7, 128.7, 129.1, 136.5, 169.7 (Fig. 34); IR (neat) $\mathrm{cm}^{-1} 3033,2924,2868,2361$ (CइC), 1739 (C=O), 1495, 1369, 1222, 1209, 1149, 1015, 957, 753, 696, 615, $555(\mathrm{C}-\mathrm{Br}) \mathrm{cm}^{-1} . \mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+}$ calcd. 208.9783 found 208.9784. [$\alpha]_{D}^{20}=-28.6\left(c 1.18, \mathrm{CHCl}_{3}\right)$.

(+)-(3R)-3-Acetoxy-2,2-dimethyl-4-(trimethylsilyl)-4,5-hexadiene (9IR). The (+)-(3R)-2,2-dimethyl-4-(trimethylsilyl)-4,5-hexadien-3-ol ($0.079 \mathrm{~g}, 0.40 \mathrm{mmol}$) was dissolved in 5 mL of dry THF. The DMAP ($0.12 \mathrm{~g}, 1$ mmol) was added followed by $\mathrm{AcCl}(0.1 \mathrm{~mL}, 1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and stirred for 1 h . The solution was allowed to reach room temperature and stirred overnight. The organic layer was extracted with water ($4 \times 3 \mathrm{~mL}$) to remove the excess of precipitated salts, dried with MgSO_{4}, filtered twice through silica and concentrated to give 0.043 g (50%) of $9 I R .[\alpha]_{D}^{20}=+32.3\left(c 0.60, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}^{2}\left(\mathrm{CHCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, 4.42 (s, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CHCl}_{3}, 75 \mathrm{MHz}\right) \delta-0.6,20.9,26.2,36.5,70.3,79.0,94.9,170.1,210.1$. HRMS $[\mathrm{M}+\mathrm{H}]^{+}$ calcd. 241.1618 found 241.1618.

(+)-(3S)-3-Acetoxy-2,2-dimethyl-6-bromo-4-hexyne (13IS). A solution of 9 IR ($0.043 \mathrm{~g}, 0.20 \mathrm{mmol}$) in THF at $78{ }^{\circ} \mathrm{C}$ was added to a solution of NBS ($0.036 \mathrm{~g}, 0.20 \mathrm{mmol}$) in THF at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction was allowed to reach room temperature and stirred for 12 h . The organic layer was extracted with water (3×5 mL), dried with MgSO_{4}, filtered and concentrated. The crude oil was purified by silica gel chromatography (hexane-AcOEt, 90:10) to afford product $0.030 \mathrm{~g}(61 \%)$ of $13 \mathrm{IS} . \mathrm{R}_{f}=0.45 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CHCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.01(\mathrm{~s}$,
$9 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CHCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.1,20.8,25.5$, 35.3, 71.7, 80.8, 83.3. 170.1 (Fig. 35). $[\alpha]_{\mathrm{D}}^{20}=+38.2$ (c 2.26, CHCl_{3}). HRMS $[\mathrm{M}+\mathrm{H}]^{+}$calcd. 233.1719 found 233.1719 .

(-)-(2S)-5-Bromo-2-phenyl-3-pentyn-2-ol (13aS). A solution of $9 \mathrm{a} R(0.072 \mathrm{~g}, 0.31 \mathrm{mmol})$ in THF at $-78{ }^{\circ} \mathrm{C}$ was added via cannula to a solution of NBS ($0.055 \mathrm{~g}, 0.31 \mathrm{mmol}$) in THF at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction was allowed to reach room temperature and stirred for 3 h . The organic layer was extracted with water (3×5 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was purified by silica gel chromatography (hexane-EtOAc, 95:5) to afford $0.067 \mathrm{~g}(90 \%)$ of 13aS. $\mathrm{R}_{f}=0.18 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CHCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.77(\mathrm{~s}, 3 \mathrm{H})$, $2.48(\mathrm{bs}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CHCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.1$, 32.9, $70.0,80.1,90.1,124.8,127.86,128.37,145.0$ (Fig. 36); IR (neat) $\mathrm{cm}^{-1} 3377,3061,3027,2984,2928,2857$, 2366 (C三C), 1446, 1367, 1233, 1209, 1096, 1062, 1027, 762, 698, 601, $577(\mathrm{C}-\mathrm{Br}) \mathrm{cm}^{-1} . \mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+}$calcd. 236.9910 found 236.9910. [$\alpha]_{D}^{20}=-2.4\left(c 1.59, \mathrm{CHCl}_{3}\right)$.

(+)-(3S)-6-Bromo-3-phenyl-4-hexyn-3-ol (13bS). A solution of $9 \mathrm{bS}(0.075 \mathrm{~g}, 0.30 \mathrm{mmol})$ in THF at $-78{ }^{\circ} \mathrm{C}$ was added via cannula to a solution of NBS ($0.062 \mathrm{~g}, 0.35 \mathrm{mmol}$) in THF at $-78{ }^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction was allowed to reach room temperature and was stirred for 12 h . The organic layer was extracted with water (3 x 5 mL), dried over MgSO_{4}, filtered and concentrated in vacuo. The crude was purified by silica gel chromatography (hexane-EtOAc, 95:5) to afford $0.051 \mathrm{~g}(67 \%)$ of $13 \mathrm{bS} . \mathrm{R}_{f}=0.19 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CHCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 1 \mathrm{H}), 1.85-2.08(\mathrm{~m}, 2 \mathrm{H}), 4.0(\mathrm{~s}, 2 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.62(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CHCl}_{3}, 75 \mathrm{MHz}\right) \delta 8.9,14.3,38.1,73.9,81.2,89.0,125.4,127.79,128.18,143.9$ (Fig. 37); IR (neat) cm^{-1} 3384, 2970, 2934, 2878, 2360 (C三C), 1447, 1377, 1325, 1210, 1096, 1049, 757, 699, $569(\mathrm{C}-\mathrm{Br}) \mathrm{cm}^{-1} .[\alpha]_{\mathrm{D}}^{20}=$ +3.5 (c 1.90, $\left.\mathrm{CHCl}_{3}\right)$. HRMS [M-OH] ${ }^{+}$calcd. 235.0117 found 235.0115.

Figure $34 .{ }^{13} \mathrm{C}$ NMR of $\mathbf{1 3 k S}$.

Figure $35 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3 I S}$.

Figure $36 .{ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3} \mathrm{a}$ S.

Figure 37. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3 b S}$. Note! Sample contains a small amount of cyclohexane impurity which was in the CDCl_{3}.

References

(1) Canales, E.; Prasad, G.; Soderquist, J. A. J. Am. Chem. Soc. 2005, 127, 11572.
(2) (a) Bamford, W. R.; Stevens, T. S. J. Chem. Soc. 1952, 4735. (b) Kaufman, G.M.; Smith, J. A.; Vander Stouw, G. G.; Shechter, H. J. Am. Chem. Soc. 1965, 87, 935. (c) Creary, X. Organic Syntheses; Wiley: New York, 1990, Collect. Vol. VII, p 438.
(3) Smith, S. J. Chem. Soc. 1927, 2056.
(4) Alexakis, A.; Frutos, J.C.; Mutti, S.; Mangeney, P. J.Org. Chem., 1994, 59, 3326. For an alternative ${ }^{31}$ P CDA reagent: Alexakis, A.; Mutti, S; Mangeney, P. J. Org. Chem. 1992, 57, 1224.
(5) Brown, H. C.; Khire, U. R.; Racherla, U. S. Tetrahedron Lett. 1993, 34, 15.
(6) Li, Z.; Jia, Y.; Zhou, J. Synth. Commun. 2000, 30, 2515.
(7) Brown, H. C.; Khire, U. R.; Narla, G.; Racherla, U. S. J. Org. Chem. 1995, 60, 544.
(8) Takahashi, O.; Umezaw, Furuhashi, K. Takagi, M. Tetrahedron Lett. 1989, 30, 1538.
(9) Plouin, D.; Glenat, R. C. R. Hebd. Seances Acad. Sci., Ser. C 1967, 265, 646.
(10) Lauger, P.; Prost, M.; Charlier, R. Helv. Chim. Acta. 1959, 42, 2379.
(11) Hernandez, E.; Soderquist, J. A. Org. Lett. 2005, 70, 5397.
(12) Alexakis, A.; Frutos, J.C.; Mutti, S.; Mangeney, P. J.Org. Chem., 1994, 59, 3326-3334. For an alternative ${ }^{31}$ P CDA reagent: Alexakis, A.; Mutti, S; Mangeney, P. J. Org. Chem. 1992, 57, 1224.
(13) Lancaster Synthesis Catalog Research Chemicals 2004-2005, Lancaster Synthesis Inc.: Windham, NH (2004). Note! The synthesis of 12 was conducted on a small scale to determine the sign of rotation to assign the stereochemistry of 9 a . We made no attempt to rigorously remove water from our sample of 12 whose specific rotation is somewhat lower than the reported value (vide ultra). However, no loss of optically purity with the ozonolysis should be inferred from this data.

