Supporting Information For

Generation of Aza-ortho-xylylenes via Ring Opening of 2-(2-Acylaminophenyl)aziridines: Application in the Construction of the Communesin Ring System

Seth L. Crawley and Raymond L. Funk*
Department of Chemistry, Pennsylvania State University, University Park, PA 16802

rlf@chem.psu.edu

General Methods. Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere using flame-dried glassware. All moisture sensitive reagents were added via a dry syringe or cannula where possible. Anhydrous acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, benzene, tetrahydrofuran (THF), dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, toluene, triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, and dimethylformamide (DMF) were obtained from a solvent dispensing system. All other solvents and reagents were used as obtained from commercial sources without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on Bruker 200,300 , or 400 MHz spectrometers. Infrared spectra were obtained using a Perkin-Elmer 1600 FTIR. Chromatographic purification was performed using Sorbent Technologies silica gel 60 (230-400 mesh).

Methyl 2- N -(ethoxycarbonyl)cinnamate. To a solution of the methyl 2aminocinnamate ($3.80 \mathrm{~g}, 21.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(71.4 \mathrm{~mL})$ at $-40{ }^{\circ} \mathrm{C}$ was added pyridine $(5.20 \mathrm{~mL}, 64.3 \mathrm{mmol})$ and ethyl chloroformate $(2.25 \mathrm{~mL}, 23.5 \mathrm{mmol})$. The solution was warmed to room temperature overnight, quenched with $10 \% \mathrm{HCl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product thus obtained $(4.26 \mathrm{~g}, 80 \%)$ was used in the next reaction without purification; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d} 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.23$
(q, $J=7.1,14.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.14(\mathrm{dt}, J=0.5$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dt}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{br} \mathrm{d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d} 14.2,51.6,61.4,120.0$, 123.0, 124.6, 126.2, 126.9, 130.6, 136.0, 139.2, 153.7, 165.9; IR (neat) 3291, 2982, 1715, 1632, $1529 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calc for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{Na} 272.0889$, found 272.09899.

Vicinal dibromide 14. A solution of methyl 2- N-(ethoxycarbonyl)cinnamate (272 mg , 1.09 mmol) in cyclohexane (10.9 mL) was heated to reflux with a heatgun. Bromine (56 $\mathrm{mL}, 1.09 \mathrm{mmol}$) was added dropwise and the solution was stirred at room temperature for 10 minutes. The solution was quenched with 10% aqueous sodium thiosulfate and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product thus obtained ($440 \mathrm{mg}, 99 \%$) was used in the next reaction without purification; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ d $1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.1,14.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{br} \mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ d $15.0,45.8,50.5,53.8$, $53.9,62.1,126.2,128.5,128.9,130.5,136.1,154.6,168.6$; IR (neat) $3320,2982,1731$, $1528,1537 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calc for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{NaBr}_{2} 429.9267$, found 429.9266.

Aziridine 16. To a solution of the dibromide 13 ($202 \mathrm{mg}, 0.494 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4.90$ mL) at $0{ }^{\circ} \mathrm{C}$ was added the tryptamine $\mathbf{1 5}(86 \mathrm{mg}, 0.494 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.6 \mathrm{~mL})$ followed immediately by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(563 \mathrm{mg}, 1.73 \mathrm{mmol})$. The solution was warmed to room temperature overnight, quenched with saturated aqueous ammonium chloride, and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 7$ ethyl acetate :
hexanes) afforded a white foam ($135 \mathrm{mg}, 65 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $1.32(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.91(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2$ H), $3.27-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{q}, J=7.0,12.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.77$ $(\mathrm{s}, 1 \mathrm{H}), 6.89-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 10.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d} 14.6,25.7,32.2$, 40.1, 49.0, 51.2, 52.2, 60.7, 72.2, 109.0, 111.4, 118.6, 118.8, 119.3, 121.4, 122.1, 127.2, $127.5,128.1,129.3,137.0,137.5,153.9,168.8$; IR (neat) 2950, 1729, 1592, 1530, 1224 $\mathrm{cm}^{-1} ;$ HRMS $\left(\mathrm{M}+\mathrm{H}^{+}\right)$calc for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4} 422.2100$, found 422.2080.

Cycloadduct 17. To a solution of the aziridine $\mathbf{1 6}$ ($93 \mathrm{mg}, 0.228 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ (23 mL) was added bis(trifluoromethanesulfonimide ($6.4 \mathrm{mg}, 0.023 \mathrm{mmol}$). The solution was stirred 24 hours at room temperature, quenched with saturated aqueous sodium bicarbonate, and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 1$ ethyl acetate : hexanes) afforded a yellow foam ($64 \mathrm{mg}, 70 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) d $1.32(\mathrm{dt}, J=0.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 3.43$, (d, J $=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.96(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1 \mathrm{H}), 5.23$ (d, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.67(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{q}, J=7.9,15.7 \mathrm{~Hz}, 2$ H), $7.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d} 14.6,30.0,35.3,38.8,41.2,50.5$, $52.3,55.1,62.0,85.9,105.1,115.4,117.0$, 119.8, 124.4, 124.5, 126.3, 126.8, 128.1, 129.8, 144.1, 150.8, 156.4, 173.3; IR (neat) 3358, 2950, 1741, 1692, 1607, 1496, 1253 $\mathrm{cm}^{-1} ;$ HRMS $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calc for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Na} 444.1917$, found 444.1899.

Methyl N-[(2-trimethylsilyl)ethoxycarbonyl]cinnamate. To a solution of phosgene $(29.4 \mathrm{~mL}, 297 \mathrm{mmol})$ at $-40{ }^{\circ} \mathrm{C}$ was added a solution of 2-trimethylsilyl ethanol (2.98 $\mathrm{mL}, 20.8 \mathrm{mmol}$) in toluene (5.9 mL) over 30 minutes via syringe pump. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ over 30 minutes, concentrated in vacuo to half volume, and added to a solution of methyl 2-amino-cinnamate ($3.51 \mathrm{~g}, 19.8 \mathrm{mmol}$) and pyridine ($4.80 \mathrm{~mL}, 59.4$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(66.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The solution was warmed to room temperature over 12 hours, quenched with $10 \% \mathrm{HCl}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude material thus obtained ($5.7 \mathrm{~g}, 90 \%$) was used without further purification in the next reaction; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $0.2(\mathrm{~s}, 9 \mathrm{H}), 0.97-1.04(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.19-4.25(\mathrm{~m}, 2 \mathrm{H})$, $6.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1$ H), $7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{br} \mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d}-1.7,17.6,51.6,63.7,119.8,123.6,124.7,126.1,126.7,130.6$, 136.2, 139.5, 154.1 166.9; IR (neat) 3313, 2952, 2252, 1731, 1633, $1582 \mathrm{~cm}^{-1}$; HRMS (M $+\mathrm{Na}^{+}$) calc for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{SiNa} 344.1287$, found 344.1294.

TEOC vicinal dibromide. A solution of methyl N-[(2-trimethylsilyl)ethoxycarbonyl]cinnamate ($1.20 \mathrm{~g}, 3.73 \mathrm{mmol}$) in cyclohexane (37 mL) was heated to reflux with a heatgun. Bromine ($191 \mathrm{~mL}, 3.73 \mathrm{mmol}$) was added dropwise and the solution was stirred at room temperature for 10 minutes. The solution was quenched with 10% aqueous sodium thiosulfate and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product thus obtained ($1.65 \mathrm{~g}, 91 \%$) was used in the next reaction without purification; ${ }^{1} \mathrm{H}$ NMR $(200 \mathrm{MHz}$, CDCl_{3}) d $0.06(\mathrm{~s}, 9 \mathrm{H}), 1.03-1.09(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.27-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-$
$7.41(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{br} \mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d}-1.5,17.4,17.6,45.1$, 53.4, 64.0, 65.9, 77.4, 125.8, 128.4, 130.0, 135.6, 154.1, 168.1; IR (neat) 3320, 2953, $1750,1522 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calc for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{NO}_{4} \mathrm{SiNa} 501.9653$, found 501.9661 .

Teoc aziridine 21 . To a solution of the TEOC vicinal dibromide ($231 \mathrm{mg}, 0.479 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(4.80 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added the tryptamine $15(83.6 \mathrm{mg}, 0.479 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.60 \mathrm{~mL})$ followed immediately by $\mathrm{Cs}_{2} \mathrm{CO}_{3}(470 \mathrm{mg}, 1.44 \mathrm{mmol})$. The solution was warmed to room temperature overnight, quenched with saturated aqueous ammonium chloride, and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 3$ ethyl acetate : hexanes) afforded a yellow foam ($154 \mathrm{mg}, 65 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $0.99(\mathrm{~s}, 9 \mathrm{H}), 1.03-1.09(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.96(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.21-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.60$ (s, 3 H), 4.22-4.28 (m, 2 H), 6.76 ($\mathrm{s}, 1 \mathrm{H}$), 6.88-6.92 (m, 2 H), 7.07-7.12 (m, 1 H), 7.16$7.28(\mathrm{~m}, 3 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 10.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $-1.5,1.4,17.6,25.7,32.2,39.9,49.2,51.3,52.1,62.9,109.0,111.4$, $118.6,119.3,121.4,122.0,122.3,127.2,128.1,129.3,136.9,137.6,154.0,168.8$; IR (neat) 2951, 1729, 1593, $1531 \mathrm{~cm}^{-1}$; HRMS ($\mathrm{M}+\mathrm{Na}^{+}$) calc for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{NaSi}$ 516.2292, found 516.2295.

Cycloadduct 22. To a solution of the aziridine $21(560 \mathrm{mg}, 1.13 \mathrm{mmol}$) in THF (5.7 mL) was added tetrabutylammonium fluoride ($4.53 \mathrm{~mL}, 4.53 \mathrm{mmol}$). The solution was stirred 4 hours at room temperature, quenched with saturated aqueous ammonium chloride, and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 15$ methanol : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded a yellow oil ($315 \mathrm{mg}, 80 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 1.94-2.09 (m, 2 H), $2.86(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dt}, J=2.9,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1$ H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 4.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 3 \mathrm{H}), 6.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.43-$ $6.59(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.93(\mathrm{~m}, 1 \mathrm{H})$, 6.91 (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ d $30.3,38.1$, 41.3, 42.0, 50.7, 53.0, 58.1, 85.4, 106.1, 15.4, 117.8, 119.6, 123.7, 125.6, 126.9, 127.6, $127.9,128.4,131.8,144.8,151.2,173.7$; IR (neat) $3378,2947,1737,1608,1495 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{M}+\mathrm{H}^{+}\right)$calc for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ 350.1877, found 350.1869.

4-Ethynyl-1-(triisopropylsilyl)gramine. Butyllithium ($1.97 \mathrm{~mL}, 4.94 \mathrm{mmol}$) was added dropwise to a solution of diisopropylamine ($690 \mathrm{~mL}, 4.94 \mathrm{mmol}$) in THF (16.4 mL) at $78{ }^{\circ} \mathrm{C}$. The solution was stirred 30 minutes at $-78^{\circ} \mathrm{C}$, and trimethylsilyldiazomethane $(2.47 \mathrm{~mL}, 4.94 \mathrm{mmol})$ was added dropwise. The solution was stirred another 30 minutes at $-78{ }^{\circ} \mathrm{C}$, and then 4 -formyl-1-(triisopropylsilyl)gramine ($1.18 \mathrm{~g}, 3.29 \mathrm{mmol}$) was added dropwise. The solution was warmed to $0{ }^{\circ} \mathrm{C}$ over 3 hours, quenched with saturated aqueous ammonium chloride and extracted with ether. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 9$ methanol : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded a yellow oil ($589 \mathrm{mg}, 50 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $1.60(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 18 \mathrm{H}), 2.23-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H})$,
3.35 (s, 1 H), 3.98 ($\mathrm{s}, 2 \mathrm{H}$), $7.10(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{d} 12.6,17.8,44.7,53.9,79.5,83.8,112.8,114.7$, $115.6,120.7,125.8,130.1,131.9,141.3$; IR (neat) 3308, 2946, 2813, 2787, 2097, 1892, 1877, 1698, 1632, 1593, $1358 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{M}+\mathrm{H}^{+}\right)$calc for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{Si} 355.2562$, found 355.2570 .

(4-Ethynyl-1H-indol-3-yl)-acetonitrile. To a solution of 4-ethynyl-1(triisopropylsilyl)gramine ($1.76 \mathrm{~g}, 4.96 \mathrm{mmol}$) in benzene $(12.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added iodomethane ($1.55 \mathrm{~mL}, 24.8 \mathrm{mmol}$). The solution was stirred to room temperature overnight and concentrated. The crude ammonium salt was dissolved in DMF (7.1 mL), and a solution of $\mathrm{KCN}(1.29 \mathrm{~g}, 19.8 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(15.3 \mathrm{~mL})$ was added. The solution was heated to $80^{\circ} \mathrm{C}$ for 8 hours, quenched with brine, and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 1$ ethyl acetate : hexanes) afforded a white foam ($615 \mathrm{mg}, 70 \%$), ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 3.34 (s, 1 H), $4.23(\mathrm{~s}, 2 \mathrm{H}$), 7.18 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=0.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 15.2, 77.4, 80.5, 82.5, 105.9, 112.7, 118.8, 122.5, 124.0, 125.6, 126.0, 136.3; IR (neat) 3334, 3290, 2918, 2254, 2102, 1651, $1609 \mathrm{~cm}^{-1}$; HRMS (M + Na^{+}) calc for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Na}$ 203.0584, found 203.0585.

(4-Ethynyl-1-methyl- $\mathbf{1 H}$-indol-3-yl)-acetonitrile. To a solution of (4-ethynyl- 1 H -indol3 -yl)-acetonitrile ($615 \mathrm{mg}, 3.41 \mathrm{mmol}$) in THF $(11.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(150$ $\mathrm{mg}, 6.25 \mathrm{mmol})$. The solution was stirred 15 minutes at $0^{\circ} \mathrm{C}$ and methyl iodide (276 mL , 4.44 mmol) was added. The solution was stirred 30 min at $0^{\circ} \mathrm{C}$, quenched with saturated aqueous ammonium chloride and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 1$ ethyl acetate : hexanes) afforded a yellow foam ($654 \mathrm{mg}, 99 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 3.48 ($\mathrm{s}, 1 \mathrm{H}$), $3.69(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.11 (s, $1 \mathrm{H}), 7.24(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=0.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=0.9,7.1 \mathrm{~Hz}, 1$
H) ${ }^{13}{ }^{13}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ d 14.4, 22.3, 80.3, 86.3, 103.9, 110.5, 112.2, 118.6, 121.4, 125.0, 125.5, 128.6, 136.6; IR (neat) 3282, 2942, 2249, 2047, 1552, $1454 \mathrm{~cm}^{-1}$; HRMS $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calc for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Na}$ 217.0751, found 217.0742.

4-Ethynyl-1-methyltryptamine. To a solution of (4-ethynyl-1-methyl-1H-indol-3-yl)acetonitrile ($140 \mathrm{mg}, 0.721 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(2.40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added lithium aluminum hydride ($109 \mathrm{mg}, 2.88 \mathrm{mmol}$). The solution was stirred 1 h at $0{ }^{\circ} \mathrm{C}$, and quenched with $\mathrm{H}_{2} \mathrm{O}(109 \mathrm{~mL}), 10 \% \mathrm{NaOH}(163 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(327 \mathrm{~mL})$. The solids were filtered off, and the filtrate was concentrated to provide the amine as a yellow foam ($121 \mathrm{mg}, 85 \%$). The crude product thus obtained was used in the next reaction without purification. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d $1.55(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.12(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1$ H), $7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ d $29.4,32.4,43.5,79.4,83.5,110.2$, $112.9,113.0,120.8,125.0,127.1,128.2,137.0$; IR (neat) $3280,2935,2097,1453 \mathrm{~cm}^{-1}$; HRMS (M + Na ${ }^{+}$) calc for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Na} 221.1062$, found 221.1055.

Aziridine 25. To a solution of 4-ethynyl-1-methyltryptamine ($58 \mathrm{mg}, 0.29 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1.00 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added sequentially $\mathrm{Cs}_{2} \mathrm{CO}_{3}(286 \mathrm{mg}, 0.88 \mathrm{mmol})$ and the TEOC vicinal dibromide ($141 \mathrm{mg}, 0.29 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2.90 \mathrm{~mL})$. The solution was warmed to room temperature overnight, quenched with saturated aqueous ammonium chloride, and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography (1:7 ethyl acetate : hexanes) afforded a yellow foam ($68 \mathrm{mg}, 45 \%$); ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
CDCl_{3}) d $0.08(\mathrm{~s}, 9 \mathrm{H}), 1.01-1.05(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, 1 H), 3.31 ($\mathrm{s}, 1 \mathrm{H}$), 3.24-3.39 (m, 4 H), 3.49 ($\mathrm{s}, 3 \mathrm{H}$), 3.59 ($\mathrm{s}, 3 \mathrm{H}$), 4.17-4.28 (m, 2 H), $6.78(\mathrm{~s}, 1 \mathrm{H}), 6.89-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.24(\mathrm{~m}, 4 \mathrm{H}), 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 10.31$ (br s, 1 H$) ;{ }^{13} \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ d $-0.9,18.1,26.4,32.7,40.4,49.7,52.6,53.1,63.4,80.0$, 83.9, 110.7, 112.7, 113.5, 119.6, 121.3, 122.4, 122.7, 125.5, 127.5, 129.5, 129.5, 129.8, 137.6, 138.1, 154.4, 169.2; IR (neat) 3290, 2952, 2360, 1728, $1593 \mathrm{~cm}^{-1}$; HRMS (M + H^{+}) calc for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}$ 518.2488, found 518.24754.

Cycloadduct 26. To a solution of the aziridine $\mathbf{2 5}$ ($611 \mathrm{mg}, 1.18 \mathrm{mmol}$) in THF (11.8 mL) was added tetrabutylammonium fluoride ($4.70 \mathrm{~mL}, 4.72 \mathrm{mmol}$). The solution was stirred 4 h at room temperature, quenched with saturated aqueous ammonium chloride, and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 15$ methanol : $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded a yellow foam ($270 \mathrm{mg}, 61 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 1.89-2.08 (m, 2 H), $2.85(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dq}, J=2.5,3.9,13.5,16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1$ H), $3.38(\mathrm{~s}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=2.7,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.67(\mathrm{~s}, 1$ H), 5.87 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=0.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=0.9,7.7 \mathrm{~Hz}, 1$ H), $6.56(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=1.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1$ H), $6.87(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.08 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$); IR (neat) $3389,3291,2949,1732$, $1576,1484 \mathrm{~cm}^{-1}$;

26

27

Enamine 27. To a solution of the alkene $26(74 \mathrm{mg}, 0.198 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.90 \mathrm{~mL})$, was added $\mathrm{Ph}_{3} \mathrm{AuCl}(1.00 \mathrm{mg}, 0.002 \mathrm{mmol})$ and $\mathrm{AgOTf}(0.5 \mathrm{mg}, 0.002 \mathrm{mmol})$. The solution was stirred overnight at $40{ }^{\circ} \mathrm{C}$ and concentrated. Purification by silica-gel
chromatography ($1: 1$ ethyl acetate : hexanes) afforded a white solid ($66 \mathrm{mg}, 89 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 2.18-3.05 (m, 2 H), $2.70(\mathrm{~s}, 3 \mathrm{H}), 3.16$ (d, $J=8.5,14.5 \mathrm{~Hz}, 1$ H), $3.32(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1$ H), $4.62(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (t, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.76 (d, $J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.07$ (m, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ d $30.7,39.4,40.9,47.8,52.2,52.3,62.1,84.2,103.6,108.0$, 113.6, 116.5, 120.9, 124.0, 126.9, 128.5, 128.7, 130.0, 134.2, 144.0, 150.6, 156.7, 172.5; IR (neat) 1731, 1587, 1480, 1276, $1168 \mathrm{~cm}^{-1}$; HRMS ($\mathrm{M}+\mathrm{H}^{+}$) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{2}$ 374.1875 , found 374.1869 .

N-Acylaminal 28. To a solution of the ester $27(14 \mathrm{mg}, 0.037 \mathrm{mmol})$ in THF (300 mL) and $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ at room temperature was added a solution of $\mathrm{LiOH}(1.4 \mathrm{mg}, 0.059$ $\mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(16.2 \mathrm{~mL}, 0.525 \mathrm{mmol})$. The solution was stirred 12 h at $50{ }^{\circ} \mathrm{C}$, quenched with $10 \% \mathrm{HCl}$, and extracted with ethyl acetate. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. The crude product thus obtained ($12 \mathrm{mg}, 92 \%$) was used immediately in the next reaction without purification. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) d 2.23-2.28 (m, 2 H), 2.72 (s, 3 H), 3.16 (d, $J=10.1 \mathrm{~Hz}, 1$ H), $3.25-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{dt}, J=8.8,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=1.5,10.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{~s}, 1 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1$ H), $6.73(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$; HRMS $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$calc for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na} 382.1519$, found 382.1531. To a solution of the crude acid prepared above ($19 \mathrm{mg}, 0.053 \mathrm{mmol}$) in acetone (530 mL) at $0{ }^{\circ} \mathrm{C}$ was added N, N-diisopropylethylamine ($13.8 \mathrm{~mL}, 0.079 \mathrm{mmol}$) and ethyl chloroformate ($5.6 \mathrm{~mL}, 0.058 \mathrm{mmol}$). The solution was stirred 3 hours at $0{ }^{\circ} \mathrm{C}$, and then $\mathrm{NaN}_{3}(12 \mathrm{mg}, 0.185 \mathrm{mmol})$ was added. The solution was stirred to room temperature overnight, quenched with saturated aqueous sodium bicarbonate, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Purification by silica-gel chromatography ($1: 1$ ethyl acetate : hexanes) afforded a yellow foam ($11 \mathrm{mg}, 75 \%$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) d $1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $2.66(\mathrm{~s}, 3$ H), 2.67-2.69 (m, 1 H$), 2.99-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.67(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=2.0,14.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.61(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{~s}$, $1 \mathrm{H}), 6.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.65-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.81$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ d 14.5, 14.9, 30.1, 31.3, 40.1, 46.1, 46.3, 52.6, 61.4, 67.9, 84.6, 103.9, 109.1,
114.0, 117.0, 121.6, 125.3, 127.5, 127.8, 129.2, 129.8, 135.2, 144.2, 151.0, 155.8; IR (neat) 3333, 2927, 1704, 1587, $1480 \mathrm{~cm}^{-1}$; HRMS ($\mathrm{M}+\mathrm{H}^{+}$) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2}$ 403.2128 , found 403.2134.

