Supporting Information
 Enantioselective Addition of Vinylzinc Reagents to 3,4-Dihydroisoquinoline

 N-OxideSa Wang and Christopher T. Seto*
Department of Chemistry, Brown University, 324 Brook Street Box H

Providence, Rhode Island 02912
Christopher_Seto@brown.edu

Table of Contents

Materials and Methods S2
General Procedures for the Synthesis of the Ligands S3
Representative Procedures for the Addition of Vinylzinc Reagents to 3,4-Dihydro- isoquinoline N-oxide and HPLC Conditions for ee Determination of 3a-g S6
Preparation of N-Cbz-D-1,2,3,4-Tetrahydroisoquinoline-1-Carboxylic Acid S16
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 1a, 2a, 1d-f, 2d-f S19
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 3a-g, 4, 5 S27
References S36

Materials and Methods. Solvents were of reagent grade and were used as received except for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which was purified by passage through a column of activated alumina. 1,2,3,4-Tetrahydroisoquinoline was distilled over calcium hydride under reduced pressure and phenyl acetylene was distilled prior to use. All other reagents were used as received. Vinylzinc reactions were conducted using oven-dried or flame-dried glassware and standard syringe techniques under a nitrogen atmosphere. Reactions were monitored using TLC. TLC plates were visualized using either a CAM (ceric ammonium molybdate) or ninhydrin staining solution, or UV at 254 nm . Racemic standards for allylic hydroxylamines were synthesized and analyzed by HPLC to confirm the peak assignments of the two enantiomers.

NMR spectra were recorded at either 300 MHz or 400 MHz using CDCl_{3} as the solvent. Chemical shifts are reported in ppm and were referenced to residual protonated solvent (${ }^{1} \mathrm{H}$-NMR: $\delta 7.26 \mathrm{ppm}$ for $\mathrm{CHCl}_{3} ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta 77.16 \mathrm{ppm}$ for CDCl_{3}). Data are represented as follows: chemical shift (multiplicity [$\mathrm{br}=\mathrm{broad}, \mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}$ $=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet], integration, coupling constants in Hz). High-resolution mass spectra were obtained using electrospray, electron impact, or fast atom bombardment ionization methods. Enantiomeric excess was determined by HPLC using a Daicel Chiralcel OD-H column (0.46 cm i.d. $\times 25 \mathrm{~cm}$) with UV detection at 219 and 254 nm . 2-Propanol and hexanes were used as solvents, and the flow rate was set at $1.0 \mathrm{~mL} / \mathrm{min}$. Optical rotations were obtained with a digital polarimeter at ambient temperature and at a wavelength of $589 \mathrm{~nm}(\mathrm{c}=\mathrm{g} / 100 \mathrm{~mL})$.

General Procedures for the Synthesis of the Ligands. ${ }^{1 a, b}$

Step 1) The Boc-protected amino acid (1 equiv) was suspended or dissolved in dry

DMF. To this solution was added N, N-diisopropylethylamine (2 equiv) and HBTU (1.5 equiv). After stirring at rt for 5 min , the appropriate secondary amine (1.1 equiv) was added and the reaction was allowed to stir for 2 h . The reaction was quenched by the addition of 1 N HCl . The mixture was extracted with EtOAc three times and the organic phase was washed with 1 NHCl , brine and dried over MgSO_{4}. The solvent was removed and purification was performed by flash column chromatography (EtOAc:hexanes) to give amides 1a-f.

Step 2) To a solution of the amide (1 equiv) dissolved in anhydrous THF was slowly added $1.0 \mathrm{M} \mathrm{BH}_{3}$ in THF (4 equiv). The reaction was stirred at rt for 18 h , then cooled to $0^{\circ} \mathrm{C}$ and carefully quenched (evolution of H_{2} gas!) with methanol. The solvent was removed and the residue was redissolved in methanol. To this solution was added ethylenediamine (4 equiv) and the solution was heated by microwave irradiation for 420 s at $100{ }^{\circ} \mathrm{C}$. The methanol was removed and the residue was dissolved in water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The organic phase was washed with water, dried over $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and concentrated. The crude product was purified by flash column chromatography (30% aqueous $\mathrm{NH}_{4} \mathrm{OH}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give diamine ligands 2a-f.

Amide 1a. Amide 1a was prepared as described above from Boc-Chg-OH (1.0 g, 2.3 $\mathrm{mmol})$ and morpholine ($0.22 \mathrm{~mL}, 2.5 \mathrm{mmol}$). Purification (EtOAc:hexanes 2:3) gave a white solid ($0.69 \mathrm{~g}, 2.1 \mathrm{mmol}, 93 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.26(\mathrm{~d}, 1 \mathrm{H}, J=9.1$ $\mathrm{Hz}), 4.40(\mathrm{dd}, 1 \mathrm{H}, J=6.6,9.1 \mathrm{~Hz}), 3.67-3.52(\mathrm{~m}, 8 \mathrm{H}), 1.76-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$, 1.23-0.99 (m, 5H); ${ }^{13} \mathrm{C} \mathrm{NMR}^{(}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.9,155.9,79.7,67.0,66.9,54.2$, 46.5, 42.5, 41.5, 30.1, 28.5, 28.0, 26.2, 26.1; HRMS-ESI (M+H) calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4}$ 327.2284, found 327.2292.

Ligand 2a. Amide 1a ($0.67 \mathrm{~g}, 2.05 \mathrm{mmol}$) was reduced as described above with 1.0 $\mathrm{M} \mathrm{BH}_{3}$ - THF ($8.20 \mathrm{~mL}, 8.20 \mathrm{mmol}$) followed by boron exchange with ethylenediamine ($0.55 \mathrm{~mL}, 8.20 \mathrm{mmol}$). Purification (gradient of 0.1:0.9:150 to 0.1:0.9:45 30\% aqueous $\mathrm{NH}_{4} \mathrm{OH}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a white solid ($\left.0.54 \mathrm{~g}, 1.73 \mathrm{mmol}, 86 \%\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.70-3.62(\mathrm{~m}, 5 \mathrm{H}), 2.51-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.29(\mathrm{~m}$, $4 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.48(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 1 \mathrm{H}), 1.24-0.95(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.3,79.0,67.2,60.5,54.0,51.9,40.9,29.8,28.6,28.1,26.6$, 26.45, 26.43; HRMS-ESI $(M+H)$ calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} 313.2491$, found 313.2499.

Amide 1d. Amide 1d was prepared as described above from Boc-Cys (Trt)-OH $(1.55 \mathrm{~g}, 3.3 \mathrm{mmol})$ and morpholine $(0.32 \mathrm{~mL}, 3.7 \mathrm{mmol})$. Purification (EtOAc:hexanes 2:3) gave a white solid (1.66 g, $3.1 \mathrm{mmol}, 94 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.40(\mathrm{~d}$, $6 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.29-7.19(\mathrm{~m}, 9 \mathrm{H}), 5.24(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 4.44(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.54(\mathrm{~m}$, $5 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}, 1 \mathrm{H}, J=5.6,12.4 \mathrm{~Hz}), 2.41(\mathrm{dd}$, $1 \mathrm{H}, J=7.5,12.4), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 169.3,155.1,144.6$, 129.7, 128.1, 126.9, 80.0, 67.0, 66.8, 66.7, 49.3, 46.0, 42.6, 35.0, 28.4; HRMS-ESI (M +Na) calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 555.2294$, found 555.2278.

Ligand 2d. Amide $2 \mathrm{~d}(1.63 \mathrm{~g}, 3.06 \mathrm{mmol})$ was reduced as described above with 1.0 $\mathrm{M} \mathrm{BH}_{3}$-THF ($12.2 \mathrm{~mL}, 12.24 \mathrm{mmol}$) followed by boron exchange with ethylenediamine ($0.82 \mathrm{~mL}, 12.24 \mathrm{mmol}$). Purification (gradient of 0.1:0.9:150 to 0.1:0.9:45 30\% aqueous $\mathrm{NH}_{4} \mathrm{OH}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a white solid ($1.25 \mathrm{~g}, 2.40 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.45-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 9 \mathrm{H}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=7.1$ $\mathrm{Hz}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.62(\mathrm{~m}, 4 \mathrm{H}), 2.46-2.30(\mathrm{~m}, 7 \mathrm{H}), 2.24-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 155.5,144.8,129.8,128.0,126.8,79.5,67.2,66.7,61.3$,
53.9, 35.3, 28.5; HRMS-ESI $(\mathrm{M}+\mathrm{H})$ calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ 519.2681, found 519.2698.

Amide 1e. Amide 1e was prepared as described above from Boc-Chg-OH (400 mg , $0.91 \mathrm{mmol})$ and piperidine $(0.48 \mathrm{~mL}, 2.74 \mathrm{mmol})$. Purification (EtOAc:hexanes $1: 4$) gave a white solid ($0.29 \mathrm{~g}, 0.89 \mathrm{~mol}, 96 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.32(\mathrm{~d}, 1 \mathrm{H}$, $J=9.0 \mathrm{~Hz}), 4.38(\mathrm{dd}, 1 \mathrm{H}, J=6.1,9.1 \mathrm{~Hz}), 3.48(\mathrm{t}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz}), 3.39(\mathrm{~m}, 2 \mathrm{H})$, $1.65-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.15-0.92(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $170.1,155.8,79.1,54.2,46.9,43.0,41.4,29.9,28.3,27.6,26.5,26.1,26.04,26.00,25.6$, 24.5; HRMS-FAB calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]$ 347.2311, found 347.2320 .

Ligand 2e. Amide $\mathbf{2 e}(0.27 \mathrm{~g}, 0.84 \mathrm{mmol})$ was reduced as described above with 1.0 $\mathrm{M} \mathrm{BH}_{3}-\mathrm{THF}(3.40 \mathrm{~mL}, 3.40 \mathrm{mmol})$ followed by boron exchange with ethylenediamine ($0.23 \mathrm{~mL}, 3.40 \mathrm{mmol}$). Purification (0.1:0.9:45 30\% aqueous $\mathrm{NH}_{4} \mathrm{OH}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a white solid ($0.20 \mathrm{~g}, 0.64 \mathrm{mmol}, 75 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.57(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 5 \mathrm{H})$, 1.54-1.37 (m, 16H), 1.27-0.91 (m, 5H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.4,78.8$, $60.3,54.9,52.2,41.0,29.6,28.60,28.58,28.56,28.1,26.7,26.5,26.2,24.6$; HRMS-FAB calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}] 333.2518$, found 333.2529.

Amide 1f. Amide 1f was prepared as described above from Boc-Chg-OH (400 mg , $0.91 \mathrm{mmol})$ and diethylamine ($0.104 \mathrm{~mL}, 1.0 \mathrm{mmol}$). Purification (EtOAc:hexanes 1:5) gave a white solid ($0.26 \mathrm{~g}, 0.83 \mathrm{mmol}, 91 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.20(\mathrm{~d}$, $1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 4.29(\mathrm{dd}, 1 \mathrm{H}, J=7.2,9.3 \mathrm{~Hz}), 3.52(\mathrm{dq}, 1 \mathrm{H}, J=7.4,13.6 \mathrm{~Hz}), 3.39(\mathrm{dq}$, $1 \mathrm{H}, J=7.0,14.9 \mathrm{~Hz}), 3.27(\mathrm{dq}, 1 \mathrm{H}, J=7.2,14.8 \mathrm{~Hz}), 3.10(\mathrm{dq}, 1 \mathrm{H}, J=7.3,13.6 \mathrm{~Hz})$, 1.69-1.48(m, 6H), $1.34(\mathrm{~s}, 9 \mathrm{H}), 1.18-0.93(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$
$171.3,155.6,79.1,54.4,42.0,41.7,40.2,29.8,28.3,28.1,26.13,26.09,26.0,14.6 ; 12.9$; HRMS-FAB calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]$ 335.2320, found 335.2311.

Ligand 2f. Amide $2 f(0.26 \mathrm{~g}, 0.83 \mathrm{mmol})$ was reduced as described above with 1.0 $\mathrm{M} \mathrm{BH}_{3}$ - THF ($3.40 \mathrm{~mL}, 3.33 \mathrm{mmol}$) followed by boron exchange with ethylenediamine $(0.22 \mathrm{~mL}, 3.33 \mathrm{mmol})$. Purification (gradient of 0.1:0.9:45 to $0.15: 1.35: 4530 \%$ aqueous $\mathrm{NH}_{4} \mathrm{OH}: \mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a pale yellow solid ($0.13 \mathrm{~g}, 0.44 \mathrm{mmol}, 53 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.54-2.28(\mathrm{~m}, 6 \mathrm{H})$, $1.72-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.24-0.87(\mathrm{~m}, 5 \mathrm{H}), 0.94(\mathrm{t}, 6 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 156.3,78.8,54.2,53.2,47.2,40.3,29.8,28.58,28.55,28.5,27.9$, 26.7, 26.5, 11.9; HRMS-FAB calcd for $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}$ [M+Na] 321.2518, found 321.2530.

Representative Procedures for the Addition of Vinylzinc Reagents to 3,4-Dihydroisoquinoline \boldsymbol{N}-oxide and HPLC Conditions for ee Determination of 3a-g.

1) To an oven-dried vial were added dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.80 \mathrm{~mL})$ and neat $\mathrm{BH}_{3} \cdot \mathrm{DMS}$ complex ($228 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$). The solution was cooled to $0^{\circ} \mathrm{C}$, and cyclohexene (486 $\mu \mathrm{L}, 4.80 \mathrm{mmol}$) was added. The reaction was stirred for 2 h , during which time a white precipitate formed. After $2 \mathrm{~h}, 4$-phenyl-1-butyne ($337 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) was added, and the reaction was slowly warmed to rt and stirred for 2 h . The white precipitate dissolved and the mixture turned to a clear solution (Solution \mathbf{A}).
2) To another oven-dried vial pre-loaded with ligand 2a ($74.9 \mathrm{mg}, 0.24 \mathrm{mmol}$), 3,4-dihydroisoquinoline N-oxide ($29.4 \mathrm{mg}, 0.20 \mathrm{mmol}$) and a magnetic stirring bar was added dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.20 \mathrm{~mL})$. The solution was then cooled to $-50^{\circ} \mathrm{C}$ and a 1 M solution of diethylzinc in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $(369 \mu \mathrm{~L}, 0.48 \mathrm{mmol})$ to give a clear solution \mathbf{B}. An
aliquot of the solution $\mathbf{A}(385 \mu \mathrm{~L})$ was transferred to the solution \mathbf{B} using a syringe pump over 20 min at $-48^{\circ} \mathrm{C}$, and the reaction was kept at $-48^{\circ} \mathrm{C}$ for 24 h . The reaction was then carefully quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase was washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and water. The product solution was filtered through a small silica plug and concentrated in vacuo. Flash column chromatography (EtOAc:hexanes 1:6) gave a purified product $\mathbf{3 e}(41.2 \mathrm{mg}, 0.15$ mmol, 74%).

Hydroxylamine 3a. The general procedure was used with 3,3-dimethylbutyne (296 $\mu \mathrm{L}, 2.4 \mathrm{mmol}$). Following flash column chromatography (EtOAc:hexanes 1:8), hydroxylamine 3a was isolated ($31.7 \mathrm{mg}, 0.14 \mathrm{mmol}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.16-7.06(\mathrm{~m}, 4 \mathrm{H}), 5.86(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 5.39(\mathrm{dd}, 1 \mathrm{H}, J=15.2,8.4 \mathrm{~Hz})$, $4.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.4,136.2,133.4,128.3,127.9,126.8,126.1,124.9$, 72.4, 54.0, 33.5, 29.8; HRMS-FAB calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]$ 254.1521, found 254.1529; 93% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99.5:0.5) at $1.0 \mathrm{~mL} / \mathrm{min}$ and detected at 219 nm), $\mathrm{t}_{\mathrm{R}}=13.8 \mathrm{~min}$ for (S) and $\mathrm{t}_{\mathrm{R}}=20.3 \mathrm{~min}$ for $(R) ; \quad[\alpha]^{24}{ }_{\mathrm{D}}=+23.5^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Hydroxylamine 3b. The general procedure was used with 1-hexyne ($270 \mu \mathrm{~L}, 2.4$ mmol). Following flash column chromatography (EtOAc:hexanes 1:8), hydroxylamine 3b was isolated ($30.3 \mathrm{mg}, 0.13 \mathrm{mmol}, 66 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.19-7.10 $(\mathrm{m}, 4 \mathrm{H}), 5.87-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{dd}, 1 \mathrm{H}, J=15.2,8.3 \mathrm{~Hz}), 4.27(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz})$, 3.53-3.49 (m, 1H), 3.18-3.03 (m, 2H), 2.96-2.90 (m, 1H), 2.21-2.14 (m, 2H), 1.51-1.29 $(\mathrm{m}, 4 \mathrm{H}), 0.94(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.4,136.0,133.4$,
$129.8,128.3,128.1,126.7,126.1,72.0,53.7,32.3,31.6,28.6,22.5,14.1 ;$ HRMS-FAB calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{Na}] 254.1521$, found 254.1526 ; 94% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99:1) at $1.0 \mathrm{~mL} / \mathrm{min}$ and detected at 219 nm$), \mathrm{t}_{\mathrm{R}}=12.4 \mathrm{~min}$ for (S) and $\mathrm{t}_{\mathrm{R}}=16.4 \mathrm{~min}$ for $(R) ; \quad[\alpha]^{25}{ }_{\mathrm{D}}=+34.6^{\circ}(\mathrm{c}=$ $1.0, \mathrm{CHCl}_{3}$).

Figure S1. HPLC trace of hydroxylamine 3a.

Top trace: racemic sample; bottom trace: enantiomerically enriched sample.

Figure S2. HPLC trace of hydroxylamine 3b.
Top trace: racemic sample; bottom trace: enantiomerically enriched sample.
Hydroxylamine 3c. The general procedure was used with cyclopropyl acetylene $(203 \mu \mathrm{~L}, 2.4 \mathrm{mmol})$. Following flash column chromatography (EtOAc:hexanes 1:4), hydroxylamine 3c was isolated ($34.0 \mathrm{mg}, 0.16 \mathrm{mmol}, 79 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.19-7.09 (m, 4H), $5.60(\mathrm{dd}, 1 \mathrm{H}, J=14.2,8.7 \mathrm{~Hz}), 5.35-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{br}$
$\mathrm{s}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.92(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 1 \mathrm{H})$, 0.79-0.74 (m, 2H), 0.48-0.44 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 141.7, 135.3, 133.1, 128.4, 128.1, 127.0, 126.6, 126.2, 71.5, 53.1, 27.9, 13.9, 7.2, 7.1; HRMS-FAB calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}] 216.1388$, found $216.1382 ; 94 \%$ ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99:1) at $1.0 \mathrm{~mL} / \mathrm{min}$ and detected at 219 nm$), \mathrm{t}_{\mathrm{R}}=18.1 \mathrm{~min}$ for (S) and $\mathrm{t}_{\mathrm{R}}=21.8 \mathrm{~min}$ for $(R) ; \quad[\alpha]^{25}{ }_{\mathrm{D}}=+69.6^{\circ}(\mathrm{c}$ $\left.=0.76, \mathrm{CHCl}_{3}\right)$.

Figure S3. HPLC trace of hydroxylamine 3c.
Top trace: racemic sample; bottom trace: enantiomerically enriched sample.
Hydroxylamine 3d. The general procedure was used with cyclohexylacetylene (309 $\mu \mathrm{L}$, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:9), hydroxylamine 3d was isolated ($32.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.18-7.08(\mathrm{~m}, 4 \mathrm{H}), 5.77(\mathrm{dd}, 1 \mathrm{H}, J=15.5,6.5 \mathrm{~Hz}), 5.45(\mathrm{dd}, 1 \mathrm{H}, J=14.9,8.4$ $\mathrm{Hz}), 4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.05$ $(\mathrm{m}, 1 \mathrm{H}), 1.82-1.65(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.11(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 143.1, $136.0,133.4,128.2,128.0,127.3,126.7,126.0,72.2,53.7,40.7,33.1,33.0,28.6,26.3$, 26.1; HRMS-FAB calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]$ 280.1677, found 280.1685; 94\% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99:1) at 1.0 $\mathrm{mL} / \mathrm{min}$ and detected at 219 nm$), \mathrm{t}_{\mathrm{R}}=12.5 \mathrm{~min}$ for (S) and $\mathrm{t}_{\mathrm{R}}=17.0 \mathrm{~min}$ for $(R) ; \quad[\alpha]^{25}{ }_{\mathrm{D}}$ $=+33.3^{\circ}\left(\mathrm{c}=0.64, \mathrm{CHCl}_{3}\right)$.

Figure S4. HPLC trace of hydroxylamine 3d.
Top trace: racemic sample; bottom trace: enantiomerically enriched sample.
Hydroxylamine 3e. The general procedure was used with 4-phenyl-1-butyne (337 $\mu \mathrm{L}, 2.4 \mathrm{mmol}$). Following flash column chromatography (EtOAc:hexanes 1:6), hydroxylamine 3e was isolated ($41.2 \mathrm{mg}, 0.15 \mathrm{mmol}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.10(\mathrm{~m}, 8 \mathrm{H}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 5.85-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.45(\mathrm{~m}$, $1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.49-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.80(\mathrm{~m}, 3 \mathrm{H}), 2.56-2.50$ (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.7$ 136.0, 135.7, 133.3, 130.9, 128.7, 128.5, 128.2, 128.0, 126.7, 126.05, 126.03, 71.9, 53.8, 35.6, 34.3, 28.6; HRMS-FAB calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{Na}] 302.1521$, found $302.1516 ; 95 \%$ ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99:1) at $1.0 \mathrm{~mL} / \mathrm{min}$ and detected at 219 $\mathrm{nm}), \mathrm{t}_{\mathrm{R}}=29.9 \mathrm{~min}$ for (R) and $\mathrm{t}_{\mathrm{R}}=40.8 \mathrm{~min}$ for $(S) ; \quad[\alpha]^{25}{ }_{\mathrm{D}}=+28.3^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Figure S5. HPLC trace of hydroxylamine 3e.
Top trace: racemic sample; bottom trace: enantiomerically enriched sample.
Hydroxylamine 3f. The general procedure was used with phenylacetylene (264 $\mu \mathrm{L}$, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:6), hydroxylamine 3f was isolated ($37.4 \mathrm{mg}, 0.15 \mathrm{mmol}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.48-7.46(m, 2H), 7.38-7.27 (m, 3H), 7.22-7.12 (m, 4H), $6.72(\mathrm{~d}, 1 \mathrm{H}, J=15.8$
$\mathrm{Hz}), 6.30(\mathrm{dd}, 1 \mathrm{H}, J=15.5,8.5 \mathrm{~Hz}), 4.49(\mathrm{~d}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 3.54-3.51(\mathrm{~m}, 1 \mathrm{H})$, 3.17-3.08 (m, 2H), 2.92-2.87 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 136.7, 135.5, $135.3,133.4,129.5,128.7,128.4,128.1,127.9,127.0,126.7,126.2,71.9,53.9,28.6$; HRMS-FAB calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{Na}] 274.1208$, found $274.1216 ; 90 \%$ ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (80:20) at $1.0 \mathrm{~mL} / \mathrm{min}$

Figure S6. HPLC trace of hydroxylamine 3f.
Top trace: racemic sample; bottom trace: enantiomerically enriched sample.
and detected at 219 and 254 nm$), \mathrm{t}_{\mathrm{R}}=6.4 \mathrm{~min}$ for (R) and $\mathrm{t}_{\mathrm{R}}=18.4 \mathrm{~min}$ for $(S) ; \quad[\alpha]^{25}{ }_{\mathrm{D}}=$ $+16.7^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right)$.

Hydroxylamine 3g. The general procedure was used with 4-ethynylanisole (311 $\mu \mathrm{L}$, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:5), hydroxylamine $\mathbf{3 g}$ was isolated ($47.7 \mathrm{mg}, 0.17 \mathrm{mmol}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.18-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.63(\mathrm{~d}$, $1 \mathrm{H}, J=15.8 \mathrm{~Hz}), 6.13(\mathrm{dd}, 1 \mathrm{H}, J=15.2,8.3 \mathrm{~Hz}), 4.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H})$, 3.14-3.05 (m, 2H), 2.88-2.85 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,135.6$, 134.7, 133.4, 129.5, 128.3, 128.1, 127.8, 127.2, 126.8, 126.1, 114.1, 72.0, 55.4, 53.8, 28.6; HRMS-FAB calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{Na}] 304.1313$, found $304.1321 ; ~ 92 \%$ ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (90:10) at $1.0 \mathrm{~mL} / \mathrm{min}$ and detected at 219 and 254 nm$), \mathrm{t}_{\mathrm{R}}=11.0 \mathrm{~min}$ for (R) and $\mathrm{t}_{\mathrm{R}}=19.0 \mathrm{~min}$ for $(S) ; \quad[\alpha]^{24}{ }_{\mathrm{D}}$ $=+15.1^{\circ}\left(\mathrm{c}=0.86, \mathrm{CHCl}_{3}\right)$.

Figure S7. HPLC trace of hydroxylamine $\mathbf{3 g}$.
Top trace: racemic sample; bottom trace: enantiomerically enriched sample.

Preparation of N-Cbz-D-1,2,3,4-Tetrahydroisoquinoline-1-Carboxylic Acid.

Compound 4

Zn dust ($471 \mathrm{mg}, 7.20 \mathrm{mmol}$) was added into a solution of $\mathrm{Cu}(\mathrm{OAc})_{2}(29 \mathrm{mg}, 0.14$ $\mathrm{mmol})$ in acetic acid $(4 \mathrm{~mL})$, and the mixture was stirred at rt for 15 min under N_{2}. A solution of hydroxylamine $\mathbf{3 f}(96 \%$ ee, $362 \mathrm{mg}, 1.44 \mathrm{mmol})$ in acetic acid (4 mL) and water (2 mL) was then added. The mixture was heated at $70^{\circ} \mathrm{C}$ for 2 h . After 2 h , the brown suspension was cooled to rt. EDTA ($1.61 \mathrm{~g}, 4.32 \mathrm{mmol}$) was added, and the solution was basified to pH 10 by addition of 3 M NaOH . The solution was extracted with EtOAc four times, washed with sat. EDTA, brine and dried over MgSO_{4}. The
organic solution was concentrated in vacuo to give a white solid ($305 \mathrm{mg}, 1.30 \mathrm{mmol}$, 90%) which was directly used in the next step without further purification. The crude amine was dissolved in EtOAc $(10 \mathrm{~mL}) . \quad$ Sat. NaHCO_{3} aq $(10 \mathrm{~mL})$ was added. The biphasic solution was cooled to $0^{\circ} \mathrm{C}$ and benzyl chloroformate ($253 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$) was added dropwise. The reaction was stirred overnight at rt , then the solution was extracted with EtOAc. The organic phase was washed with sat $\mathrm{NH}_{4} \mathrm{Cl}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. Flash column chromatography (1:9 EtOAc:hexanes) gave a colorless oil ($354 \mathrm{mg}, 0.96 \mathrm{mmol}, 74 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.26(\mathrm{~m}, 14 \mathrm{H}), 6.43$ (br s, 2H), 5.96-5.83 (m, 1H), 5.30-5.25 (m, 2H), 4.31-4.18 (m, 1H), $3.43($ br s, 1 H$)$, 3.01-2.84 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.4,136.8,136.6,134.9,134.6$, 131.6, 129.0, 128.6, 128.1, 127.8, 127.0, 126.6, 126.4, 67.4, 56.6, 38.7, 28.8; HRMS-FAB calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{Na}]$ 392.1626, found 392.1636; $\quad[\alpha]^{25}{ }_{\mathrm{D}}=+155.7^{\circ}$ $\left(c=0.26, \mathrm{CH}_{3} \mathrm{OH}\right)$.

(R)-N-(Benzyloxycarbonyl)-1,2,3,4-Tetrahydroisoquinoline-1-Carboxylic Acid: 5

The alkene $4(51 \mathrm{mg}, 0.14 \mathrm{mmol})$ was dissolved in $\mathrm{CCl}_{4}-\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(2: 2: 3) . \quad \mathrm{NaIO}_{4}$ $(60 \mathrm{mg}, 0.28 \mathrm{mmol})$ and RuCl_{3} hydrate ($0.004 \mathrm{mmol}, 0.9 \mathrm{mg}$) were added. After 0.5 h , another equivalent of $\mathrm{NaIO}_{4}(60 \mathrm{mg}, 0.28 \mathrm{mmol})$ was added. The mixture was stirred vigorously at rt overnight. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ five times. The organic solutions were combined, dried over MgSO_{4} and concentrated. Diethyl ether was then added to precipitate RuCl_{3} and the solution was filtered though celite. The
residue was purified by flash column chromatography (1:1 EtOAc:hexanes with 0.25% AcOH) to give a white oily solid ($26 \mathrm{mg}, 0.084 \mathrm{mmol}, 61 \%$) (existing as 5:4 N-invertomers as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy). ${ }^{2} \quad{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.17(\mathrm{~m}, 9 \mathrm{H}), 5.67(\mathrm{~s}, 0.5 \mathrm{H}), 5.58(\mathrm{~s}, 0.4 \mathrm{H}), 5.23-5.19(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.83(\mathrm{~m}, 2 \mathrm{H})$, 2.97-2.99 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2,176.7,156.4,155.6,136.5$, 136.4, 135.7, 135.4, 130.0, 129.4, 128.9, 128.75, 128.67, 128.62, 128.56, 128.39, 128.36, $128.32,128.2,128.1,127.0,126.9,68.0,67.9,58.2,58.1,41.0,40.7,28.7,28.6$; HRMS-FAB calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{Na}]$ 334.1055, found 334.1066; $\quad[\alpha]^{24}{ }_{\mathrm{D}}=-24.8^{\circ}$ $\left(\mathrm{c}=0.5, \mathrm{CH}_{3} \mathrm{OH}\right)\left\{\mathrm{lit} .^{3}[\alpha]^{20}{ }_{\mathrm{D}}=-40.1^{\mathrm{o}}\left(\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}\right)\right.$ for (R) enantiomer $\}$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds $1 \mathrm{a}, \mathbf{2 a}, 1 \mathrm{~d}-\mathrm{f}, 2 \mathrm{~d}-\mathrm{f}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Compounds 3a-g, 4, 5

\bar{n}

References

1. (a) Richmond, M. L.; Seto, C. T. J. Org. Chem. 2003, 68, 7505-7508. (b) Richmond, M. L.; Seto, C. T. J. Org. Chem. 2005, 70, 8835-8840.
2. Belkacemi, D.; Malpass, J. R. Tetrahedron 1993, 49, 9105-9110.
3. Bajusz, S.; Mohai, L.; Feher, A.; Lavich, J.; Szell, G.; Veghelyi, B. PCT Int. Appl. WO 9312091 A1 930624, 1993 (36 pp).
