Supporting Information

Enantioselective Addition of Vinylzinc Reagents to 3,4-Dihydroisoquinoline

N-Oxide

Sa Wang and Christopher T. Seto*

Department of Chemistry, Brown University, 324 Brook Street Box H Providence, Rhode Island 02912

Christopher_Seto@brown.edu

Table of Contents

Materials and Methods	S2
General Procedures for the Synthesis of the Ligands	S3
Representative Procedures for the Addition of Vinylzinc Reagents to 3,4-Dihydro- isoquinoline <i>N</i> -oxide and HPLC Conditions for ee Determination of 3a-g	S6
Preparation of N-Cbz-D-1,2,3,4-Tetrahydroisoquinoline-1-Carboxylic Acid	S16
¹ H and ¹³ C NMR Spectra for Compounds 1a , 2a , 1d-f , 2d-f	S19
¹ H and ¹³ C NMR Spectra for Compounds 3a-g , 4 , 5	S27
References	S36

Materials and Methods. Solvents were of reagent grade and were used as received except for CH₂Cl₂, which was purified by passage through a column of activated alumina. 1,2,3,4-Tetrahydroisoquinoline was distilled over calcium hydride under reduced pressure and phenyl acetylene was distilled prior to use. All other reagents were used as received. Vinylzinc reactions were conducted using oven-dried or flame-dried glassware and standard syringe techniques under a nitrogen atmosphere. Reactions were monitored using TLC. TLC plates were visualized using either a CAM (ceric ammonium molybdate) or ninhydrin staining solution, or UV at 254 nm. Racemic standards for allylic hydroxylamines were synthesized and analyzed by HPLC to confirm the peak assignments of the two enantiomers.

NMR spectra were recorded at either 300 MHz or 400 MHz using CDCl₃ as the solvent. Chemical shifts are reported in ppm and were referenced to residual protonated solvent (¹H-NMR: δ 7.26 ppm for CHCl₃; ¹³C-NMR: δ 77.16 ppm for CDCl₃). Data are represented as follows: chemical shift (multiplicity [br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet], integration, coupling constants in Hz). High-resolution mass spectra were obtained using electrospray, electron impact, or fast atom bombardment ionization methods. Enantiomeric excess was determined by HPLC using a Daicel Chiralcel OD-H column (0.46 cm i.d. × 25 cm) with UV detection at 219 and 254 nm. 2-Propanol and hexanes were used as solvents, and the flow rate was set at 1.0 mL/min. Optical rotations were obtained with a digital polarimeter at ambient temperature and at a wavelength of 589 nm (c = g/100 mL).

General Procedures for the Synthesis of the Ligands.^{1a,b}

Step 1) The Boc-protected amino acid (1 equiv) was suspended or dissolved in dry

DMF. To this solution was added *N*,*N*-diisopropylethylamine (2 equiv) and HBTU (1.5 equiv). After stirring at rt for 5 min, the appropriate secondary amine (1.1 equiv) was added and the reaction was allowed to stir for 2 h. The reaction was quenched by the addition of 1 N HCl. The mixture was extracted with EtOAc three times and the organic phase was washed with 1 N HCl, brine and dried over MgSO₄. The solvent was removed and purification was performed by flash column chromatography (EtOAc:hexanes) to give amides **1a-f**.

Step 2) To a solution of the amide (1 equiv) dissolved in anhydrous THF was slowly added 1.0 M BH₃ in THF (4 equiv). The reaction was stirred at rt for 18 h, then cooled to 0°C and carefully quenched (evolution of H₂ gas!) with methanol. The solvent was removed and the residue was redissolved in methanol. To this solution was added ethylenediamine (4 equiv) and the solution was heated by microwave irradiation for 420 s at 100 °C. The methanol was removed and the residue was dissolved in water and extracted with CH_2Cl_2 three times. The organic phase was washed with water, dried over Na_2CO_3 and concentrated. The crude product was purified by flash column chromatography (30% aqueous $NH_4OH:CH_3OH:CH_2Cl_2$) to give diamine ligands **2a-f**.

Amide 1a. Amide 1a was prepared as described above from Boc-Chg-OH (1.0 g, 2.3 mmol) and morpholine (0.22 mL, 2.5 mmol). Purification (EtOAc:hexanes 2:3) gave a white solid (0.69 g, 2.1 mmol, 93%). ¹H NMR (CDCl₃, 400 MHz) δ 5.26 (d, 1H, J = 9.1 Hz), 4.40 (dd, 1H, J = 6.6, 9.1 Hz), 3.67-3.52 (m, 8H), 1.76-1.55 (m, 6H), 1.42 (s, 9H), 1.23-0.99 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.9, 155.9, 79.7, 67.0, 66.9, 54.2, 46.5, 42.5, 41.5, 30.1, 28.5, 28.0, 26.2, 26.1; HRMS-ESI (M + H) calcd for C₁₇H₃₀N₂O₄ 327.2284, found 327.2292.

Ligand 2a. Amide 1a (0.67 g, 2.05 mmol) was reduced as described above with 1.0 M BH₃-THF (8.20 mL, 8.20 mmol) followed by boron exchange with ethylenediamine (0.55 mL, 8.20 mmol). Purification (gradient of 0.1:0.9:150 to 0.1:0.9:45 30% aqueous NH₄OH:CH₃OH:CH₂Cl₂) gave a white solid (0.54 g, 1.73 mmol, 86%). ¹H NMR (CDCl₃, 400 MHz) δ 4.44 (br s, 1H), 3.70-3.62 (m, 5H), 2.51-2.50 (m, 2H), 2.35-2.29 (m, 4H), 1.75-1.63 (m, 5H), 1.48 (m, 1H), 1.43 (s, 1H), 1.24-0.95 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 156.3, 79.0, 67.2, 60.5, 54.0, 51.9, 40.9, 29.8, 28.6, 28.1, 26.6, 26.45, 26.43; HRMS-ESI (M + H) calcd for C₁₇H₃₂N₂O₃ 313.2491, found 313.2499.

Amide 1d. Amide 1d was prepared as described above from Boc-Cys (Trt)-OH (1.55 g, 3.3 mmol) and morpholine (0.32 mL, 3.7 mmol). Purification (EtOAc:hexanes 2:3) gave a white solid (1.66 g, 3.1 mmol, 94%). ¹H NMR (CDCl₃, 400 MHz) δ 7.40 (d, 6H, J = 7.6 Hz), 7.29-7.19 (m, 9H), 5.24 (d, 1H, J = 8.6 Hz), 4.44 (m, 1H), 3.58-3.54 (m, 5H), 3.42 (m, 1H), 3.24 (m, 1H), 3.10 (m, 1H), 2.49 (dd, 1H, J = 5.6, 12.4 Hz), 2.41 (dd, 1H, J = 7.5, 12.4), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.3, 155.1, 144.6, 129.7, 128.1, 126.9, 80.0, 67.0, 66.8, 66.7, 49.3, 46.0, 42.6, 35.0, 28.4; HRMS-ESI (M + Na) calcd for C₃₁H₃₆N₂O₄S 555.2294, found 555.2278.

Ligand 2d. Amide 2d (1.63 g, 3.06 mmol) was reduced as described above with 1.0 M BH₃-THF (12.2 mL, 12.24 mmol) followed by boron exchange with ethylenediamine (0.82 mL, 12.24 mmol). Purification (gradient of 0.1:0.9:150 to 0.1:0.9:45 30% aqueous NH₄OH:CH₃OH:CH₂Cl₂) gave a white solid (1.25 g, 2.40 mmol, 79%). ¹H NMR (CDCl₃, 400 MHz) δ 7.45-7.43 (m, 6H), 7.32-7.22 (m, 9H), 4.62 (d, 1H, J = 7.1 Hz), 3.75 (m, 1H), 3.64-3.62 (m, 4H), 2.46-2.30 (m, 7H), 2.24-2.19 (m, 1H), 1.46 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 155.5, 144.8, 129.8, 128.0, 126.8, 79.5, 67.2, 66.7, 61.3,

53.9, 35.3, 28.5; HRMS-ESI (M + H) calcd for $C_{31}H_{38}N_2O_3S$ 519.2681, found 519.2698.

Amide 1e. Amide 1e was prepared as described above from Boc-Chg-OH (400 mg, 0.91 mmol) and piperidine (0.48 mL, 2.74 mmol). Purification (EtOAc:hexanes 1:4) gave a white solid (0.29 g, 0.89 mol, 96%). ¹H NMR (CDCl₃, 400 MHz) δ 5.32 (d, 1H, J = 9.0 Hz), 4.38 (dd, 1H, J = 6.1, 9.1 Hz), 3.48 (t, 2H, J = 5.6 Hz), 3.39 (m, 2H), 1.65-1.39 (m, 2H), 1.34 (s, 9H), 1.15-0.92 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.1, 155.8, 79.1, 54.2, 46.9, 43.0, 41.4, 29.9, 28.3, 27.6, 26.5, 26.1, 26.04, 26.00, 25.6, 24.5; HRMS-FAB calcd for C₁₈H₃₂N₂O₃ [M+Na] 347.2311, found 347.2320.

Ligand 2e. Amide 2e (0.27 g, 0.84 mmol) was reduced as described above with 1.0 M BH₃-THF (3.40 mL, 3.40 mmol) followed by boron exchange with ethylenediamine (0.23 mL, 3.40 mmol). Purification (0.1:0.9:45 30% aqueous NH₄OH:CH₃OH:CH₂Cl₂) gave a white solid (0.20 g, 0.64 mmol, 75%). ¹H NMR (CDCl₃, 400 MHz) δ 4.57 (br s, 1H), 3.57 (br s, 1H), 2.41 (br s , 1H), 2.27 (br s, 1H), 2.25 (br s, 1H), 1.74-1.63 (m, 5H), 1.54-1.37 (m, 16H), 1.27-0.91 (m, 5H); ¹³C NMR (CDCl₃, 100 MHz) δ 156.4, 78.8, 60.3, 54.9, 52.2, 41.0, 29.6, 28.60, 28.58, 28.56, 28.1, 26.7, 26.5, 26.2, 24.6; HRMS-FAB calcd for C₁₈H₃₄N₂O₂ [M+Na] 333.2518, found 333.2529.

Amide 1f. Amide 1f was prepared as described above from Boc-Chg-OH (400 mg, 0.91 mmol) and diethylamine (0.104 mL, 1.0 mmol). Purification (EtOAc:hexanes 1:5) gave a white solid (0.26 g, 0.83 mmol, 91%). ¹H NMR (CDCl₃, 400 MHz) δ 5.20 (d, 1H, J = 9.4 Hz), 4.29 (dd, 1H, J = 7.2, 9.3 Hz), 3.52 (dq, 1H, J = 7.4, 13.6 Hz), 3.39 (dq, 1H, J = 7.0, 14.9 Hz), 3.27 (dq, 1H, J = 7.2, 14.8 Hz), 3.10 (dq, 1H, J = 7.3, 13.6 Hz), 1.69-1.48 (m, 6H), 1.34 (s, 9H), 1.18-0.93 (m, 11H); ¹³C NMR (CDCl₃, 100 MHz) δ

S5

171.3, 155.6, 79.1, 54.4, 42.0, 41.7, 40.2, 29.8, 28.3, 28.1, 26.13, 26.09, 26.0, 14.6; 12.9; HRMS-FAB calcd for C₁₇H₃₂N₂O₃ [M+Na] 335.2320, found 335.2311.

Ligand 2f. Amide 2f (0.26 g, 0.83 mmol) was reduced as described above with 1.0 M BH₃-THF (3.40 mL, 3.33 mmol) followed by boron exchange with ethylenediamine (0.22 mL, 3.33 mmol). Purification (gradient of 0.1:0.9:45 to 0.15:1.35:45 30% aqueous NH₄OH:CH₃OH:CH₂Cl₂) gave a pale yellow solid (0.13 g, 0.44 mmol, 53%). ¹H NMR (CDCl₃, 400 MHz) δ 4.52 (br s, 1H), 3.46 (br s, 1H), 2.54-2.28 (m, 6H), 1.72-1.45 (m, 6H), 1.40 (s, 9H), 1.24-0.87 (m, 5H), 0.94 (t, 6H, J = 7.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 156.3, 78.8, 54.2, 53.2, 47.2, 40.3, 29.8, 28.58, 28.55, 28.5, 27.9, 26.7, 26.5, 11.9; HRMS-FAB calcd for C₁₇H₃₄N₂O₂ [M+Na] 321.2518, found 321.2530.

Representative Procedures for the Addition of Vinylzinc Reagents to 3,4-Dihydroisoquinoline *N*-oxide and HPLC Conditions for ee Determination of 3a-g.

1) To an oven-dried vial were added dry CH_2Cl_2 (2.80 mL) and neat BH_3 •DMS complex (228 µL, 2.40 mmol). The solution was cooled to 0 °C, and cyclohexene (486 µL, 4.80 mmol) was added. The reaction was stirred for 2 h, during which time a white precipitate formed. After 2 h, 4-phenyl-1-butyne (337 µL, 2.40 mmol) was added, and the reaction was slowly warmed to rt and stirred for 2 h. The white precipitate dissolved and the mixture turned to a clear solution (Solution A).

2) To another oven-dried vial pre-loaded with ligand **2a** (74.9 mg, 0.24 mmol), 3,4-dihydroisoquinoline *N*-oxide (29.4 mg, 0.20 mmol) and a magnetic stirring bar was added dry CH_2Cl_2 (1.20 mL). The solution was then cooled to -50°C and a 1 M solution of diethylzinc in CH_2Cl_2 was added (369 µL, 0.48 mmol) to give a clear solution **B**. An

aliquot of the solution **A** (385 μ L) was transferred to the solution **B** using a syringe pump over 20 min at -48 °C, and the reaction was kept at -48 °C for 24 h. The reaction was then carefully quenched with sat. NH₄Cl solution. The mixture was extracted with CH₂Cl₂, and the organic phase was washed with sat. NH₄Cl and water. The product solution was filtered through a small silica plug and concentrated *in vacuo*. Flash column chromatography (EtOAc:hexanes 1:6) gave a purified product **3e** (41.2 mg, 0.15 mmol, 74%).

Hydroxylamine 3a. The general procedure was used with 3,3-dimethylbutyne (296 μL, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:8), hydroxylamine 3a was isolated (31.7 mg, 0.14 mmol, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.06 (m, 4H), 5.86 (d, 1H, J = 15.6 Hz), 5.39 (dd, 1H, J = 15.2, 8.4 Hz), 4.21 (br s, 1H), 3.52-3.48 (m, 1H), 3.17-3.01 (m, 2H), 2.92-2.87 (m, 1H), 1.09 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 136.2, 133.4, 128.3, 127.9, 126.8, 126.1, 124.9, 72.4, 54.0, 33.5, 29.8; HRMS-FAB calcd for C₁₅H₂₁NO [M+Na] 254.1521, found 254.1529; 93% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99.5:0.5) at 1.0 mL/min and detected at 219 nm), t_R = 13.8 min for (*S*) and t_R = 20.3 min for (*R*); $[\alpha]^{24}_{D} = +23.5^{\circ}$ (c = 1.0, CHCl₃).

Hydroxylamine 3b. The general procedure was used with 1-hexyne (270 μL, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:8), hydroxylamine 3b was isolated (30.3 mg, 0.13 mmol, 66%). ¹H NMR (300 MHz, CDCl₃) δ 7.19-7.10 (m, 4H), 5.87-5.78 (m, 1H), 5.52 (dd, 1H, J = 15.2, 8.3 Hz), 4.27 (d, 1H, J = 6.8 Hz), 3.53-3.49 (m, 1H), 3.18-3.03 (m, 2H), 2.96-2.90 (m, 1H), 2.21-2.14 (m, 2H), 1.51-1.29 (m, 4H), 0.94 (t, 3H, J = 7.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 136.0, 133.4,

129.8, 128.3, 128.1, 126.7, 126.1, 72.0, 53.7, 32.3, 31.6, 28.6, 22.5, 14.1; HRMS-FAB calcd for C₁₅H₂₁NO [M+Na] 254.1521, found 254.1526; 94% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99:1) at 1.0 mL/min and detected at 219 nm), $t_R = 12.4$ min for (*S*) and $t_R = 16.4$ min for (*R*); $[\alpha]^{25}_D = +34.6^\circ$ (c = 1.0, CHCl₃).

Figure S1. HPLC trace of hydroxylamine 3a.

Figure S2. HPLC trace of hydroxylamine 3b.

Hydroxylamine 3c. The general procedure was used with cyclopropyl acetylene (203 μ L, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:4), hydroxylamine **3c** was isolated (34.0 mg, 0.16 mmol, 79%). ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.09 (m, 4H), 5.60 (dd, 1H, *J* = 14.2, 8.7 Hz), 5.35-5.29 (m, 1H), 4.31 (br

s, 1H), 3.55-3.51 (m, 1H), 3.14-3.08 (m, 2H), 2.96-2.92 (m, 1H), 1.53-1.47 (m, 1H), 0.79-0.74 (m, 2H), 0.48-0.44 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 135.3, 133.1, 128.4, 128.1, 127.0, 126.6, 126.2, 71.5, 53.1, 27.9, 13.9, 7.2, 7.1; HRMS-FAB calcd for C₁₄H₁₇NO [M+H] 216.1388, found 216.1382; 94% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99:1) at 1.0 mL/min and detected at 219 nm), t_R = 18.1 min for (*S*) and t_R = 21.8 min for (*R*); $[\alpha]^{25}_{D} = +69.6^{\circ}$ (c = 0.76, CHCl₃).

Figure S3. HPLC trace of hydroxylamine 3c.

Top trace: racemic sample; bottom trace: enantiomerically enriched sample.

Hydroxylamine 3d. The general procedure was used with cyclohexylacetylene (309 μL, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:9), hydroxylamine 3d was isolated (32.0 mg, 0.12 mmol, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.08 (m, 4H), 5.77 (dd, 1H, J = 15.5, 6.5 Hz), 5.45 (dd, 1H, J = 14.9, 8.4 Hz), 4.23 (br s, 1H), 3.51-3.48 (m, 1H), 3.16-3.02 (m, 2H), 2.92-2.88 (m, 1H), 2.12-2.05 (m, 1H), 1.82-1.65 (m, 5H), 1.35-1.11 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 136.0, 133.4, 128.2, 128.0, 127.3, 126.7, 126.0, 72.2, 53.7, 40.7, 33.1, 33.0, 28.6, 26.3, 26.1; HRMS-FAB calcd for C₁₇H₂₃NO [M+Na] 280.1677, found 280.1685; 94% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99:1) at 1.0 mL/min and detected at 219 nm), t_R = 12.5 min for (*S*) and t_R = 17.0 min for (*R*); $[\alpha]^{25}_{D} = +33.3^{\circ}$ (c = 0.64, CHCl₃).

Figure S4. HPLC trace of hydroxylamine 3d.

Hydroxylamine 3e. The general procedure was used with 4-phenyl-1-butyne (337 μL, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:6), hydroxylamine 3e was isolated (41.2 mg, 0.15 mmol, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.10 (m, 8H), 6.94 (d, 1H, J = 7.4 Hz), 5.85-5.78 (m, 1H), 5.51-5.45 (m, 1H), 4.23 (br s, 1H), 3.49-3.47 (m, 1H), 3.13-3.01 (m, 2H), 2.93-2.80 (m, 3H), 2.56-2.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7 136.0, 135.7, 133.3, 130.9, 128.7, 128.5, 128.2, 128.0, 126.7, 126.05, 126.03, 71.9, 53.8, 35.6, 34.3, 28.6; HRMS-FAB calcd for C₁₉H₂₁NO [M+Na] 302.1521, found 302.1516; 95% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (99:1) at 1.0 mL/min and detected at 219 nm), t_R = 29.9 min for (*R*) and t_R = 40.8 min for (*S*); $[\alpha]^{25}{}_{\rm D}$ = +28.3 ° (c = 1.0, CHCl₃).

Figure S5. HPLC trace of hydroxylamine 3e.

Hydroxylamine 3f. The general procedure was used with phenylacetylene (264 μL, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:6), hydroxylamine 3f was isolated (37.4 mg, 0.15 mmol, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.46 (m, 2H), 7.38-7.27 (m, 3H), 7.22-7.12 (m, 4H), 6.72 (d, 1H, J = 15.8

Hz), 6.30 (dd, 1H, J = 15.5, 8.5 Hz), 4.49 (d, 1H, J = 6.2 Hz), 3.54-3.51 (m, 1H), 3.17-3.08 (m, 2H), 2.92-2.87 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 135.5, 135.3, 133.4, 129.5, 128.7, 128.4, 128.1, 127.9, 127.0, 126.7, 126.2, 71.9, 53.9, 28.6; HRMS-FAB calcd for C₁₇H₁₇NO [M+Na] 274.1208, found 274.1216; 90% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (80:20) at 1.0 mL/min

Figure S6. HPLC trace of hydroxylamine 3f.

Top trace: racemic sample; bottom trace: enantiomerically enriched sample.

and detected at 219 and 254 nm), $t_R = 6.4 \text{ min for } (R)$ and $t_R = 18.4 \text{ min for } (S)$; $[\alpha]^{25}{}_D = +16.7 \circ (c = 1.0, CHCl_3)$.

Hydroxylamine 3g. The general procedure was used with 4-ethynylanisole (311 μL, 2.4 mmol). Following flash column chromatography (EtOAc:hexanes 1:5), hydroxylamine 3g was isolated (47.7 mg, 0.17 mmol, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, 2H, J = 8.7 Hz), 7.18-7.09 (m, 4H), 6.87 (d, 2H, J = 8.7 Hz), 6.63 (d, 1H, J = 15.8 Hz), 6.13 (dd, 1H, J = 15.2, 8.3 Hz), 4.44 (br s, 1H), 3.51-3.48 (m, 1H), 3.14-3.05 (m, 2H), 2.88-2.85 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 135.6, 134.7, 133.4, 129.5, 128.3, 128.1, 127.8, 127.2, 126.8, 126.1, 114.1, 72.0, 55.4, 53.8, 28.6; HRMS-FAB calcd for C₁₈H₁₉NO [M+Na] 304.1313, found 304.1321; 92% ee by HPLC analysis (Chiralcel OD-H column eluted with hexanes:2-propanol (90:10) at 1.0 mL/min and detected at 219 and 254nm), t_R = 11.0 min for (*R*) and t_R = 19.0 min for (*S*); $[\alpha]^{24}_{D} = +15.1^{\circ}$ (c = 0.86, CHCl₃).

Figure S7. HPLC trace of hydroxylamine 3g.

Preparation of N-Cbz-D-1,2,3,4-Tetrahydroisoquinoline-1-Carboxylic Acid.

Compound 4

Zn dust (471 mg, 7.20 mmol) was added into a solution of $Cu(OAc)_2$ (29 mg, 0.14 mmol) in acetic acid (4 mL), and the mixture was stirred at rt for 15 min under N₂. A solution of hydroxylamine **3f** (96% ee, 362 mg, 1.44 mmol) in acetic acid (4 mL) and water (2 mL) was then added. The mixture was heated at 70 °C for 2 h. After 2 h, the brown suspension was cooled to rt. EDTA (1.61 g, 4.32 mmol) was added, and the solution was basified to pH 10 by addition of 3 M NaOH. The solution was extracted with EtOAc four times, washed with sat. EDTA, brine and dried over MgSO₄.

organic solution was concentrated *in vacuo* to give a white solid (305 mg, 1.30 mmol, 90%) which was directly used in the next step without further purification. The crude amine was dissolved in EtOAc (10 mL). Sat. NaHCO₃ aq (10 mL) was added. The biphasic solution was cooled to 0 °C and benzyl chloroformate (253 μ L, 1.8 mmol) was added dropwise. The reaction was stirred overnight at rt, then the solution was extracted with EtOAc. The organic phase was washed with sat NH₄Cl, brine, dried over Na₂SO₄, and concentrated. Flash column chromatography (1:9 EtOAc:hexanes) gave a colorless oil (354 mg, 0.96 mmol, 74%). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.26 (m, 14H), 6.43 (br s, 2H), 5.96-5.83 (m, 1H), 5.30-5.25 (m, 2H), 4.31-4.18 (m, 1H), 3.43 (br s, 1H), 3.01-2.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 136.8, 136.6, 134.9, 134.6, 131.6, 129.0, 128.6, 128.1, 127.8, 127.0, 126.6, 126.4, 67.4, 56.6, 38.7, 28.8; HRMS-FAB calcd for C₂₅H₂₃NO₂ [M+Na] 392.1626, found 392.1636; $[\alpha]^{25}_{D} = +155.7^{\circ}$ (c = 0.26, CH₃OH).

(R)-N-(Benzyloxycarbonyl)-1,2,3,4-Tetrahydroisoquinoline-1-Carboxylic Acid: 5

The alkene 4 (51 mg, 0.14 mmol) was dissolved in $CCl_4-CH_3CN-H_2O$ (2:2:3). NaIO₄ (60 mg, 0.28 mmol) and RuCl₃ hydrate (0.004 mmol, 0.9 mg) were added. After 0.5 h, another equivalent of NaIO₄ (60 mg, 0.28 mmol) was added. The mixture was stirred vigorously at rt overnight. The solution was extracted with CH_2Cl_2 five times. The organic solutions were combined, dried over MgSO₄ and concentrated. Diethyl ether was then added to precipitate RuCl₃ and the solution was filtered though celite. The

residue was purified by flash column chromatography (1:1 EtOAc:hexanes with 0.25% AcOH) to give a white oily solid (26 mg, 0.084 mmol, 61%) (existing as 5:4 *N*-invertomers as determined by ¹H NMR spectroscopy).² ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.17 (m, 9H), 5.67 (s, 0.5H), 5.58 (s, 0.4H), 5.23-5.19 (m, 2H), 3.88-3.83 (m, 2H), 2.97-2.99 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 177.2, 176.7, 156.4, 155.6, 136.5, 136.4, 135.7, 135.4, 130.0, 129.4, 128.9, 128.75, 128.67, 128.62, 128.56, 128.39, 128.36, 128.32, 128.2, 128.1, 127.0, 126.9, 68.0, 67.9, 58.2, 58.1, 41.0, 40.7, 28.7, 28.6; HRMS-FAB calcd for C₁₈H₁₇NO₄ [M+Na] 334.1055, found 334.1066; [α]²⁴_D = -24.8° (c = 0.5, CH₃OH) {lit.³ [α]²⁰_D = -40.1° (c = 1.0, CH₃OH) for (*R*) enantiomer}.

¹H and ¹³C NMR Spectra for Compounds 3a-g, 4, 5

References

- (a) Richmond, M. L.; Seto, C. T. J. Org. Chem. 2003, 68, 7505-7508. (b) Richmond, M. L.; Seto, C. T. J. Org. Chem. 2005, 70, 8835-8840.
- 2. Belkacemi, D.; Malpass, J. R. Tetrahedron 1993, 49, 9105-9110.
- Bajusz, S.; Mohai, L.; Feher, A.; Lavich, J.; Szell, G.; Veghelyi, B. PCT Int. Appl. WO 9312091 A1 930624, 1993 (36 pp).