Supplementary information for:

Efficient and Mild Microwave Assisted Stepwise Functionalization of Naphthalenediimide with α-Amino Acids

Paolo Pengo, G. Dan Pantoş, Sijbren Otto* and Jeremy K. M. Sanders*
University Chemical Laboratory, University of Cambridge
Lensfield Road, Cambridge CB2 1EW (UK)
so230@cam.ac.uk; jkms@cam.ac.uk

Contents:

General...S2
Work-up and Characterization DataS2
X-ray Characterization Data S9
${ }^{1}$ H NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds $2 \mathrm{a}-2 \mathrm{p}$ and $4 \mathrm{a}-4 \mathrm{~d}$ S14

SYNTHESIS

General: All solvents were of reagent grade quality and purchased commercially. All purchased starting materials were used without further purification. The determined melting points are uncorrected. NMR spectra were recorded on 400 MHz or 500 MHz instruments. The NMR spectra were referenced to solvent. All the spectra were recorded at 298 K . ${ }^{1} \mathrm{H}$ NMR, data are reported as follows: chemical shift in ppm on the δ scale, integration, multiplicity (s: singlet, d: doublet, t: triplet, q: quartet, dd: doublet of doublets, bs: broad singlet, bt: broad triplet), coupling constants (Hz) and assignment. TLC analyses were carried out using silica gel $60 \AA$ TLC plates. Column chromatography was performed on silica gel $60 \AA(0.040-0.063 \mathrm{~mm})$ for column chromatography ($230-400$ mesh ASTM). The sonication was performed using a tabletop ultrasonic cleaner. The microwave experiments were conducted using a domestic microwave oven or a dedicated microwave synthesizer.

Work-up and Characterization Data:

(R)-2-[7-((R)-1-Carboxy-2-tritylsulfanyl-ethyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl]-3-tritylsulfanyl-propionic acid, $(\mathbf{R}, \boldsymbol{R})$-2b
The reaction was performed on $0.746 \mathrm{mmol}(200 \mathrm{mg})$) ,4,5,8-naphthalenetetracarboxylic dianhydride and $1.491 \mathrm{mmol}(542 \mathrm{mg})$ of $\mathrm{H}-(\mathrm{L})-\mathrm{Cys}(\mathrm{Trt})-\mathrm{OH}$ using both synthetic methods (A and B), as well as on 3.728 mmol (1 g) 1,4,5,8-naphthalenetetracarboxylic dianhydride and $7.457 \mathrm{mmol}(2.71 \mathrm{~g}) \mathrm{H}-(\mathrm{L})-\mathrm{Cys}(\mathrm{Trt})-\mathrm{OH}$ using synthetic method B.
Work up: the brown residue was taken-up with chloroform (150 ml). The organic phase was washed with $1.5 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{ml})$, brine ($1 \times 50 \mathrm{ml}$), water ($1 \times 50 \mathrm{ml}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed and the product dried under vacuum. The product was obtained in 95% yield as a yellow-brown powder. m.p. $185-187{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 8.63(\mathrm{~s}, 4 \mathrm{H}), 7.32-7.28(\mathrm{t}, J=7.5,12 \mathrm{H}), 7.21-7.18(\mathrm{t}, J=7.5,12 \mathrm{H})$, $7.18-7.12(\mathrm{~d}, J=7.5,6 \mathrm{H}), 5.49\left(\mathrm{dd}, J_{1}=10.4, J_{2}=4.7,2 \mathrm{H}\right), 3.25\left(\mathrm{dd}, J_{1}=14.2, J_{2}=10.4\right.$, $2 \mathrm{H}), 3.13\left(\mathrm{dd}, J_{1}=14.2, J_{2}=4.7,2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 174.7$, 161.9, 144.2, 131.4, 129.6, 127.9, 126.8, 126.1, 119.6, 67.6, 52.8; HRMS (ESI+) calcd. for: $\mathrm{C}_{58} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}): 981.2280$, found: 981.2275.
(S)-2-[7-((S)-1-Carboxy-2-tritylsulfanyl-ethyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro$\mathbf{1 H}$-benzo[lmn][3,8]phenanthrolin-2-yl]-3-tritylsulfanyl-propionic acid (S, S)-2b

Work up: the dark brown oil was taken up into $\mathrm{CHCl}_{3}(100 \mathrm{ml})$. The organic phase was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{ml})$, brine $(1 \times 75 \mathrm{ml})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and dried under high-vacuum. The product was obtained in the form of a yellow solid in 86% yield. m.p. $182-184^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 11.47(\mathrm{bs}, 2 \mathrm{H}), 8.66(\mathrm{~s}, 4 \mathrm{H}), 7.35-7.32(\mathrm{~d}, \mathrm{~J}=10.0,12 \mathrm{H}), 7.23-7.14$ $(\mathrm{m}, 18 \mathrm{H}), 5.55-5.51\left(\mathrm{dd}, J_{1}=15.0, J_{2}=4.5,2 \mathrm{H}\right), 3.31-3.25\left(\mathrm{dd}, J_{1}=24.0, J_{2}=10.5,2 \mathrm{H}\right)$, 3.19-3.14 (dd, $\left.J_{1}=18.0, J_{2}=4.5,2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 174.1$, 163.5, 144.2, 131.4, 129.5, 127.9, 127.8, 126.7, 126.2, 67.5, 52.8, 30.2; HRMS (ESI+) calcd. for: $\mathrm{C}_{58} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$: 981.2280, found: 981.2281.

2-Amino-3-tritylsulfanyl-propionic acid methyl ester trifluoro-acetic acid salt 0.5 g of $\mathrm{H}-(\mathrm{L})-\mathrm{Cys}-\mathrm{OMe} \cdot \mathrm{HCl}(2.912 \mathrm{mmol})$ and 0.812 g of trityl chloride (2.912 mmol) were co-dissolved in 6 ml of trifluoroacetic acid obtaining a deep brown solution. After stirring the reaction mixture under nitrogen for 10 minutes, the solvent was removed under reduced pressure and the thick oily residue was taken-up with dichloromethane (10 ml). The dichloromethane was removed under reduced pressure and the procedure was repeated four times until a foaming solid was obtained. The crude product was dissolved in dichloromethane (150 ml) and washed with water ($2 \times 100 \mathrm{ml}$), the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed. 1.245 g of product were obtained as a white powder, the title product was clean by NMR analysis and was used without any further purification. Yield 87%. m.p. $66-68^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 7.42-7.20(\mathrm{~m}, 15 \mathrm{H}), 3.63(\mathrm{~s}$, 3 H), 3.06-2.90 (m, 2H), 2.84 (dd, $\left.J_{1}=14, J_{2}=4.5,2 \mathrm{H}\right), 2.35(\mathrm{t}, 4 \mathrm{H}, J=7), 2.27(\mathrm{~m}, 2 \mathrm{H})$, 1.27 (s, $18 \mathrm{H}, \mathrm{OtBu}$); ${ }^{13} \mathrm{C}$ NMR ($100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: 168.4, 162.0, 143.7, 129.3, 128.2, 127.1, 67.5, 53.2, 51.9, 32.1.
(R)-2-[7-((R)-1-Methoxycarbonyl-2-tritylsulfanyl-ethyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl]-3-tritylsulfanyl-propionic acid methyl ester, (R, R)-2c

Work up: the dark brown oil was taken up into $\mathrm{CHCl}_{3}(100 \mathrm{ml})$. The organic phase was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{ml})$, brine ($1 \times 75 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The crude product was purified by colum chromatography (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2 \mathrm{v} / \mathrm{v}$). The product was obtained in the form of a yellow solid in 70% yield over two steps from H -(L)-Cys-OMe- HCl . m.p. $125-127{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.73(\mathrm{~s}, 4 \mathrm{H}), 7.34-7.32(\mathrm{~d}, J=7.0,12 \mathrm{H}), 7.22-7.15(\mathrm{~m}$, 18 H), 5.57-5.53 (dd, $\left.J_{1}=15.0, J_{2}=6.0,2 \mathrm{H}\right), 3.66-3.64(\mathrm{~m}, 5 \mathrm{H}), 3.24-3.22\left(\mathrm{dd}, J_{1}=9.5, J_{2}=\right.$ $4.0,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 168.6,162.1,144.3,131.4,129.6$, 127.9, 126.7, 126.4, 67.4, 53.0, 52.7, 30.5; HRMS (ESI+) calcd. for: $\mathrm{C}_{60} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}): 1009.2593$, found: 1009.2588.
(S)-3-Benzyloxy-2-[7-((S)-2-benzyloxy-1-carboxy-ethyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl]-propionic acid, (S,S)-2d

Work-up: the residue was taken-up with 50 ml of chloroform; the organic solution was extracted with $1.5 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{ml})$, brine ($1 \times 30 \mathrm{ml}$) and water ($1 \times 30 \mathrm{ml}$). The solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. To remove the residual DMF, the crude product was dissolved in 5 ml of acetonitrile and added drop wise to a vigorously stirred 2.5% aqueous solution of KHSO_{4}. The product coagulates as brown-pink flakes, the precipitate was filtered using a Büchner funnel, washed with water and dried under vacuum. The product was obtained as a brown-red powder in 86% yield. m.p. $137-139{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.66(\mathrm{~s}, 4 \mathrm{H}), 7.20-7.08(\mathrm{~m}, 30 \mathrm{H}), 6.11\left(\mathrm{dd}, J_{1}=9.03, J_{2}\right.$ $=5.5,2 \mathrm{H}), 4.2\left(\mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}}=12,4 \mathrm{H}\right), 4.34-4.18(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}(100.62 \mathrm{MHz}$, DMSO- d_{6}) $\delta(\mathrm{ppm}): 169.13,162.3,138.1,131.4,128.2,127.5,127.4,126.4,125.9,71.9$, 66.7, 52.9; HRMS (ESI+) calcd. for: $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{10}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}): 645.1485$, found: 645.1480 .
(S)-2-[7-((S)-1-Methoxycarbonyl-3-methyl-butyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[lmn][3,8]phenanthrolin-2-yl]-4-methyl-pentanoic acid methyl ester, (S, S)-2e

Work-up: the residue was taken-up with water, the suspension was filtered using a Büchner funnel, the precipitate was washed with water (200 ml) and dried under vacuum. The crude product was purified by filtration through a short plug of silica using ethylacetate as eluent. 370 mg of product were obtained as a pale orange-yellow powder. Yield 95%. TLC
(silica, $\mathrm{CHCl}_{3} / \mathrm{MeOH} 50 / 1 \mathrm{v} / \mathrm{v}$) Rf: 0.53; m.p. $117{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: $8.78(\mathrm{~s}, 4 \mathrm{H}), 5.78\left(\mathrm{dd}, J_{1}=9.5, J_{2}=5,2 \mathrm{H}\right), 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.09(\mathrm{~m}$, $2 \mathrm{H}), 1.54(\mathrm{~m}, 2 \mathrm{H}), \quad 1.01(\mathrm{~d}, J=6.6,6 \mathrm{H}), 0.923(\mathrm{~d}, J=6.6,6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}(125.78$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 170.3,162.5,131.4,126.9,126.5,52.6,52.5,37.9,25.4,23.1,22.0$; HRMS (ESI +) calcd. for: $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 523.2080, found: 523.2090.
(S)-2-[7-((S)-1-Methoxycarbonyl-2-phenyl-ethyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro$1 H$-benzo[lmn][3,8]phenanthrolin-2-yl]-3-phenyl-propionic acid methyl ester, (S,S)-2f

Work-up: the residue was taken-up with 50 ml of acetonitrile and evaporated to dryness. The yellow residue was triturated with water (100 ml), the solution was discarded and the precipitate was washed with a further amount of water $(200 \mathrm{ml})$ and dried under vacuum. The crude product was purified by filtration on a short silica plug, ethyl acetate was used as eluent. The product was obtained as a bright yellow powder in 74% yield. TLC (silica, AcOEt/EP $1 / 1 \mathrm{v} / \mathrm{v}$) Rf: 0.75 ; m.p. $224-225{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}): 8.63$ $(\mathrm{s}, 4 \mathrm{H}), 7.20-7.00(\mathrm{~m}, 10 \mathrm{H}), 5.93\left(\mathrm{dd}, J_{1}=9.10, J_{2}=5.5,2 \mathrm{H}\right), 3.65(\mathrm{~s}, 6 \mathrm{H}), 3.60\left(\mathrm{dd}, J_{1}=\right.$ $\left.14.0, J_{2}=5.5,2 \mathrm{H}\right), 3.29\left(\mathrm{dd}, J_{1}=14, J_{2}=9.1,2 \mathrm{H}\right),{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.61 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta(\mathrm{ppm}): 169.2,161.8,137.2,131.3,128.9,128.1,126.4,125.9,125.5,54.2,52.3,34.0$; HRMS (ESI+) calcd. for: $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 591.1767, found: 591.1762.
(S)-2-\{7-[(S)-1-Carboxy-2-(4-hydroxy-phenyl)-ethyl]-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl\}-3-(4-hydroxy-phenyl)-propionic acid, (S,S)-2g

Work up: the dark brown oil was taken up into $\mathrm{MeOH}(100 \mathrm{ml})$. This solution was added under stirring to 200 ml of 1 N HCl . The resulting suspension was allowed to coagulate overnight and then filtered through a P4 sintered glass funnel. The solid was then washed with 100 ml deionized water and dried in vacuo. The product was obtained in the form of a dark-orange solid in 91% yield. m.p. $269-272{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.91$ (bs, 2H), 9.04 (s, 2H), 8.65 (s, 4H), 6.94-6.92 (d, $J=8.5,2 \mathrm{H}$), 6.49-6.47 (d, J $=8.5,2 \mathrm{H}), 5.78-5.74\left(\mathrm{dd}, J_{1}=15.0, J_{2}=5.5,2 \mathrm{H}\right), 3.48-3.43\left(\mathrm{dd}, J_{1}=19.5, J_{2}=5.5,2 \mathrm{H}\right)$, 3.23-3.17 (dd, $\left.J_{1}=23.5, J_{2}=9.5,2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.62 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm})$: 170.3, 161.9, 155.6, 136.5, 131.2, 129.8, 127.7, 126.0, 125.6, 114.9, 54.8, 33.3; HRMS (ESI+) calcd. for: $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{10}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 595.1353, found: 595.1351.
(S)-2-\{7-[(S)-1-Methoxycarbonyl-2-(1-trityl-1H-imidazol-4-yl)-ethyl]-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl\}-3-(1-trityl-1H-imidazol-4-yl)-propionic acid methyl ester, (S,S)-2h

Work-up: the residue was taken-up with water. The suspension was filtered with a Büchner funnel, the precipitate was washed with water (200 ml) and dried under vacuum. The crude product was purified by column chromatography (silica, $\mathrm{CHCl}_{3} /$ methanol 200/10 v / v). 575 mg of product were obtained as a bright yellow powder, yield 73%. TLC (silica, $\mathrm{CHCl}_{3} /$ methanol $9 / 1 \mathrm{v} / \mathrm{v}$) Rf: 0.84 ; m.p. $165-170{ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 8.65(\mathrm{~s}, 4 \mathrm{H}), 7.40-7.10(\mathrm{~m}, 20 \mathrm{H}), 6.96-6.88(\mathrm{~m}, 12 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 5.99\left(\mathrm{dd}, J_{1}=\right.$ $\left.9.5, J_{2}=6.0,2 \mathrm{H}\right), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.65-3.50(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(125.78 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}): 169.7,162.3,142.2,138.6,136.7,131.0,129.6,127.8,127.8,126.8,126.4,119.1$, 74.9, 54.1, 52.6, 27.1; HRMS (ESI+) calcd. for: $\mathrm{C}_{66} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 1055.3768, found: 1055.3755.
(S)-2-\{7-[(S)-1-Carboxy-2-(1-trityl-1H-imidazol-4-yl)-ethyl]-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl\}-3-(1-trityl-1H-imidazol-4-yl)propionic acid, (S,S)-2i

Work up: the dark brown oil was taken up into $\mathrm{CHCl}_{3}(100 \mathrm{ml})$. The organic phase was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{ml})$, brine ($1 \times 75 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The
solvent was removed under reduced pressure and dried under high-vacuum. The product was obtained in the form of a yellow solid in 75% yield. m.p. $251-254^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO d_{6}) $\delta(\mathrm{ppm}): 8.72(\mathrm{~s}, 4 \mathrm{H}), 7.91(\mathrm{bs}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 18 \mathrm{H}), 6.95(\mathrm{bs}, 2 \mathrm{H})$, 6.88-6.86 (m, 12H), 5.84-5.80 (dd, $\left.J_{1}=14.5, J_{2}=4.0,2 \mathrm{H}\right), 3.54-3.49\left(\mathrm{dd}, J_{1}=18.0, J_{2}=4.0\right.$, $2 \mathrm{H}), 3.42-3.35\left(\mathrm{dd}, J_{1}=25.5, J_{2}=11.0,2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: $169.6,169.5,162.1,147.7,141.0,137.1,131.3,128.9,128.2,127.7,127.5,126.6,127.1$, 125.8, 53.3, 37.4, 34.4, 21.4; HRMS (ESI +) calcd. for: $\mathrm{C}_{64} \mathrm{H}_{47} \mathrm{~N}_{6} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 1027.3455, found: 1027.3449.
(S)-2-\{7-[(S)-1-Carboxy-2-(1H-indol-3-yl)-ethyl]-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl\}-3-(1H-indol-3-yl)-propionic acid, (S,S)-2j

Work-up: the dark brown oil was taken up into $\mathrm{MeOH}(400 \mathrm{ml})$. This solution was added under stirring to 600 ml of 1 N HCl . The resulting suspension was allowed to coagulate overnight and then filtered through a P4 sintered glass funnel. The solid was then washed with 100 ml deionized water and dried in vacuo. The product was obtained in the form of a brown solid in 90% yield. m.p. $263-265{ }^{\circ} \mathrm{C}$ (dec) (Lit: ${ }^{1} 286-288$); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.97$ (bs, 2H), $10.63(\mathrm{bs}, 2 \mathrm{H}), 8.59(\mathrm{~s}, 4 \mathrm{H}), 7.46-7.44(\mathrm{~d}, J=7.5,2 \mathrm{H})$, 7.19-7.17 (d, $J=8.0,2 \mathrm{H}), 7.03(\mathrm{~s}, 2 \mathrm{H}), 6.94-6.90\left(\mathrm{dd}, J_{1}=15.0, J_{2}=7.0,2 \mathrm{H}\right), 6.80-6.77(\mathrm{dd}$, $\left.J_{1}=15.0, J_{2}=7.5,2 \mathrm{H}\right), 5.86-5.82\left(\mathrm{dd}, J_{1}=14.0, J_{2}=8.5,2 \mathrm{H}\right), 3.69-3.65\left(\mathrm{dd}, J_{1}=19.5, J_{2}=\right.$ $5.0,2 \mathrm{H}), 3.51-3.45\left(\mathrm{dd}, J_{1}=23.5, J_{2}=9.0,2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}$ (100.62 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}): 173.8,170.4,161.9,135.8,131.0,126.9,125.9,125.6,123.6,120.7,118.1,117.8$, 111.2, 110.0, 54.2, 24.0; HRMS (ESI +) calcd. for: $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z}): 663.1492$, found: 663.1507.
(S)-3-(1H-Indol-3-yl)-2-\{7-[(S)-2-(1H-indol-3-yl)-1-methoxycarbonyl-ethyl]-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro- 1 H -benzo[Imn][3,8]phenanthrolin-2-yl\}-propionic acid methyl ester, (S,S)-2k

Work up: the dark brown oil was taken up into $\mathrm{CHCl}_{3}(200 \mathrm{ml})$. The organic phase was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 75 \mathrm{ml})$, brine ($1 \times 100 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the resulting solid dried under highvacuum. The product was obtained in the form of a red-brown solid in 82% yield. m.p. 258$260{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta(\mathrm{ppm}): 10.67$ (bs, 2H), 8.59 (s, 4H), 7.48$7.46(\mathrm{~d}, J=7.5,2 \mathrm{H}), 7.20-7.18(\mathrm{~d}, J=8.0,2 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H}), 6.94-6.90\left(\mathrm{dd}, J_{1}=14.5, J_{2}=\right.$ $7.0,2 \mathrm{H}), 6.81-6.77\left(\mathrm{dd}, J_{1}=15.0, J_{2}=7.5,2 \mathrm{H}\right), 5.96-5.22\left(\mathrm{dd}, J_{1}=14.0, J_{2}=5.5,2 \mathrm{H}\right), 3.72-$ $3.66(\mathrm{~m}, 5 \mathrm{H}), 3.49-3.43\left(\mathrm{dd}, J_{1}=23.5, J_{2}=9.0,2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}(100.62 \mathrm{MHz}$, DMSO$\left.d_{6}\right) \delta(\mathrm{ppm}): 169.4,161.9,135.8,131.1,126.9,125.9,125.5,123.8,120.7,118.1,117.8$, $111.2,109.5,53.9,52.2$, 23.9; HRMS (ESI+) calcd. for: $\mathrm{C}_{39} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 669.1985, found: 669.1960.

(S)-2-[7-((S)-3-tert-Butoxycarbonyl-1-carboxy-propyl)-1,3,6,8-tetraoxo-3,6,7,8-

 tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl]-pentanedioic acid 5-tert-butyl ester, (S,S)-2lWork-up: the dark brown oil was taken-up with 3 ml of acetonitrile and added drop wise to a vigorously stirred 2.5% aqueous solution of KHSO_{4}. The product coagulates as a pink powder, the precipitate was filtered with a Büchner funnel, washed with water and dried under vacuum. 421 mg of product were obtained as a light pink powder, 88% yield. m.p. $145^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.90(\mathrm{bs}, 2 \mathrm{H}), 8.72(\mathrm{~s}, 4 \mathrm{H}), 5.55(\mathrm{dd}$, $\left.J_{1}=9.4, J_{2}=4.3,2 \mathrm{H}\right), 2.45(\mathrm{~m}, 4 \mathrm{H}), 2.35(\mathrm{t}, 4 \mathrm{H}, J=7), 2.27(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.61 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right) \delta(\mathrm{ppm}): 171.6,170.2,162.4,130.9,126.3,126.0,79.5$, 52.8 , 31.5, 27.5, 23.4; HRMS (ESI +) calcd. for: $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{12}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 639.2190, found: 639.2194.
(S)-6-tert-Butoxycarbonylamino-2-[7-((S)-5-tert-butoxycarbonylamino-1-carboxy-pentyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[lmn][3,8]phenanthrolin-2-yl]hexanoic acid, (S,S)-2m
Work-up: the dark brown oil was taken up with 3 ml of acetonitrile and added drop wise to a vigorously stirred 2.5% aqueous solution of KHSO_{4}. The product coagulates as a pink yellow powder, the precipitate was filtered with a Büchner funnel, washed with water and dried under vacuum. 498 mg of product were obtained as a light pink powder, 92% yield. m.p. 150 ${ }^{\circ} \mathrm{C}(\mathrm{dec}){ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.83(\mathrm{bs}, 2 \mathrm{H}), 8.69(\mathrm{~s}, 4 \mathrm{H}), 5.52\left(\mathrm{dd}, J_{1}=\right.$ $\left.9.2, J_{2}=5.0,2 \mathrm{H}\right), 2.81(\mathrm{~m}, 4 \mathrm{H}), 2.21(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}) 1.44-1-1.12(\mathrm{~m}, 26 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.61 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 170.5,162.2,155.4,131.1,126.3,125.9,77.0,53.3$, 29.2, 28.0, 23.1; HRMS (ESI +) calcd. for: $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{12}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 725.3034, found: 725.3062.

2-[7-(1-Carboxy-ethyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phe-

 nanthrolin-2-yl]-propionic acid, (S,S)-2nThe reaction was performed on $3.728 \mathrm{mmol}(1 \mathrm{~g})$ 1,4,5,8-naphthalenetetracarboxylic dianhydride and $7.457 \mathrm{mmol}(664 \mathrm{mg}$) $\mathrm{H}-(\mathrm{L})$-Ala-OH using synthetic method B.

Work-up: the dark brown residue was taken up into $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{MeOH}(10 \mathrm{ml} 2: 1 \mathrm{v} / \mathrm{v})$. This solution was added under stirring to 200 ml of 1 N HCl . The resulting suspension was allowed to coagulate for 1 hour and then filtered using a Büchner funnel. The solid was then washed with 50 ml deionized water and dried in vacuo. The product was obtained in the form of a brown solid in 84% yield. m.p. $324-326^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.84(\mathrm{bs}, 2 \mathrm{H}), 8.74(\mathrm{~s}, 4 \mathrm{H}), 6.66(\mathrm{bt}, 2 \mathrm{H}), 5.62-5.56\left(\mathrm{dd}, J_{1}=21.0, J_{2}=7.0,2 \mathrm{H}\right)$, 1.57-1.56 (d, $\left.J_{1}=7.0,3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.61 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 171.0,162.0$, 130.9, 126.1, 49.0, 14.3; HRMS (ESI +) calcd. for: $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 411.0828$, found: 411.0833 .

2-\{7-\{1-Carboxy-4-[N^{\prime}-(2,2,5,7,8-pentamethyl-1-benzopyran-6-sulfonyl)-guanidino]-butyl\}-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl\}-5-[N'-(2,2,5,7,8-pentamethyl-1-benzopyran-6-sulfonyl)-guanidino]-pentanoic acid, (S,S)-2o

The reaction was performed on $0.373 \mathrm{mmol}(100 \mathrm{mg}) 1,4,5,8$ - naphthalenetetracarboxylic dianhydride and $0.746 \mathrm{mmol}(329 \mathrm{mg}) \mathrm{H}-\mathrm{Arg}(\mathrm{Pmc})-\mathrm{OH}$ using synthetic method B .

Work-up: the dark brown residue was taken up into $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{ml})$. This solution was added under stirring to 80 ml of 1 N HCl . The resulting suspension was allowed to coagulate for 1 hour and then filtered using a Büchner funnel. The solid was then washed with 50 ml deionized water and dried in vacuo. The product was obtained in the form of a pink-yellow solid in 98% yield. m.p. $280-284^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 8.73$ (s, $4 \mathrm{H}), 6.72(\mathrm{bs}, 3 \mathrm{H}), 6.34(\mathrm{bs}, 3 \mathrm{H}), 5.53-5.49\left(\mathrm{dd}, J_{1}=14.0, J_{2}=4.5,2 \mathrm{H}\right), 3.09-2.97(\mathrm{~m}, 4 \mathrm{H})$, $2.40(\mathrm{~s}, 6 \mathrm{H}), 2.38(\mathrm{~s}, 6 \mathrm{H}), 2.27-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 8 \mathrm{H}), 1.73-1.70(\mathrm{t}, 4 \mathrm{H}), 1.51-1.35$ $(\mathrm{t}, 4 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}): 8.68(\mathrm{~s}, 4 \mathrm{H}), 5.62-5.58\left(\mathrm{dd}, J_{1}=\right.$ $\left.14.5, J_{2}=5.0,2 \mathrm{H}\right), 3.19-3.15(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.44(\mathrm{~s}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 2.35-$ $2.28(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 6 \mathrm{H}), 1.77-1.74(\mathrm{t}, 4 \mathrm{H}), 1.61-1.45(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.61 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 170.4,162.3,155.8,152.3,134.5$, $134.3,134.0,131.2,126.3,125.9,122.6,117.7,113.8,73.4,53.3,35.7,32.0,26.4,25.8,20.6$, 18.0, 16.9, 11.8 .

1-[7-(1-Carboxy-cyclohexyl)-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[lmn][3,8]phenanthrolin-2-yl]-cyclohexanecarboxylic acid, 2p

The reaction was performed on $0.373 \mathrm{mmol}(100 \mathrm{mg}) 1,4,5,8$ - naphthalenetetracarboxylic dianhydride and $0.746 \mathrm{mmol}(107 \mathrm{mg}) \mathrm{H}-\mathrm{Ac} 6 \mathrm{c}-\mathrm{OH}$ using synthetic method B.

Work-up: the dark brown residue was taken up into $\mathrm{MeOH}(10 \mathrm{ml})$. This suspension was added under stirring to $80 \mathrm{ml} 0.1 \% \mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ aqueous solution. The resulting suspension
was allowed to coagulate for 15 minutes and then filtered using a Büchner funnel. The solid was taken up into $\mathrm{MeOH}(10 \mathrm{ml})$ and added to 80 ml 1 N HCl . The resulting suspension was allowed to coagulate for 1 hour and then filtered using a Büchner funnel. The solid was then washed with 50 ml deionized water and dried in vacuo. The product was obtained in the form of a pale-green solid in 40% yield. It is worth mentioning the poor solubility of the product as it precipitates upon standing from DMSO or DMF solutions. m.p. $>330{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMF}-d_{7}$) $\delta(\mathrm{ppm}): 8.66(\mathrm{~s}, 4 \mathrm{H}), 2.95-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.21-$ $2.18(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.44-1.41(\mathrm{~m}, 2 \mathrm{H}){ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.45(\mathrm{bs}, 2 \mathrm{H}), 8.56(\mathrm{~s}, 4 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.10-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.73-$ $1.52(\mathrm{~m}, 10 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.61 \mathrm{MHz}\right.$, DMF- $\left.d_{7}\right) \delta(\mathrm{ppm}): 173.6$, $165.0,130.9,128.5,126.6,67.8,32.0,25.8,23.4$; HRMS (ESI+) calcd. for: $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{8}$ $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}): 519.1767$, found: 519.1772.

1-(1,3,6,8-Tetraoxo-1,3,6,8-tetrahydro-2-oxa-7-aza-pyren-7-yl)-cyclohexane-carboxylic acid, 3 p

The compound was isolated from the reaction between 1,4,5,8- naphthalenetetracarboxylic dianhydride ($1.865 \mathrm{mmol}, 500 \mathrm{mg}$) and $\mathrm{H}-\mathrm{Ac} 6 \mathrm{c}-\mathrm{OH}(3.73 \mathrm{mmol}, 535 \mathrm{mg}$) using synthetic method B . The dark brown residue was taken up into $\mathrm{MeOH}(40 \mathrm{ml})$ and added to 150 ml 1 N HCl . The resulting suspension was allowed to coagulate for 1 hour and then filtered using a Büchner funnel. The a third of the solid was then dissolved in sat. $\mathrm{NaHCO}_{3}(200 \mathrm{ml})$. The pH of the solution was lowered to 8 and the precipitate formed was allowed to coagulate over night and filtered. The filtrate was washed with $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{ml})$, followed by deionized water (50 ml) and dried in vacuo. The product was obtained in the form of a brown-green solid in 2% yield, containing ca. 10% (by ${ }^{1} \mathrm{H}$ NMR) H-Ac6c-OH (starting material) impurity. It is worth mentioning the poor solubility of product as it precipitates upon standing from under-saturated solutions in DMSO. m.p. $>330{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.06(\mathrm{bs}, 1 \mathrm{H}), 8.55-8.51(\mathrm{~d}, J=14.0,4 \mathrm{H}), 2.82-2.77$ $(\mathrm{m}, 2 \mathrm{H}), 2.07-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}(100.61$ $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 172.9,163.9,163.2,130.1,129.7,127.6,127.3,126.8,125.3$, 67.9, 30.9, 24.8, 22.4.
(R)-2-\{7-[(S)-1-Carboxy-2-(1-trityl-1H-imidazol-4-yl)-ethyl]-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl\}-3-tritylsulfanyl-propionic acid, $(R, S)-4 a$

Work up: the dark brown oil was taken up into $\mathrm{CHCl}_{3}(100 \mathrm{ml})$. The organic phase was washed with $1 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{ml})$, brine ($1 \times 75 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and dried under high-vacuum. The product was obtained in the form of a tan solid in 81% yield. m.p. $170-172^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta(\mathrm{ppm}): 13.21(\mathrm{bs}, 2 \mathrm{H}), 8.75-8.68\left(\mathrm{dd}, J_{1}=26.5, J_{2}=7.5,4 \mathrm{H}\right), 7.23-7.12(\mathrm{~m}$, $26 \mathrm{H}), 6.80-6.78\left(\mathrm{~d}, J_{1}=7.5,5 \mathrm{H}\right), 5.84-5.80\left(\mathrm{dd}, J_{1}=15.0, J_{2}=4.5,1 \mathrm{H}\right), 5.61-5.57\left(\mathrm{dd}, J_{1}=\right.$ $\left.15.0, J_{2}=4.5,1 \mathrm{H}\right), 3.48-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.08\left(\mathrm{dd}, J_{1}=17.0, J_{2}=4.5,1 \mathrm{H}\right), 3.00-2.94(\mathrm{dd}$, $\left.J_{1}=23.5, J_{2}=10.5,1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.62 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 169.7,169.5,169.1$, $143.9,141.1,131.6,131.3,129.5,128.9,128.9,128.5,128.0,127.9,127.7,127.5,126.7$, 126.6, 126.2, 126.1, 125.5, 66.5, 66.4; HRMS (ESI+) calcd. for: $\mathrm{C}_{61} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 993.2958, found: 993.2909.
(S)-2-\{7-[(S)-1-Carboxy-2-(4-hydroxy-phenyl)-ethyl]-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro-1H-benzo[Imn][3,8]phenanthrolin-2-yl\}-succinic acid 1-methyl ester, (S,S)-4c

Work up: the dark brown oil was taken up into $\mathrm{CHCl}_{3}(10 \mathrm{ml})$. This solution was added under stirring to 75 ml of 1 N HCl . The resulting suspension was filtered using a Büchner funnel. The brown solid was then recrystallized from acetone/hexane and dried in vacuo. The product was obtained in the form of a orange solid in 90% yield. m.p. $160-162^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone- d_{6}) $\delta(\mathrm{ppm}): 10.81(\mathrm{bs}, 1 \mathrm{H}), 8.77-8.71\left(\mathrm{dd}, J_{1}=24.5, J_{2}=7.5\right.$, $4 \mathrm{H}), 7.02-6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.5), 6.55-6.53(\mathrm{~d}, J=8.5,2 \mathrm{H}), 6.27-6.24\left(\mathrm{dd}, J_{1}=13.5, J_{2}=5.0\right.$, $1 \mathrm{H}), 6.02-5.98\left(\mathrm{dd}, J_{1}=15.5, J_{2}=5.5,1 \mathrm{H}\right), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.38(\mathrm{~m}, 3 \mathrm{H}), 2.97-2.91(\mathrm{~m}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}\left(100.62 \mathrm{MHz}\right.$, Acetone- $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 171.8,170.5,170.0,163.2,163.1$, 156.7, 131.9, 131.0, 129.0, 127.8, 127.5, 127.5, 127.2, 115.8, 54.5, 52.9, 50.6, 34.4; HRMS (ESI+) calcd. for: $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{11}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$: 561.1145, found: 561.1169.
(S)-2-\{7-[(S)-2-(1H-Indol-3-yl)-1-methoxycarbonyl-ethyl]-1,3,6,8-tetraoxo-3,6,7,8-tetrahydro- 1 H -benzo[Imn][3,8]phenanthrolin-2-yl\}-3-methyl-pentanoic acid methyl ester, (S,S)-4d

Work up: the dark brown oil was taken up into $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{ml})$. This solution was added under stirring to 75 ml of 1 N HCl . The resulting suspension was allowed to coagulate overnight and then filtered using a Büchner funnel. The solid was then washed with 100 ml deionized water and dried in vacuo. The product was obtained in the form of a red-brown solid in 65% yield. m.p. $122-124^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}): 10.66$ (bs, $1 \mathrm{H}), 8.71-8.64\left(\mathrm{dd}, J_{1}=26.5, J_{2}=7.5,4 \mathrm{H}\right), 7.51-7.49(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.20-7.18(\mathrm{~d}, J=8.0$, $1 \mathrm{H}), 7.05-7.04(\mathrm{~d}, J=2.0,1 \mathrm{H}), 6.95-6.91\left(\mathrm{dd}, J_{1}=16.0, J_{2}=8.0,1 \mathrm{H}\right), 6.84-6.81\left(\mathrm{dd}, J_{1}=\right.$ $\left.16.0, J_{2}=8.0,1 \mathrm{H}\right), 6.00-5.90\left(\mathrm{dd}, J_{1}=15.0, J_{2}=5.5,1 \mathrm{H}\right), 5.33-5.30(\mathrm{~d}, J=8.5,1 \mathrm{H}), 3.73-$ $3.67(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.46\left(\mathrm{dd}, J_{1}=23.5, J_{2}=9.0,1 \mathrm{H}\right), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.33-$ $1.26(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.16(\mathrm{~d}, J=6.5,3 \mathrm{H}), 0.95-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.76-0.72(\mathrm{t}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left\{{ }^{1} \mathrm{H}\right\}$ (100.62 MHz, DMSO-d d_{6}) $\delta(\mathrm{ppm}): 169.5,169.1,135.9,131.5,131.3,127.0,123.8,120.8$, $118.2,117.9,111.2,109.5,79.1,57.6,53.9,52.3,52.1,33.3,24.5,24.0,17.5,10.9$; HRMS (ESI +) calcd. for: $\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{m} / \mathrm{z})$: 618.1852, found: 618.1838.

X-ray Characterization Data:

Table S1. Crystal data and structure refinement for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

Diffractometer: Nonius KappaCCD area detector. Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Mercury ver. 1.4.1 (CCDC) and Ortep-3 for Windows ver. 1.08 (L. J. Farrugia, J. Appl. Cryst (1997), 30, 565).

Special details: All hydrogen atoms were placed in idealized positions and refined using a riding model. The solvent is disordered acetone.

Figure S1. Top view of the molecular structure of $2 f$ showing the atom labeling scheme Single crystals obtained from acetone solution. Displacement ellipsoids are scaled to the 50% probability level. A discordered acetone molecule has been removed for clarity.

Figure S2. View of the molecular structure of $2 \mathbf{f}$ normal to the (010) plane. Single crystals obtained from acetone solution. Displacement ellipsoids are scaled to the 50% probability level. A discordered acetone molecule has been removed for clarity.

Figure S3. Unit cell packing diagram for single crystals of $2 f$ obtained from acetone. View normal to (010) plane.

Table S2. Crystal data and structure refinement for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$

Diffractometer: Nonius KappaCCD area detector. Data collection: Collect (Collect: Data collection software, R. Hooft, Nonius B.V., 1998). Data reduction: Denzo (Z. Otwinowski \& W. Minor, Methods in Enzymology (1997) Vol. 276: Macromolecular Crystallography, part A, pp. 307-326; C. W. Carter, Jr. \& R. M. Sweet, Eds., Academic Press). Structure refinement: SHELXL97 (G. M. Sheldrick (1997), University of Göttingen, Germany). Graphics: Mercury ver. 1.4.1 (CCDC) and Ortep-3 for Windows ver. 1.08 (L. J. Farrugia, J. Appl. Cryst (1997), 30, 565).

Special details: All hydrogen atoms were placed in idealized positions and refined using a riding model.

Figure S4. Top view of of the molecular structure of $\mathbf{2 f}$ showing the atom labeling scheme Single crystals obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ mixture. Displacement ellipsoids are scaled to the 50% probability level.

Figure S4. Unit cell packing diagram for single crystals of $2 \mathbf{f}$ obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}$ mixture. View normal to (100) plane.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds $2 \mathrm{a}-2 \mathrm{p}$ and $4 \mathrm{a}-4 \mathrm{~d}$

$(S, S)-\mathbf{2 b}$

$(S, S)-\mathbf{2 d}$

(S,S)-2e

(S, S)-2f

$(S, S)-\mathbf{2 g}$

$(S, S)-\mathbf{2 h}$

$(S, S)-\mathbf{2 i}$

玉

등

$(S, S)-\mathbf{2 k}$

$$
\begin{aligned}
& \text { 若 }
\end{aligned}
$$

$(S, S)-\mathbf{2 m}$

$(S, S)-\mathbf{2 n}$

[^0]

1-(1,3,6,8-Tetraoxo-1,3,6,8-tetrahydro-2-oxa-7-aza-pyren-7-yl)-cyclohexane-carboxylic acid (3)

4

[^1]$(R, S)-4 \mathrm{a}$

$(S, S) \mathbf{- 4 b}$

(S,S)-4c

${ }^{1}$ Jursic, B. S.; Patel, P. K. Carbohydr. Res. 2005, 340, 1413-1418

[^0]: $(S, S)-\mathbf{2 0}$

[^1]:

