Supplementary Information for

Cap and capture-release techniques applied to solid-phase synthesis of oligosaccharides

Jian Wu and Zhongwu Guo*

Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA zwguo@chem.wayne.edu

Table of Contents:

I. Experimental Section	S1-S5
II. Selected NMR spectra -	S6-S15

I. Experimental Section

General Methods. NMR spectra were recorded with a 400 MHz NMR spectrometer. Chemical shifts are reported in ppm (δ) and coupling constants (*J*) in hertz (Hz). MS and high-resolution mass spectra (HR MS) were recorded with a mass spectrometer in fast atom bombardment (FAB) mode. Thin layer chromatography (TLC) was performed on silica gel GF₂₅₄ detected by charring with 2% H₂SO₄ in EtOH. Purchased anhydrous solvents and other reagents were used without further purification.

Methyl 3,4-di-O-benzyl-6-O-(t-butyldimethylsilyl)-2-O-levulinoyl-a-D-mannopyranoside (7). To a stirred solution of **6** (160 mg, 0.269 mmol) in CH₂Cl₂ (4 mL) at 0 °C was added levulinic acid (0.04 mL, 0.404 mmol) and DMAP (50 mg, 0.404 mmol). After the mixture was stirred for 5 min, DIPC (0.06 mL, 0.404 mmol) was added, and the solution was allowed to slowly warm to room temperature. Four hours later, the reaction mixture was concentrated in vacuo, and the residue was purified by flash silica gel chromatography (toluene:EtOAc = 15:1) to yield **7** (177 mg, 95%) as colorless oil. R_f: 0.52 (toluene:EtOAc = 4:1). $[\alpha]_D^{20}$ +17.1 (c 1.0, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.24 (m, 10 H), 5.33 (dd, *J* = 3.2, 2.0 Hz, 1 H), 4.89 (d, *J* = 10.8 Hz, 1

H), 4.69-4.65 (m, 2 H), 4.62 (d, J = 10.8 Hz, 1 H), 4.51 (d, J = 10.8 Hz, 1 H), 3.95 (dd, J = 9.6, 3.2 Hz, 1 H), 3.89 (dd, J = 11.6, 4.8 Hz, 1 H), 3.85-3.78 (m, 2 H), 3.62-3.57 (m, 1 H), 3.34 (s, 3 H), 2.80-2.61 (m, 4 H), 2.18 (s, 3 H), 0.92 (s, 9 H), 0.08 (s, 3 H), 0.06 (s, 3 H). ¹³C NMR (125 MHz, CDCl₃) 172.4, 138.9, 138.3, 130.0, 129.2, 128.58, 128.56, 128.3, 128.1, 127.9, 127.8, 98.7, 78.3, 75.4, 74.4, 72.7, 71.8, 69.1, 62.5, 54.9, 38.2, 30.1, 28.3, 26.1, 18.5, 1.3, -4.9, -5.1. FAB HRMS (m/e): cacl. for C₃₁H₄₃O₇Si (M⁺ - OCH₃) 555.2779; found 555.2766; cacl. for C₃₂H₄₅O₈Si (M⁺ - H) 585.2884, found 585.2870; cacl. for C₃₂H₄₇O₈Si (M + H⁺) 587.3040, found 587.2999.

Methyl 3,4-di-O-benzyl-2-O-levulinoyl- α -D-mannopyranoside (8). After 7 (170 mg, 0.246 mmol) was dissolved in THF (1 mL) under nitrogen, TBAF (1M solution in THF, 1.23 mL, 1.23 mmol) and acetic acid (0.077 mL) were added to the solution at 0 °C. The mixture was warmed to room temperature and stirred overnight. After removal of the solvent in a vacuum, the residue was purified by flash column chromatography (toluene:EtOAc = 1:1) to give **8** (110 mg, 95%) as colorless syrup. R_f: 0.23 (toluene:EtOAc = 1:1). $[\alpha]_D^{20}$ +17.4 (c 0.5 , CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.22 (m, 10 H), 5.33 (dd, J = 3.2, 1.6 Hz, 1 H), 4.91 (d, J = 11.2 Hz, 1 H), 4.70 (d, J = 1.6 Hz, 1 H), 4.68 (d, J = 11.2 Hz, 1 H), 4.63 (d, J = 11.2 Hz, 1 H), 4.52(d, J = 11.2 Hz, 1 H), 3.97 (dd, J = 9.2, 3.2 Hz, 1 H), 3.87-3.74 (m, 3 H), 3.68-3.63 (m, 1 H), 3.36 (s, 3 H), 2.82-2.62 (m, 4 H), 2.18 (s, 3 H), 1.95 (dd, J = 8.0, 5.2 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃) 206.6, 172.3, 138.5, 138.2, 128.7, 128.6, 128.3, 128.2, 128.0, 127.9, 98.9, 78.1, 75.4, 74.3, 71.8, 71.7, 69.1, 62.3, 55.2, 38.3, 30.0, 29.9, 28.4. FAB HRMS (m/e): cacl. for C₂₆H₃₃O₈ (M + H⁺) 473.2175, found 473.2170; cacl. for C₂₆H₃₁O₈ (M⁺ - H) 471.2021, found 471.2019; cacl. for C₂₆H₃₂NaO₈ (M + Na⁺) 495.1995, found 495.1975.

Methyl 3,4-di-O-benzyl-6-O-(3-carboxypropanoyl)-2-O-levulinoyl- α -D-mannopyranoside (2). To a solution of **8** (110 mg, 0.233 mmol) in pyridine (2 mL) were added succinic anhydride (93 mg, 0.932 mmol) and a catalytic amount (100 mg) of DMAP. After stirring overnight, H₂O (1mL) was added and the stirring was continued for another hour. The mixture was diluted with CH₂Cl₂ (50 mL) and washed with 1M HCl solution (2 × 30 mL) and H₂O (2 × 30 mL). The organic layer was dried (Na₂SO₄) and concentrated in vacuum to afford **2** (133 mg, 100%): [α]_D²⁰ +18.7 (c 3.0, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.24 (m, 10 H), 5.34 (dd, *J* = 3.2, 1.6 Hz, 1 H), 4.88 (d, *J* = 10.8 Hz, 1 H), 4.68 (d, *J* = 1.6 Hz, 1 H), 4.67 (d, *J* = 10.8 Hz, 1 H), 4.56 (d, *J* = 10.8 Hz, 1 H), 4.51 (d, *J* = 10.8 Hz, 1 H), 4.37 (s, 1 H), 4.36 (s, 1 H), 3.96 (dd, *J* = 8.8, 3.2 Hz, 1 H),

3.83-3.78 (m, 1 H), 3.71 (t, J = 9.6 Hz, 1 H), 3.34 (s, 3 H), 2.82-2.62 (m, 4 H), 2.64 (s, 4 H), 2.17 (s, 3 H). FAB HRMS (m/e): cacl. for C₃₀H₃₆NaO₁₁ (M + Na⁺) 595.2156, found 595.2157.

Ethyl 3,4,6-tri-O-benzyl-2-O-levulinoyl-1-thio-α-D-mannopyranoside (10). Levulinic acid (77 µL, 0.75 mmol) and DMAP (92 mg, 0.75 mmol) was added to a stirred solution of **9** (300 mg, 0.5 mmol) in CH₂Cl₂ (5 mL) at 0 °C. Five minutes later, DIPC (0.12 mL, 0.75 mmol) was added, and the solution was allowed to slowly warm to rt. After 4 h of stirring, the reaction mixture was concentrated in vacuo, and the residue was purified by column chromatography (toluene:EtOAc = 10:1) to yield **10** (281 mg, 95%) as colorless syrup. R_f: 0.34 (toluene:EtOAc = 4:1). $[\alpha]_D^{20}$ +20.8 (c 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃): δ 7.41-7.15 (m, 15 H), 5.42 (t, *J* = 2.0 Hz, 1 H), 5.29 (d, *J* = 1.2 Hz, 1 H), 4.85 (d, *J* = 10.4 Hz, 1 H), 4.68 (d, *J* = 3.6 Hz, 2 H), 4.65 (d, *J* = 2.8 Hz, 2 H), 4.51-4.46 (m, 3 H), 4.17-4.11 (m, 1 H), 3.92-3.87 (m, 2 H), 3.82 (dd, *J* = 10.8, 4.0 Hz, 1 H), 3.68 (dd, *J* = 2.8, 1.6 Hz, 1 H), 2.75-2.53 (m, 6 H), 2.13 (s, 3 H), 1.27 (t, *J* = 3.6 Hz, 1 H). ¹³C NMR (125 MHz, CDCl₃) 206.6, 172.2, 138.6, 138.4, 138.0, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 82.6, 78.7, 75.4, 74.7, 73.6, 72.0, 71.9, 70.9, 69.1, 38.2, 30.0, 28.4, 25.7, 15.1. FAB HRMS (m/e): cacl. for C₃₄H₄₀NaO₇S (M + Na⁺) 615.2393, found 615.2393.

3,4,6-tri-O-Benzyl-2-O-levulinoyl-a,β-D-mannopyranose (11). To a stirred solution of **10** (250 mg, 0.422 mmol) in CH₃CN (3 mL) and H₂O (0.3 mL) was added NIS (190 mg, 0.844 mmol). The reaction mixture was stirred for 5 min at rt and was then diluted with CH₂Cl₂. The solution was washed with saturated Na₂S₂O₃ and brine, and the combined organic layer was dried with Na₂SO₄ and concentrated in vacuo. The residue was purified by flash column chromatography (toluene:EtOAc = 2:1) to produce **11** (230 mg, 99%) as colorless syrup. R_f: 0.12 (toluene:EtOAc = 4:1). ¹H NMR (CDCl₃, 400 MHz, α-anomer as the major product): δ 7.38-7.12 (m, 15 H), 5.35 (dd, *J* = 3.6, 1.6 Hz, 1 H), 5.17 (dd, *J* ≤ 1 Hz, 1 H), 4.85 (d, *J* = 11.2 Hz, 1 H), 4.67 (d, *J* = 10.8 Hz, 1 H), 4.58 (d, *J* = 12.0 Hz, 1 H), 4.51-4.45 (m, 3 H), 4.08-4.02 (m, 1 H), 4.01 (dd, *J* = 9.6, 3.6 Hz, 1 H), 3.86 (d, *J* = 3.2 Hz, 1H), 3.76-3.64 (m, 3 H), 2.75-2.64 (m, 4 H), 2.10 (s, 3 H). ¹³C NMR (125 MHz, CDCl₃) 206.9, 172.3, 138.5, 138.2, 138.1, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 92.6, 77.9, 75.3, 74.8, 73.6, 71.8, 71.2, 69.5, 69.4, 38.3, 30.0, 28.4. FAB HRMS (m/e): cacl. for C₃₂H₃₆NaO₈ (M + Na⁺) 571.2308, found 571.2303.

3,4,6-tri-O-Benzyl-2-O-levulinoyl-α-D-mannopyranosyl trichloroimidate (3). After **11** (200 mg, 0.365 mmol) and Cl₃CCN (2 mL) was dissolved in CH₂Cl₂ (1 mL), to the solution was added NaH (1.5 mg, 0.037 mmol) at 0 °C. This mixture was stirred for 20 min, before it was concentrated in vacuum. The residue was directly purified by flash column chromatography (hexane:acetone = 4:1) to yield **3** (226 mg, 90%) as colorless syrup. R_{f} : 0.28 (hexane:acetone = 6:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.73 (s, 1 H), 7.38-7.18 (m, 15 H), 6.28 (d, *J* = 2.0 Hz, 1 H), 5.48 (t, *J* = 2.0 Hz, 1 H), 4.87 (d, *J* = 10.8 Hz, 1 H), 4.71 (d, *J* = 11.2 Hz, 1 H), 4.66 (d, *J* = 12.0 Hz, 1 H), 4.56 (d, *J* = 11.2 Hz, 1 H), 4.54 (d, *J* = 10.8 Hz, 1 H), 4.51 (d, *J* = 12.0 Hz, 1 H), 4.03-3.94 (m, 3 H), 3.83 (dd, *J* = 10.8, 3.6 Hz, 1 H), 3.71 (dd, *J* = 11.6, 1.6 Hz, 1 H), 2.80-2.67 (m, 4 H), 2.15 (s, 3 H). ¹³C NMR (125 MHz, CDCl₃) 206.5, 172.1, 160.2, 138.4, 138.3, 137.8, 128.7, 128.6, 128.6, 128.5, 128.5, 128.4, 128.3, 128.12, 128.06, 127.9, 95.5, 75.7, 74.5, 73.8, 73.7, 72.1, 68.6, 67.7, 53.7, 38.2, 30.0, 28.3. MS is not available as the sample was unstable.

Ethyl 3,4,6-tri-O-benzyl-2-O-(4-(5-(ethoxycarbonyl)pentyloxy)benzyl)-1-thio- α -D-mannopyranoside (12) To a stirred solution of compound 9 (250 mg, 0.417 mmol) in DMF (4 mL) was added NaH (25 mg, 0.626 mmol) at 0°C. The resultant suspension was stirred for 20 min and then a solution of ethyl 6-(4-bromomethylphenyloxyl)-hexanoate (206 mg, 0.626 mmol) in DMF (1mL) was added dropwise at -5 °C. The reaction mixture was stirred at this temperature for 1 h. After MeOH was added to quench the reaction, the reaction mixture was washed with brine, dried over Na₂SO₄ and then concentrated in vacuo. The residue was purified by flash column chromatography (toluene: EtOAc = 20:1) to yield 12 (318 mg, 90%). R_{f} : 0.34 (toluene: EtOAc = 10:1). $\left[\alpha\right]_{D}^{20}$ +44.9 (c 4.0, CHCl₃). ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.14 (m, 17 H), 6.80 (d, J = 8.8 Hz, 1 H), 5.38 (s, 1 H), 4.88 (d, J = 11.2 Hz, 1 H), 4.67-4.64 (m, 2 H), 4.58 (d, J = 12.4Hz, 1 H), 4.54-4.47 (m, 4 H), 4.16-4.09 (m, 3 H), 4.00 (t, J = 8.8 Hz, 1 H), 3.92 (t, J = 6.4 Hz, 2 H), 3.84-3.78 (m, 3 H), 3.70 (dd, J = 10.8, 1.6 Hz, 1 H), 2.68-2.50 (m, 2 H), 2.37-2.30 (m, 3 H), 1.84-1.75 (m, 2 H), 1.75-1.66 (m, 2 H), 1.56-1.46 (m, 2 H), 1.28-1.20 (m, 6 H). ¹³C NMR (125 MHz, CDCl₃) 173.9, 138.8, 138.6, 138.5, 132.2, 130.2, 129.8, 128.6, 128.5, 128.5, 128.1, 127.99, 127.97, 127.8, 127.8, 127.7, 115.0, 114.6, 82.0, 80.5, 75.9, 75.3, 75.3, 73.5, 72.2, 72.1, 71.7, 69.4, 68.3, 67.9, 60.5, 34.5, 34.4, 29.9, 29.2, 29.0, 25.9, 25.8, 25.5, 25.0, 24.9, 15.2, 14.5. FAB HRMS (m/e): cacl. for C₄₄H₅₄NaO₈S (M + Na⁺) 765.3437, found 765.3438.

3,4,6-tri-O-Benzyl-2-O-(4-(5-(ethoxycarbonyl)pentyloxy)benzyl)-α-D-mannopyranose (13). To a stirred solution of **12** (250 mg, 0.337 mmol) in CH₃CN (3 mL) and H₂O (0.3 mL) was added NIS (152 mg, 0.674 mmol). The reaction mixture was stirred at rt for 5 min. Then, the mixture was diluted with CH₂Cl₂ and washed with saturated Na₂S₂O₃ and brine. The organic layer was combined, dried (Na₂SO₄) and concentrated in vacuo. The residue was purified by flash column chromatography (toluene:EtOAc = 5:1) to yield **13** (233mg, 99%) as colorless syrup. R_f: 0.20 (toluene:EtOAc = 5:1). ¹H NMR (CDCl₃, 400 MHz, α-anomer as the major product): δ 7.38-7.12 (m, 17 H), 6.77 (d, *J* = 8.8 Hz, 1 H), 5.19 (t, *J* = 2.4 Hz, 1 H), 4.85 (d, *J* = 10.8 Hz, 1 H), 4.70-4.44 (m, 7 H), 4.10 (q, *J* = 7.2 Hz, 2 H), 4.02-3.96 (m, 1 H), 3.94-3.86 (m, 3 H), 3.82 (t, *J* = 9.6 Hz, 1 H), 3.76 (t, *J* = 2.4 Hz, 1 H), 3.71-3.61 (m, 2 H), 2.91 (d, *J* = 3.2 Hz, 1 H), 2.31 (t, *J* = 7.6 Hz, 2 H), 1.82-1.73 (m, 2 H), 1.72-1.63 (m, 2 H), 1.52-1.44 (m, 2 H), 1.23 (t, *J* = 7.2 Hz, 3 H).

3,4,6-tri-O-Benzyl-2-O-(4-(5-(ethoxycarbonyl)pentyloxy)benzyl)-a-D-mannopyranosyl trichloroimidate (4). After **13** (200 mg, 0.287 mmol) and Cl₃CCN (2 mL) was dissolved in CH₂Cl₂ (1m L), to the solution was added NaH (1.2 mg, 0.029 mmol) with stirring at 0 °C. Twenty minutes later, the reaction mixture was concentrated in vacuo and the residue was purified by flash column chromatography (toluene:EtOAc = 30:1) to yield **4** (216 mg, 90%) as colorless syrup. The ¹³C NMR spectrum was not measured for **4**, because this glycosyl immidate was relatively unstable. R_f: 0.42 (toluene:EtOAc = 8:1). ¹H NMR (CDCl₃, 400 MHz): δ 8.53 (s, 1 H), 7.36-7.14 (m, 17 H), 6.81 (d, *J* = 8.8 Hz, 2 H), 6.35 (d, *J* = 1.6 Hz, 1 H), 4.74-4.50 (m, 7 H), 4.16-4.09 (m, 3 H), 3.99-3.88 (m, 4 H), 3.86 (t, *J* = 2.4 Hz, 1 H), 3.81 (dd, *J* = 11.2, 4.4 Hz, 1 H), 3.72 (dd, *J* = 11.2, 1.6 Hz, 1 H), 2.33(t, *J* = 8.0 Hz, 2 H), 1.84-1.75 (m, 2 H), 1.75-1.65 (m, 2 H), 1.55-1.44 (m, 2 H), 1.25 (t, *J* = 7.2 Hz, 3 H). MS is not available as the sample was unstable.

II. Selected NMR spectra:

S11

S13

